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Abstract

In this paper, we have established some trapezoid type inequalities for generalized fractional inte-
gral. The results presented here would provide some fractional inequalities and Riemann-Liouville
type fractional operators.
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1. Introduction

Let f: I CR — R be a convex mapping defined on the interval I of real numbers and a,b € I,
with a < b. The following double inequality is well known in the literature as the Hermite-Hadamard

inequality [2]: .
f(“;b)sbia/m)dxsw. (1.1)

The most well-known inequalities related to the integral mean of a convex function are the Hermite
Hadamard inequalities. Over the years several papers have focused on the inequalities . For
some of them, see (

In this section we summarize the generalized fractional integrals defined by Sarikaya and Ertugral
in [§].

Let’s define a function ¢ : [0,00) — [0, 00) satisfiying the following conditions :
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We define the following left-sided and right-sided generalized fractional integral operators, respec-
tively, as follows:

a+Lpf(x):/z%f(t)dt, r>a (1.2)
bfwf(x):/ %f(t)dt, v <b (1.3)

The most important feature of generalized fractional integrals is that they generalize some types
of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional
integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional in-
tegrals, etc. These important special cases of the integral operators and are mentioned
below.

i) If we take ¢ (t) = t, the operator (|1.2) and ([1.3]) reduce to the Riemann integral as follows:

[a+f(3c) = /»’0 ft)dt, x> a,

b
I-f(z) = / f)dt, = <b.

ii) If we take p (t) = %, the operator 1) and |) reduce to the Riemann-Liouville fractional
integral as follows:

I° f(z) = %a) / (z— 0 fB)dt, > a,

N / (t— 2 f(B)dt, = <b.

iii) If we take @ (t) = mt%, the operator ‘) and 1D reduce to the k-Riemann-Liouville
fractional integral as follows:

12 fle) = m /: (z —1)

b
@) = g [ =)

=

L f(t)dt, x> a,

=R

“Lfdt, z<b

where - .
Iy () = / t* e~ wdt, R(a) >0
0
and o
Dy () = k#7IT (E) , R(a) >0,k >0

are given by Mubeen and Habibullah in [5].
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2. Main Results
Throughout this study, for brevity, we define
1 1
J— b _
A(t) :/ 2l =) gy < e, (1) :/ 2D gy < o,
t t

In this section, using generalized fractional integral operators, we begin by the following theorem:

Lemma 2.1. Let f : I — R be an absolutely continuous mapping on I° such that f' € L; ([a,b]),
where a,b € I° with a < b. Then the following equality holds:

v (0 f <bg PROM L L 0) 4 1 (@) 21)

- b_x/v "(tr 4+ (1 —t)b)dt — b_Z/A(t)f’(tx—i—(l—t)a)dt.

Proof . It suffices to note that
1

/A(t) f (tx + (1 —t)a)dt.

0

Tr—a

_ b_a/v (b 4+ (1= 1) Byt —

—a

Integrating by parts, we obtain

1

I = Z:j[vu)f(m(l—t)b)xi
+xib/0 @((bt_x)t)f(tx—i—(l—t)b)}
o b—a [ (O f() 1 [Teb—s)
B b—a[ b—x _b—x/x b—s f(5>d8]
- vO)f (bb)_—amdwf (b) (2.2)
and similarly we get,
L — :Z:Z/A(t)f’(ter(l—t)a)dt (2.3)
_ QZ:Z {A ;Olfa(a) B xia /w @iS_—afI)f(s) ds
_ A0) f(a) = o 1,f (a)
b—a '

By substracting equation (2.2)) and ([2.3)), we have

I — I, = V(O)f(b;i‘f(o)f(a> _bia[I+I‘»"f(b)+ . @f(a)]

that is desired result. [J
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Remark 2.2. In Lemmal[2.1] if we take ¢ (t) =t, then Theorem[2.1] reduce to Lemma 1 in [J].

Remark 2.3. In Lemma if we take o (1) = %, then Theorem Lemma 1 in [3].

a

Corollary 2.4. In Lemma if we take ¢ (t) = #k(a), then Theorem we have the following

iequality
1

()" / Fte+(1—t)b)dt

(b—a Fk Oé+k
0

(l‘—a)E—H I

_(b—a)rk(a+k>/(1_t%)f,(m+(1_t)a)dt

(b—a)FfO)+(x—a)F f(a) 1 [
(b—a)Ty (a+ k) b—a

I of (@) + I o f (b)} .

Theorem 2.5. Let f : I = [a,b] C R — R be an absolutely continuous mapping on I° such that
'€ Ly ([a,b]), where a,b € I° with a < b. If the mapping |f’| is convex on [a,b], then we have the
following inequality

‘V(U)f(bg—l_—f(O)f(a) - bia ST

< G I/Iv
N 1

/(b)|/\v(t)\(l—t)dH%|f’(a)|/|A(t)\(1—t)dt-

0 0

(2.4)

1

(a >|/|A<t>|tdt

0

1

Proof . From Lemma 2.1 and | f'| is convex on [a, b] ,we get

v(0)fO)+AQO) f(a) 1 [
b—a b—a"”

+Lpf (b) + 2 go.f (CI,)]

< b_a/v (tx + ( 1—t)b)dt—i:Z/A(t)f'(tHu—t)a)dt
< OFf (tz+(1-1)b) Of1f (tz+ (1 —t)a)dt
< O (@) + (L=t [f (b)) dt

OIS (@) + 1 =) [f (a)]) dt
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Z @ |/Wv |/ps ) et
\f \/\V ]/|A (1—t)d

This completes the proof. [J
Remark 2.6. Under assumption of Theorem[2.5 with ¢ (t) = t, then Theorem|2.5 reduce to Theorem
4 in [4)].

Corollary 2.7. Under assumption of Theorem. with ¢ () =
‘f (b—2)"+f(a)(x—a)® T(a+1)

F(a)’ we have the following inequality

- wffmw+auwm'

b—a b—a
6% (b—a:)a+1+ (x—a)o‘Jr1 ,
- it ]u<@|
+ar+&x<b—ma“uwwwwx—m“1vwwq
2(a+2) b—a '

o

Corollary 2.8. Under assumption of Theorem . with ¢ (t) = #k(a), we have the following in-
equality
1

b—$k+1
T / (1 3) f (o + (1 — ) b) dt
- k

0
1

/(1—t72‘)f’(ta:+(1—t)a)dt

(x — &)?H

(b—a)Tk(a+k)

(b—2)¥ + (z — )%+1 ol )
= (b—a)Ts (@ + k) (a+ak)V(@|

1 1 k k
o aTrat k) (§_a+k+a+2kz)
x| =2)E 1 O+ (@ = ) S (@]

Theorem 2.9. Let f : I = [a,b] C R — R be an absolutely continuous mapping on I° such that
f" € Ly ([a,b]), where a,b € I° with a < b. If the mapping |f'|?, ¢ > 1, is convezx on [a,b], then we
have the following inequality

‘V(O)f(bzirf(O)f(a) - bia LB L)

Z:z(/ v (t |pdt>1(|f’(x)|q42r|f/(b)|q>;
i:z (/0 |A(t)|pdt); (!f’(a:)\q_;‘f/(aﬂq);
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11 _
where e = 1.

Proof . From Lemma and by Holder’s inequality, we get

‘V(O)f(bgirf(o)f(a) BT

< Z:j(/1|v<t>|pdt);(/Ol|f’<tx+<1—t>b>|th)3
=t ([aw I”dt) (/Ollf’(txﬂl—t)a)lth);
< =2 ([ 1w |pdt) ([ tir@r+a-oir o)
([ |A<t>|p)p ([ eirwr+a-nirara)
g b </ Wwpdt)i (If’(w)lq;|f’(b)|q)3

b_
+3;:Z (/01|A(t)|pdt); (’f/(m)‘q;\f'(aﬂ‘?);.

Remark 2.10. Under assumption of Theorem with ¢ (t) = t, then Theorem reduce to
Theorem 5 in [{].

O

Corollary 2.11. Under assumption of Theorem . with ¢ (t) = &, we have the following in-

I'(a)’
equality

yﬂm@—xf+fmﬂx—®a_FW+lH@jﬁw+hﬂﬂw

b—a —
(Zi?) (b<b_):)+1 <|f’( )|q;r|f’(b)|q>q |
+(Zif) @(b—)a) (‘f’< )|q-2F|f’(a)yQ>q
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