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Abstract

In recent years the binary quadratic program has grown in combinatorial optimization. Quadratic
programming can be formulated as a semidefinite programming problem. In this paper, we consider
the general form of binary semidefinite programming problems (BSDP). We show the optimal solu-
tions of the BSDP belong to the efficient set of a semidefinite multiobjective programming problem
(SDMOP). Although finding all efficient points for multiobjective is not an easy problem, but solving
a continuous problem would be easier than a discrete variable problem. In this paper, we solve an
SDMOP, as an auxiliary, instead of BSDP. We show the performance of our method by generating
and solving random problems.

Keywords: Semidefinite programming, Positive semidefinite matrix, Multiobjective programming,
Binary programming.

1. Introduction

As is well known, NP-hard problems contain a large spectrum of applications in computer science,
operations research and engineering [1, 5, 9, 12, 13]. Recently, it has emerged as a unified framework
for modelling a wide variety of combinatorial optimization problems [7]. Therefore, the study of its
robust and effective solvers becomes a prolonged research subject. Common continuous approaches
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are nearly all related to certain relaxation schemes of binary programming in continuous space such
as linear relaxations, Lagrangian relaxations and semidefinite programming relaxations [6, 14, 15].
Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization
of a linear objective function over the intersection of the cone of positive semidefinite matrices with
an affine space [8].

At first glance it might seem solving a discrete variable problem would be easier than a continuous
problem. After all, for a variable within a given range, a set of discrete values within the range is
finite whereas the number of continuous values is infinite. When searching for an optimum, it seems
it would be easier to search in a finite set rather than in an infinite set. Moreover, continuous
approaches often need to cooperate with branch and bound algorithms or some heuristic strategies
so as to generate an exact solution or a desirable approximate one.

In [17], authors developed semidefinite programming relaxation techniques for some mixed binary
quadratically constrained quadratic programs and analyze their approximation performance. Also in
[2], authors review and compare some semidefinite relaxations for quadratically constrained quadratic
programming. In this paper, we construct a semidefinite multiobjective programming as an axillary
problem, and show some efficient solutions are the optimal solution of the main problem.

This paper is organized as follows. In Section 2, we recall some concepts in semidefinite program-
ming and multiobjective programming. In Section 3, we construct a relaxation of main problem and
prove two problems is equivalent, and some another results are discused. In Section 4, we report
numerical results for binary programming.

2. Preliminaries

2.1. Semidefinite programming

Definition 2.1. ([16]) A symmetric matrix S ∈ Rn×n denoted by S ⪰ 0, is said to be positive
semidefinite (PSD) if

∀x ∈ Rn, xTSx ≥ 0.

It is positive definite (PD) (S ≻ 0) if

∀x ∈ Rn \ {0}, xTSx > 0.

The set of all PSD matrices (n×n) and all PD matrices (n×n) is denoted by Sn
+ and Sn

++, respectively.
In matrix space the inner product is defined as follows:

⟨A,B⟩ = A •B = tr(ATB) = tr(ATB) =
∑
i,j

AijBij.

The general form of SDP problems is as follows:

min C •X
s.t. Ai •X = bi, i = 1, 2, ...,m, (2.1)

X ⪰ 0,

where C and Ai are n × n symmetric matrices, bi ∈ R and X is an n × n symmetric matrix, with
entries as the decision variables. The notation • shows the inner product between two matrices,
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finally X ⪰ 0 indicate the matrix X should be PSD. The dual problem of (2.1) can be defined as
follows:

max

m∑
i=1

biyi (2.2)

s.t. S = C −
m∑
i=1

yiAi,

S ⪰ 0,

where yi ∈ R and S is an n× n symmetric matrix, for more details see [16].
Similar to LP, we can derive weak and strong duality theorems for SDP problems. However, to
construct strong duality we need some well-known conditions, such as Slater’s condition.

Definition 2.2. (Slater’s condition) [16] Problems (2.1) and (2.2) have the Slater’s condition if
there exists feasible points X0 and S0 for problems (2.1) and (2.2), respectively, such that X0 ≻ 0
and S0 ≻ 0.

Suppose that, some of the variables be binary, so consider a generall form of mixed linear and
semidefinite programming problem with some binary are as follows:

min C •X + cTx

s.t. Ai •X = bi, i = 1, 2, ...,m, (2.3)

Bx = f,

X ⪰ 0, x ≥ 0,

xq ∈ {0, 1}, q ∈ Q,

Xij ∈ {0, 1}, ij ∈ L.

where C and Ai are n × n symmetric matrices, bi ∈ R and X is an n × n symmetric matrix, with
entries as the decision variables., and also B ∈ Rk×l, x ∈ Rl, f ∈ Rk and c ∈ Rl is the decision vector,
also Q ⊆ {1, 2, ..., l} and L ⊆ {(v, w) : v = 1, 2, ..., n, w = 1, 2, ..., n}.

2.2. Multiobjective semidefinite programming

A multiobjective semidefnite programming problem is an optimization problem that involves multiple
objective functions together with semidefinite decision matrix instead of nonnegative decision vector.
In mathematical terms, it can be formulated as:

min (C1 •X,C2 •X, ..., Ck •X)

Ai •X = bi, i = 1, 2, ...,m,

X ⪰ 0.

For these problems, rarely exists a solution that optimizes all of the objectives, simultaneously. In
this case we ask efficient solutions. A solution is called efficient, if none of the objective functions
can be improved in value without degrading some of the other objectives. In linear case, a feasible
point X0 is said to be an extreme efficient solution if it is extreme and efficient.
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3. General formulation and Theorems

In this section, we propose an approach to solve problem (2.3) using multiobjective programming.
To solve problem (2.3), we can solve the following nonlinear semidefinite programming, instead:

min C •X + cTx

s.t. Ai •X = bi, i = 1, 2, ...,m, (3.1)

Bx = f,

X ⪰ 0, x ≥ 0,

xq(1− xq) = 0, q ∈ Q,

Xij(1−Xij) = 0, ij ∈ L.

Note that the feasible region of problem (3.1) is nonconvex, so it is difficult to solve it. To resolve
this difficulty, we introduce a multiobjective semidefinite programming problem and show that an
special set of efficient solutions of this problem are exactly the optimal solutions of problem (3.1).
Consider the following multiobjective semidefinite programming problem:

min (C •X + cTx, xQ, 1− xQ, XL, 1−XL)

s.t. Ai •X = bi, i = 1, 2, ...,m, (3.2)

Bx = f,

X ⪰ 0, x ≥ 0.

where xQ = (xi1 , xi2 , ..., xi|Q|) and XL = (Xj1 , Xj2 , ..., Xj|L|). Now we introduce the set Γ as follows:

Γ = {(x,X) : (x,X)is efficient and for problem (3.2), xq(1− xq) = 0, ∀q ∈ Q,Xij(1−Xij) = 0, ∀ij ∈ L},

then the following lemma is derived.

Lemma 3.1. Γ is a closed set.

Proof . According to [4], we know the the set of all efficient solutions is closed.
Now assume that {(xk, Xk)} be an elements in Γ which converges to some point (x0, X0). Since the
product of two continoues function is a continoues function, then we have

x0
q(1− x0

q) = lim
k→∞

xk
q lim
k→∞

(1− xk
q) = lim

k→∞
xk
q(1− xk

q) = lim
k→∞

0 = 0,

X0
ij(1−X0

ij) = lim
k→∞

Xk
ij lim

k→∞
(1−Xk

ij) = lim
k→∞

Xk
ij(1−Xk

ij) = lim
k→∞

0 = 0.

Hence (x0, X0) belongs to Γ and hence Γ is closed. □

Corollary 3.2. If the feasible set of problem (2.3) is bounded, then C •X + cTx gets its minimum
value.

Theorem 3.3. Suppose that the problem (2.3) is bounded from below. Also assume that (x0, X0)
be a point in Γ by which C • X + cTx gets its minimum value on Γ. Then (x0, X0) is the optimal
solution for problem (2.3).
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Proof . Since xq(1−xq) = 0 and Xij(1−Xij) = 0, then the point X0 is a feasible point for problem
(2.3). Assume that (x0, X0) is not an optimal point for problem (2.3) according to the assumption,
the feasible space of this problem is compact and hence there exists an optimal solution (x1, X1),
therefore C •X1 + cTx1 < C •X0 + cTx0. If (x1, X1) is efficient, then (x1, X1) ∈ Γ and hence it is
in contrary with the assumption for (x0, X0). If (x1, X1) is not efficient, so there exist (x2, X2) such
that

C •X2 + cTx2 ≤ C •X1 + cTx1, (3.3)

x2
q ≤ x1

q, X
2
L ≤ X1

L, (3.4)

1− x2
q ≤ 1− x1

q, 1−X2
L ≤ 1−X1

L (3.5)

and at least one of them is strict. From (3.4) and (3.5) we have x2
q = x1

q, X
2
L = X1

L, therefore
(x2, X2) ∈ Γ. On the other hand C • X2 + cTx2 < C • X1 + cTx1 must be held, again this is in
contrary with the assumption for (x0, X0). □ Now, we are going to derive another theorem which
shows that there is an optimal solution for problem (2.3) that is efficient for problem (3.2).

Theorem 3.4. Let (x0, X0) be an optimal solution for problem (2.3). Then (x0, X0) ∈ Γ.

Proof . First, we consider the following axillary problem:

Min C •X + cTx

s.t. Ai •X = bi, i = 1, 2, ...,m, (3.6)

Bx = f,

C •X + cTx ≤ C •X0 + cTx0,

xq ≤ x0
q, 1− xq ≤ 1− x0

q,

XL ≤ X0
L, 1−XL ≤ 1−X0

L,

X ⪰ 0, x ≥ 0.

This is obvious that (x0, X0) is an optimal solution of (3.6). So (x0, X0) ∈ Γ which completes the
proof. □ But, sometimes problem (3.1) might not be bounded. To raise this issue, we derive the
following theorem which investigates the unboundedness and infeasibility of problem (3.2).

Theorem 3.5. If Γ = ∅, problem (3.1) is either unbounded or infeasible.

Proof . Suppose that Γ = ∅ and problem (3.1) be feasible. If the problem is bounded from below,
then from Theorem 3.3 there exists an optimal solution belong to Γ and therefore, Γ ̸= ∅ which is
a contradiction. Hence, the problem should be unbounded. □ In linear case, we will show that it
is not required to search through all the solutions, while it is sufficient to only check the extreme
efficient points to find the optimal solution. Consider the following binary linear programming:

min cTx

s.t. Bx = f, (3.7)

xq ∈ {0, 1}, q ∈ Q

x ≥ 0.
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Theorem 3.6. The optimal solution of problem (3.7) is happened in one of the extreme efficient
points of the following problem

min (cTx, xQ, 1− xQ)

s.t. Bx = f, (3.8)

xq ≤ 1, q ∈ Q

x ≥ 0.

which belongs to

Γ = {x : x is efficient for problem (3.8) and xq(1− xq) = 0, ∀q ∈ Q}.

Proof . We know that at least one of the optimal solutions of problem (3.7) belongs to the set Γ.
Suppose that none of these optimal solutions is an extreme point and let z be an optimal solution for
problem (3.7) which belongs to Γ but is not an extreme point for problem (3.8). By the representation
theorem there are real numbers λi, i = 1, 2, ..., n and extreme points xi of feasible set of (3.8), such
that:

z =
l∑

i=1

λix
i (3.9)

l∑
i=1

λi = 1, λi > 0 i = 1, 2, ..., l.

For an arbitrary q ∈ Q, it is easy to show that if zq = 0 then xi
q = 0, ∀i = 1, 2, ..., l, and if,

zq = 1 since xi
q ≤ 1, then xi

q = 1, ∀i = 1, 2, ..., l. Therefore xi
q(1 − xi

q) = 0, ∀i = 1, 2, ..., l. Since

z =
∑l

i=1 λix
i then cT z =

∑l
i=1 λic

Txi and from optimality of z we have cT z = cTxi. Now, let y be
a feasible solution for problem (3.8) such that y dominates z. From yq ≤ zq and 1− yq ≤ 1− zq for
q ∈ Q, we conclude that yq = zq, then y is feasible for (3.7). Finally, the optimality of z indeed a
contradiction. □

Theorem 3.6 says to seek a minimizer on Γ we can explore the extreme efficients of problem
(3.8). Therefore the examined set is smaller and we can use some available algorithms such as the
algorithms mentioned in [3] and [11].
In [3] a nonadjacent extreme-point search algorithm is presented for finding a globally optimal solution
for a linear programming problem . The algorithm finds an exact extreme-point optimal solution for
the problem after a finite number of iterations. It can be implemented using only linear programming
methods.

4. Example

In order to test our algorithm, we generate some random problem in which the dimension of matrix B
and vector f are also random numbers. The set of binary variables and its cardinal number is shown
by Q and |Q|, respectively. we use weighted sum method for scalarization of objective vector in
which the weights are chosen by genetic algorithm ([10]). Then we use existence algorithm (CPLEX
solver), heuristic algorithm (genetic algorithm) and our algorithm. Some results are shown in Table
1. In this table, k is the number of constraints, l is the size of variables, xq is binary for Q is a subset
of q ∈ Q ⊆ {1, 2, ..., n}.
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As it is seen, for small l, the three algorithms work the same, but for large l the existing algorithms
cannot be reached the optimal solution, although heuristic algorithm has some solution which we do
not know that is optimal or not. In Figure 1 the CPU time of three algorithms are illustrated.

Table 1: CPU Time (s)

l k |Q| Existence algorithm New Algorithm Heuristic algorithm [10]
10 5 3 15.7512 15.7512 15.7512
20 5 5 18.2155 18.2155 18.2155s
50 20 10 73.4570 83.5788 73.4570
100 20 20 105.3266 160.0112 107.9997
1000 50 50 209.5488 483.9156 220.4588
1000 50 100 261.3657 520.4820 266.4874
2000 100 200 309.3657 698.0125 327.0198
2000 200 400 507.6497 1029.1349 507.6497
2000 100 1000 - 11588.2458 798.1407
2000 200 1000 - 9852.6951 1198.9803

As it is seen, for small l, the most algorithms work well, but for large l exact algorithms can not
be reached the optimal solution, although heuristic algorithm has some solution which we do not
know that is optimal or not. In Figure 1 we illustrate the CPU time of three algorithms.

Figure 1: The comparison of CPU time

5. Concluding remarks

In this paper, we have converted binary semidefinite programming to continuous multiobjective
programming and have proved that two problems are equivalent. Then we have sought a special
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global minimizer of the resulting continuous optimization problem to find the optimal solution to the
main problem. The weighted sum approach is used for obtaining efficient solutions. The efficiency
of our algorithm is illustrated by generating and solving random problems. We hope to develop
this algorithm in our feature works, specifically using a combination of ϵ− constraint and weighting
min-max method.
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