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Abstract

Let r(z) = f(z)/w(z) where f(z) be a polynomial of degree at most n and w(z) =
∏n

j=1(z − aj),
|aj| > 1 for 1 ≤ j ≤ n. If the rational function r(z) ̸= 0 in |z| < k, then for k = 1, it is known that
[A.Aziz and N.A.Rather, Journal Mathematical Inequalities and Applications, Vol.2, No.2(1999), 165
- 173]

|r(Rz)| ≤
(
|B(Rz)|+ 1

2

)
sup
|z|=1

|r(z)| for |z| = 1

where B(z) =
∏n

j=1 {(1− ājz)/(z − aj)}. In this paper, we consider the case k ≥ 1 and obtain cer-
tain results concerning the growth of the maximum modulus of the rational functions with prescribed
poles and restricted zeros in the Chebyshev norm on the unit circle in the complex plane.
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1. Introduction and Statements of the Results

Let Pn be the set of all complex polynomials f(z) =
∑n

j=1 ajz
j of degree at most n and let

Dk− = {z : |z| < k}, Dk+ = {z : |z| > k} and Tk = {z : |z| = k}. For f defined on the circle Tk in
the complex domain, we write

M(f, k) = sup
z∈Tk

|f(z)| and m(f, k) = inf
z∈Tk

|f(z)|.
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For aj ∈ C with j = 1, 2, . . . , n, we set

w(z) =
n∏

j=1

(z − aj) , B(z) =
n∏

j=1

(
1− ājz

z − aj

)
and

Rn = Rn(a1, a2, . . . , an) =

{
f(z)

w(z)
: f ∈ Pn

}
.

Then clearly Rn is the space of all rational functions with at most n poles a1, a2, . . . , an with finite
limit at infinity. We note that B(z) ∈ Rn. Throughout this paper, we shall assume that all the poles
a1, a2, . . . , an lie in D1+.

For f ∈ Pn, we have

M(f,R ≥ 1) ≤ RnM(f, 1). (1.1)

The result is sharp and equality in (1.1) holds for polynomials having all their zeros at origin.
Inequality (1.1) is a simple deduction from the maximum modulus principle (see [4], [5], [6] ). For
the class of polynomials P ∈ Pn having no zero in D−1 the inequality (1.1) can be sharpened. In
fact, if f ∈ Pn does not vanish in D1−, then

M(f,R ≥ 1) ≤ Rn + 1

2
M(f, 1). (1.2)

Inequality (1.2) is due to Ankeny and Rivlin [1]. Equality in (1.2) holds for f(z) = azn + b, |a| =
|b| = 1.

As a refinement of the inequality (1.2), Aziz and Dawood [2] proved that if f ∈ Pn does not
vanish in D1−, then

M(f,R ≥ 1) ≤
(
Rn + 1

2

)
M(f, 1)−

(
Rn − 1

2

)
m(f, 1). (1.3)

The equality in (1.3) holds for f(z) = azn + b, |a| = |b| = 1.

Walsh [7, Lemma II] extended the inequality (1.1) to the rational functions r(z) ∈ Rn and proved
that if r(z) ∈ Rn, then for z ∈ T1 and R ≥ 1,

|r(Rz)| ≤ |B(Rz)|M(r, 1). (1.4)

Equality in (1.4) holds for r(z) = αB(z) where α ∈ T1.
Aziz and Rather [3] considered the class of rational functions r(z) ∈ Rn having no zero in D1−

and as an extension of (1.2), proved that if r(z) ∈ Rn does not vanish in D1−, then for z ∈ T1 and
R ≥ 1,

|r(Rz)| ≤
(
|B(Rz)|+ 1

2

)
M(r, 1). (1.5)

The result is sharp and equality in (1.5) holds for r(z) = B(z) + β where β ∈ T1. As an extension
of (1.3) to the rational functions r(z) ∈ Rn and a refinement of inequality (1.5), Aziz and Rather [3]
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also showed that if r(z) ∈ Rn and r(z) ̸= 0 in D1−, then for z ∈ T1 and R ≥ 1,

|r(Rz)| ≤
(
|B(Rz)|+ 1

2

)
M(r, 1)−

(
|B(Rz)| − 1

2

)
m(r, 1). (1.6)

The result is sharp and equality in (1.6) holds for r(z) = B(z) + β where β ∈ T1.

The main aim of this paper is to obtain certain growth estimates for rational functions r(z) ∈ Rn

having no zero in Dk− where k ≥ 1. In this direction, we first present a sharp extension of inequality
(1.5) for class of rational functions r ∈ Rn having no zero in Dk−. More precisely, we prove:

Theorem 1.1. If r(z) ∈ Rn and all the zeros of r(z) lie in Tk ∪Dk+ where k ≥ 1, then for z ∈ T1

and R ≥ 1,

|r(Rz)| ≤ (R + k)n(|B(Rz)|+ 1)

(R + k)n + (1 +Rk)n
M(r, 1). (1.7)

Remark 1.2. For k = 1, inequality (1.7) reduces to inequality (1.5).

Next, by involving m(r, k), we establish the following refinement of the inequality (1.7).

Theorem 1.3. If r(z) ∈ Rn and all the zeros of r(z) lie in Tk ∪Dk+ where k ≥ 1, then for z ∈ T1

and R ≥ 1,

|r(Rz)| ≤ (R + k)n(|B(Rz)|+ 1)

(R + k)n + (1 +Rk)n
M(r, 1)− ((1 +Rk)n |B(Rz)| − (R + k)n)

(R + k)n + (1 +Rk)n
m(r, k). (1.8)

Remark 1.4. Clearly for k = 1, inequality (1.8) reduces to inequality (1.6).

2. Preliminaries

For the proofs of our theorems, we need the following lemma which is due to Aziz and Rather [3].

Lemma 2.1. If r(z) ∈ Rn, then for z ∈ T1 and R ≥ 0,

|r(Rz)|+ |r∗(Rz)| ≤ (|B(Rz)|+ 1)M(r, 1) (2.1)

where r∗(z) = B(z)r(1/z̄).

3. Proofs of the Theorems

Proof .[Proof of Theorem 1.1] Let f ∗(z) = znf(1/z̄) be the conjugate polynomial of f(z). By
hypothesis, r(z) = f(z)/w(z), therefore,

r∗(z) = B(z)r(1/z̄) = f ∗(z)/w(z)

and we have
|r(z)/r∗(z)| = |f(z)/f ∗(z)|
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that is, for R ≥ 1 and z ∈ T1

|r(Rz)/r∗(Rz)| = |f(Rz)/f ∗(Rz)| . (3.1)

Further, since all the zeros of f(z) lie in Tk ∪Dk+ where k ≥ 1, we write

f(z) = c
n∏

j=1

(z − rje
iθj)

where rj ≥ k, j = 1, 2, . . . , n. Therefore, for 0 ≤ θ < 2π and R ≥ 1,∣∣∣∣ f(Reiθ)

Rnf(eiθ/R)

∣∣∣∣2 = n∏
j=1

∣∣∣∣Reiθ − rje
iθj

eiθ −Rrjeiθj

∣∣∣∣2
=

n∏
j=1

(
R2 + r2j − 2Rrj cos(θ − θj)

1 +R2r2j − 2Rrj cos(θ − θj)

)

≤
n∏

j=1

(
R + rj
1 +Rrj

)2

≤
n∏

j=1

(
R + k

1 +Rk

)2

,

This gives for 0 ≤ θ < 2π and R ≥ 1,∣∣∣∣ f(Reiθ)

f ∗(Reiθ)

∣∣∣∣ = ∣∣∣∣ f(Reiθ)

Rnf(eiθ/R)

∣∣∣∣ ≤ (
R + k

1 +Rk

)n

so that for z ∈ T1 and R ≥ 1, we have∣∣∣∣ f(Rz)

f ∗(Rz)

∣∣∣∣ ≤ (
R + k

1 +Rk

)n

.

Combining this inequality with (3.1), we get

|r(Rz)/r∗(Rz)| = |f(Rz)/f ∗(Rz)| ≤
(

R + k

1 +Rk

)n

for z ∈ T1 and R ≥ 1.

Equivalently, (
1 +Rk

R + k

)n

|r(Rz)| ≤ |r∗(Rz)| for z ∈ T1 , R ≥ 1, (3.2)

This in conjunction with Lemma 2.1 yields for z ∈ T1 and R ≥ 1,{
1 +

(
1 +Rk

R + k

)n}
|r(Rz)| ≤ |r(Rz)|+ |r∗(Rz)|

≤ (|B(Rz)|+)M(r, 1),

which is equivalent to the desired result, thus completes the proof of Theorem 1.1. □
Proof .[Proof of Theorem 1.3] Since m(r, k) = Infz∈Tk

|r(z)|, therefore, we have m(r, k) ≤ |r(z)| for
z ∈ Tk. If r(z) has a zero on Tk, then m(r, k) = 0 and the result follows from Theorem 1.1 in this
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case. So assume all the zeros of r(z) lie in Dk+ so that m(r, k) > 0 and it follows by the minimum
modulus theorem that we have

m(r, k) < |r(z)| for z ∈ Dk−. (3.3)

We show all the zeros of g(z) = r(z) + λm(r, k) lie in Tk ∪Dk+ for every λ ∈ C with |λ| ≤ 1. For, if
there is a point z = z0 in Dk− such that r(z0) + λm(r, k) = g(z0) = 0, then

|r(z0)| = |λ|m(r, k) ≤ m(r, k),

which is a contradiction to (3.3). Hence all the zeros of rational function g(z) = r(z) + λm(r, k) lie
in Tk ∪ Dk+. Now proceeding similarly as in the proof of Theorem 1.1, from inequality (3.3) with
rational function r(z) replaced by g(z), we get(

1 +Rk

R + k

)n

|g(Rz)| ≤ |g∗(Rz)|

= |B(Rz)g(z/R)| for z ∈ T1, R ≥ 1.

Equivalently, (
1 +Rk

R + k

)n

|r(Rz) + λm(r, k)| ≤
∣∣∣B(Rz)r(z/R) + λ̄B(Rz)m(r, k)

∣∣∣
= |B(Rz)| |r(z/R) + λm(r, k)|

(3.4)

for z ∈ T1 and R ≥ 1. Choosing the argument of λ with |λ| = 1 such that

|r(z/R) + λm(r, k)| = |r(z/R)| −m(r, k),

which is possible by (3.3), we obtain from inequality (3.4) for z ∈ T1 and R ≥ 1,(
1 +Rk

R + k

)n

{|r(Rz)| −m(r, k)} ≤
∣∣∣B(Rz)r(z/R)

∣∣∣− |B(Rz)|m(r, k)

= |r∗(Rz)| − |B(Rz)|m(r, k).

This gives for z ∈ T1 and R ≥ 1,(
1 +Rk

R + k

)n

|r(Rz)|+
{
|B(Rz)| −

(
1 +Rk

R + k

)n}
m(r, k) ≤ |r∗(Rz)| .

Combining this with Lemma 2.1, we obtain we get for z ∈ T1 and R ≥ 1,[
1 +

(
1 +Rk

R + k

)n]
|r(Rz)|+

{
|B(Rz)| −

(
1 +Rk

R + k

)n}
m(r, k)

≤ |r(Rz)|+ |r∗(Rz)| .
≤ (|B(Rz)|+ 1)M(r, 1),

which gives for z ∈ T1 and R ≥ 1,

|r(Rz)| ≤ (R + k)n

(R + k)n + (1 +Rk)n
(|B(Rz)|+ 1)M(r, 1)

−
(
(R + k)n |B(Rz)| − (1 +Rk)n

(R + k)n + (1 +Rk)n

)
m(r, k).

This proves Theorem 1.3. □
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