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Abstract

In this paper, we use the homoclinic orbit approach without using small perturbations to prove
the existence of soliton solutions of the discrete nonlinear Schrödinger equations with long-range
interaction by employing the properties of the symmetries of reversible planar maps. Moreover, the
long-range interaction by a potential is proportional to 1/l1+α with fractional α < 1 and l as natural
number.
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1. Introduction

Recently much attention has been paid to the analysis of discrete equations with long-range
interaction driven by fractional powers of the discrete Laplacian [13, 8, 4, 18, 5]. For example in [5]
the authors present the problem of a quite complete study of discrete diffusion equations with long-
range interaction involving the fractional powers. In [16] unidimensional chain of linear and nonlinear
oscillators with a long-range interaction power wise defined by a proportional term of 1/(n−m)1+α
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(n ̸= m) has been considered. In [18], a variational cadre for a fractional difference equation on Z
driven by the fractional discrete Laplacian has been introduced. In particular, in [13], a fractional
version of the discrete nonlinear Schrödinger equation, in which the regular discrete Laplacian is
changed to a discrete fractional Laplacian, has been studied.

We focus that The existence of bright solitons for various cases was then discussed by the Melnikov
method assuming that the perturbation is small and for the anti-integrability method [12, 7], some
localized solutions persist for small coupling cases. In [14], the variational approach can also be used,
but the frequency allowed region cannot be determined by the variational method explicitly.

In this paper, we look at the the existence of time periodic and spatially localized solutions in
which a complex amplitude algebraic equation is obtained.

We restrict our attention to real amplitudes and the case where corresponds to bright and dark
solitons, for example [2, 9, 10].

The homoclinic orbit approach for the existence of soliton solutions of DNLS equations utilised
in our paper is precisely a generalization of the work of [15] (local interaction).

The rest of of this paper is organized as follows: The second section we give some preliminaries
about the reversible planar map and the homocline (heterocline) points. In addition we present the
fondamental theorem for the existing of the the orbit homocline (heterocline) for a class of planar
map in n dimension. In section 3 we give the conditions to proove the existing the bright and dark
dark soliton for local solutions in the of discret schrodiger equations driven by fraction powers of
discret laplacian.

2. Homoclinic orbits of reversible planar maps

We will present a mathematical description of the time reversal symmetry in the context of
dynamical systems. In most applications of interest Ω = Rn. We will only consider diffeomorphisms
of R2n. Let R be a smoothed diffeomorphism satisfying :

� R ◦R = identity.

� The dimension of the fixed point set of R, Fix(R), is n.

R is called inverse involution. A diffeomorphism T of R2n is called R-reversible if R ◦ T = T−1 ◦R.
Some periodic points are easy to find; these are the symmetric periodic points described by the
following proposition.

Proposition 2.1. [11] Let p ∈ Fix(R) and suppose T k(p) ∈ Fix(R) as a consequence T 2k(p) = p,
then we have:

T k(p) = RT k(p) = T−kR(p) = T−k(p), therefore : T 2k(p) = p.

Hence, symmetric periodic points may be found geometrically; we search for self-intersections of the
set of fixed points of R under iteration of T . We also can find some homoclinic points of geometrically
reversible diffeomorphisms of R-geometrically reversible diffeomorphisms, as is shown by the following
examples:

Proposition 2.2. [6] Let p ∈ Fix(R) be a symmetric fixed point of T and let W s(p) and W u(p)
denote the stable and unstable manifolds of p, respectively. Then R(W u(p)) = W s(p) and R(W s(p)) =
W u(p).
In particular, if q ∈ W u(p) ∩ Fix(R), then q is a homoclinic point.
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Let x ∈ W u(p) such that lim
n−→∞

T−n(x) = p, and so we have:

p = R lim
n−→∞

(T−n(x)) = lim
n−→∞

T n(R(x)),

in such a way that R(x) ∈ W s(p), where RW u(p) ⊂ W s(p). We also have RW s(p) ⊂ W u(p), such
that RW u(p) = W s(p). If q ∈ W u(p) ∩ Fix(R), so q = R(q) ∈ W s(p) ∩ Fix(R) also, so that q is
a homoclinic point [6]. Therefore, to produce homoclinic points for reversible diffeomorphisms, it is
sufficient to find the intersections of wu(p) with Fix(R). We note that both of the above propositions
are true in much more general terms. Homoclinic points that are also in Fix(R) are classified as
symmetric homoclinic points. Such a point is called a regular homoclinic point if the unstable variety
(and thus also the stable variety) meets Fix(R) transversely to the homoclinic point.

Proposition 2.3. [11] Let p be a symmetric fixed point and let q be a symmetric homoclinic point in
W u(p) . Let N be any neighborhood of p in Fix(R). Then there exists an infinite number of periodic
symmetric points in N .

Proposition 2.4. [6] Let p be a non-symmetric periodic point. Suppose q ∈ wu(p) ∩ Fix(R). Then
q ∈ wu(p) ∩ ws(R(p)). Thus some heteroclinic points can be found geometrically as symmetric
homoclinic points. Regular symmetric heteroclinic points are defined as regular homoclinic points.

Proposition 2.5. [6] Let T be an R-reversible diffeomorphism of the plane and assume that p is a
non-symmetric saddle point for T . Suppose that a branch of wu(p) and a branch of ws(p) intersect
t. Suppose that a branch of ws(p) meets Fix(R) transversely. There are then an infinite number of
many symmetric periodic orbits entering any neighborhood of p and R(p).

A class of classical reversible planar maps is derived from symmetric difference equations of the
form [11, 15]:

xn+1 + xn−1 = g(xn), (2.1)

In this article we treat the most general case:

N
2
−1∑

l=1

xn+l + xn−l

l1+α
= g(xn), (2.2)

often appear in the discussion of stationary states of long-range interactions, l is the distance between
oscillators and α a fractional value. The system (2.1) can be expressed as a planar application,
denoted T .

We calculate the application T for the stationary states of the oscillators. We derive the applica-
tion T for the order M such that M = N

2
− 1.

x1,n+1 = x2,n
x2,n+1 = x3,n
.............................
xM,n+1 = xM+1,n

xM+1,n+1 = xM+2,n

..............................
x2M−1,n+1 = x2M,n

x2M,n+1 = ϕn+M

(2.3)
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x2M,n+1 = −x1,n − (M)1+α (
M−1∑
l=1

x(M+1)−l,n + x(M+1)+l,n

l1+α
) + (M)1+α g(x(M+1),n).

T (x1, x2, ..., x2M) = (x2, x3, ..., x2M ,−x1 − (M)1+α (
M−1∑
l=1

x(M+1)−l + x(M+1)+l

l1+α
) + (M)1+α g(x(M+1))).

Calculate T−1:
We set:

H(t1, t2, ..., t2M−1) = − (M)1+α (
M−1∑
l=1

tM−l + tM+l

l1+α
) + (M)1+α g(tM).

Using the change of variable:

t1 = x2,
t2 = x3,
...

t2M−1 = x2M ,

then:

T (x1, x2, ..., x2M) = (t1, t2, ..., t2M−1,−x1 +H(t1, t2, ..., t2M−1)),

and:

T−1 ◦ T (x1, x2, ..., x2M) =T−1(t1, t2, ..., t2M−1,−x1 +H(t1, t2, ..., t2M−1))

=(x1 +H(t1, t2, ..., t2M−1)−H(t1, t2, ..., t2M−1), t1, t2, ..., t2M−1)

=(x1, x2, ..., x2M),

then

T−1(t1, t2, ..., t2M−1, y) = (−y +H(t1, t2, ..., t2M−1), t1, t2, ..., t2M−1),

and

T−1(x1, x2, ..., x2M) =(−x2M +H(t1, t2, ..., t2M−1), x1, x2, ..., x2M−1)

=(−x2M − (M)1+α (
M−1∑
l=1

xM−l + xM+l

l1+α
) + (M)1+α g(xM), x1, x2, ..., x2M−1),

Furthermore, T is a diffeomorphism of class C1 if (M)1+α g = H is C1.
We suppose that H is ever of class C1 is an odd function. We verify that T is R-reversible with

the respect of the involution:

R1(x1, x2, ..., xM , xM+1, ..., x2M) = (x2M , x2M−1, ..., x1),

and R2-reversible with respect to involution:

R2(x1, x2, ..., xM , xM+1, ..., x2M) = (−x2M ,−x2M−1, ...,−x1),
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as thoughH is an odd function. Note that the set of fixed points Fix(R1) and Fix(R2) are determined
by the lines S1 and S2, respectively. Let:

f(xM+1) = g(xM+1)− 2xM+1

M∑
l=1

1

l1+α
, (2.4)

Theorem 2.6. Assume that:
(i) f(z) is a C1 and odd function, and has only three real zeros, −z0, 0, and z0(z0 > 0) with f(0) > 0;
(ii) supz≥z′(f(z) + 2z

∑M−1
l=1

1
l1+α ) < 0 for some z′ > z0.

Then the planar map T has a homoclinic orbit.

Proof . As f is an odd function and has three distinct real zeros, we can suppose that its real zeros
are −z0, 0 and z0 with z0 > 0. The function is therefore a function with three distinct real zeros.

Meanwhile, the planar map T has three fixed points P (−z0, ...,−z0), O(0, ..., 0) and Q(z0, ..., z0)
, which are all symmetric with respect to the involution R1. The origin O is hyperbolic if f ′(0) > 0.
Moreover, the unstable manifolds The unstable manifold W u(O) and the stable manifold W s(O) are
tangent to the stable and unstable eigenspaces Es(0) and Eu(0) of the Jacobian matrix of T at the
origin of the Jacobian matrix of T .

First we show that the intersection of W u(O) with the interior of the segment EQ is nonempty,
where E(0, ..., 0, z0, ..., z0). One may easily check that one branch of W u(O) initially enters the
interior of the triangle △OEQ, denoted by int (△OEQ).

For each point A(x1, x2, ..., x2M) ∈ int(△OEQ), one has that

0 < x1 < xN
′
+1 < z0,

0 < x2 < xM+2 < z0,

....

0 < xM < x2M < z0

and the coordinates of the image point T (A) are

T (x1, x2, ..., x2M) = (x2, x3, ..., x2M ,−x1 − (M)1+α (
M−1∑
l=1

x(M+1)−l + x(M+1)+l

l1+α
) + (M)1+α g(x(M+1))).

Moreover, since f(x(M+1),n) is positive for x(M+1),n ∈ (0, z0), the distance from point T (A) to the
line S1 is greater than the distance from A to S1. Consequently, the unstable manifold W u(O) in
the interior of △OEQ does not intersect the segments OE and OQ.

In the following, we prove by contradiction that W u(O) meets the segment EQ.
Assume that the branch ofW u(O) in the first quadrant always lies in the interior of △OEQ. Take

a point B ∈ W u(O)∩ int(△OEQ). Then all the image points T n(B) ∈ int(△OEQ) for n = 1, 2, · · · .
Moreover, the sequences of x1-coordinates, x2-coordinates,..., x2M -coordinates of T n(B) are both
strictly increasing and bounded above, hence convergent to (x1)

∗, (x2)
∗, ..., (x2M)∗, respectively. As

a consequence, the sequence of points {T n(B)} is convergent to N((x1)
∗, (x2)

∗, ..., (x2M)∗) , which is
a fixed point of T .

From the facts (x1)
∗ > 0, (x2)

∗ > 0, ..., (x2M)∗ > 0, it follows that N = Q. On the other hand,
the sequence of the distance between T n(B) and S1 is also strictly increasing, implying that N ̸= Q,
a contradiction. Therefore, the unstable manifold W u(O) pierces the segment EQ.
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Secondly, we show that W u(O) in the first quadrant meets the line S1 at some point. Denote by

H0(x1,0, x2,0, ..., xM,0, z0, ..., z0)

the intersection point of W u(O) with the segment EQ.
Let Hn+1 = T (Hn), n = 0, 1, · · · . The coordinates of Hn are (x1,n, x2,n, ..., xM,n, xM+1,n, ..., x2M,n)

.It then follows that xM+1,n > z0. Since

f(xM+1,n) + 2xM+1,n

M−1∑
l=1

1

l1+α
< 0 for xM+1,n > xM+1,0

we derive from assumption (ii) that:

sup
xM+1≥xM+1,M

(f(xM+1,n) + 2xM+1,n

M−1∑
l=1

1

l1+α
) < 0.

We denote

sup
xM+1≥xM+1,M

(f(xM+1,n) + 2xM+1,n

M−1∑
l=1

1

l1+α
) = −a (a > 0).

Suppose thatW u(O) in the first quadrant does not intersect the line S1. ThenW
u(O) lies between

the z-axis and the line S1, and thus the points Hn lie above the line S1.

f(xM+1,n) + 2xM+1,n

M−1∑
l=1

1

l1+α
< −a for n = 1, 2, · · · .

Let dn denotes the distance of Hn to the line S1. Then

dn =

√
2

2

M∑
j=1

(xM+j,n − xj,n), n = 0, 1, .... (2.5)
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Consequently, one has that for n = 0, 1, ...,

dn+1 =

√
2

2

M∑
j=1

(xM+j,n+1 − xj,n+1)

=

√
2

2
[(xM+2,n − x2,n) + (xM+3,n − x3,n) + ...+ (x2M,n − xM,n) +

(−x1,n − (M)1+α (
M−1∑
l=1

x(M+1)−l,n + x(M+1)+l,n

l1+α
) + (M)1+α g(x(M+1),n)− xM+1,n)]

=

√
2

2
[(xM+1,n − x1,n) + (xM+2,n − x2,n) + (xM+3,n − x3,n) + ...+ (x2M,n − xM,n)−

(M)1+α (
M−1∑
l=1

x(M+1)−l,n + x(M+1)+l,n

l1+α
) + (M)1+α g(x(M+1),n)− 2xM+1,n]

= dn +

√
2

2
(− (M)1+α (

M−1∑
l=1

x(M+1)−l,n + x(M+1)+l,n

l1+α
) + (M)1+α g(x(M+1),n)− 2xM+1,n)

= dn +

√
2

2
(− (M)1+α (

M−1∑
l=1

x(M+1)−l,n + x(M+1)+l,n

l1+α
) + (M)1+α (f(x(M+1),n) +

2xM+1,n

M∑
l=1

1

l1+α
)− 2xM+1,n)

= dn + (M)1+α

√
2

2
(−(

M−1∑
l=1

x(M+1)−l,n + x(M+1)+l,n

l1+α
) + f(x(M+1),n) + 2xM+1,n

M−1∑
l=1

1

l1+α
)

It follows that
d1 = d0 + (M)1+α

√
2
2
(−(

∑M−1
l=1

x(M+1)−l,0+x(M+1)+l,0

l1+α ) + f(x(M+1),0) + 2xM+1,0

∑M−1
l=1

1
l1+α )

d2 = d1 + (M)1+α
√
2
2
(−(

∑M−1
l=1

x(M+1)−l,1+x(M+1)+l,1

l1+α ) + f(x(M+1),1) + 2xM+1,1

∑M−1
l=1

1
l1+α )

........

dn+1 = dn + (M)1+α
√
2
2
(−(

∑M−1
l=1

x(M+1)−l,n+x(M+1)+l,n

l1+α ) + f(x(M+1),n) + 2xM+1,n

∑M−1
l=1

1
l1+α )

(2.6)

and hence

0 ≤
√
2dn+1

=
√
2d0 +

n∑
i=0

√
2 (M)1+α (−(

M−1∑
l=1

x(M+1)−l,i + x(M+1)+l,i

l1+α
) + f(x(M+1),i) + 2xM+1,i

M−1∑
l=1

1

l1+α
)

≤
√
2d0 − nb− na, b > 0 and a > 0.

Letting n → ∞, one obtains a contradiction. Therefore, the intersection of W u(O) with the line S1

is nonempty.
Finally, from proposition 2.2 it follows that W u(O) and W s(O) intersect at some point q on S1,

implying the existence of a homoclinic orbit. □

Theorem 2.7. Assume that f(z) is a C1 and odd function, and has only three real zeros, −z0, 0 and
z0 (z0 > 0) with f ′(z0) > 0. So the planar map T has a heteroclinic orbit
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Proof . The reversible map T has three fixed points, two of which, P (−z0,−z0, ...,−z0,−z0) and
Q(−z0,−z0, ...,−z0,−z0), are hyperbolic if f ′(z0) > 0.Similarly to the proof of the previous theorem
one can verify that Wu(Q) intersects the x1, x2, ..., xM axis at H(x1, x2, ..., xM , 0, 0, ..., 0) with

0 < x1 < z0,

0 < x2 < z0,

....

0 < xM < z0

Simple calculations show that T (H) and H are symmetric with respect to S2.Then the intersection
of Wu(Q) with S2 is nonempty. Consequently, from proposition 2.2 it follows that the intersection of
W u(Q) with W s(P ) is nonempty, and hence the planar map T has a heteroclinic orbit. □

3. Localized solutions in nonlinear Schrodinger lattices

From non-local discrete equations driven by fractional powers of the discrete Laplacian. This
equation is valid for all n :

i
∂ψn

∂t
+ h(| ψn |)ψn + J

N
2
−1∑

l=1

ψn+l − 2ψn + ψn−l

l1+α
= 0 (3.1)

where h is C1 function.
Great attention has been paid to localized solutions of the form ψn = ϕne

iwt where ϕn are time
independent. Such solutions are time periodic and spatially localized.

Our goal is to proving the homoclinic orbit approach by exploiting the properties of reversible
planar systems.
The equation (3.1) becomes:

−wϕne
iwt + h(| ϕn |)ϕne

iwt + Jeiwt

N
2
−1∑

l=1

ϕn+l − 2ϕn + ϕn−l

l1+α
= 0

so

wϕn − h(| ϕn |)ϕn = J

N
2
−1∑

l=1

ϕn+l − 2ϕn + ϕn−l

l1+α

where:

wϕn − h(| ϕn |)ϕn = J

N
2
−1∑

l=1

ϕn+l + ϕn−l

l1+α
− 2J

N
2
−1∑

l=1

ϕn

l1+α
(3.2)

so

N
2
−1∑

l=1

ϕn+l + ϕn−l

l1+α
=

1

J
(wϕn − h(| ϕn |)ϕn) + 2ϕn

N
2
−1∑

l=1

1

l1+α
(3.3)
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we set:

g(ϕn) = f(ϕn) + 2ϕn

N
2
−1∑

l=1

1

l1+α
(3.4)

We will compute the application T of order M such that M =
N

2
− 1.

By using a new variable : 

x1,n = ϕn−M

x2,n = ϕn−(M−1)

..............................
xM,n = ϕn−1

xM+1,n = ϕn

xM+2,n = ϕn+1

.............................
x2M,n = ϕn+(M−1)

so: 

x1,n+1 = ϕn−(M−1) = x2,n
x2,n+1 = ϕn−(M−2) = x3,n
.............................
xM,n+1 = ϕn = xM+1,n

xM+1,n+1 = ϕn+1 = xM+2,n

..............................
x2M−1,n+1 = ϕn+2 = x2M,n

x2M,n+1 = ϕn+M

We have:

M∑
l=1

ϕn+l + ϕn−l

l1+α
= g(ϕn) (3.5)

g(ϕn) is written as:

g(ϕn) = (ϕn−1 + ϕn+1) +
1

21+α
(ϕn−2 + ϕn+2) +

1

31+α
(ϕn−3 + ϕn+3) + ......+

1

(N ′)1+α (ϕn−M + ϕn+M)

ϕn+M = − (M)1+α (
M−1∑
l=1

ϕn−l + ϕn+l

l1+α
)− ϕn−M + (M)1+α g(ϕn)

from which one takes

f(xM+1) = (
1

J
(wxM+1 − h(|xM+1|)xM+1)

where f(z) = ( 1
J
(wz − h(|z|)z). Define h∞ = limr→+∞ h(r) if the limits exists, other wise h∞ = ∞.

Theorem 3.1. 1-Assume that h is strictly increasing in [0,+∞[. Then there exist a bright Solitons
of the form ϕne

iωt with h(0) + 2
∑M−1

l=1
1

l1+α < ω < h∞ for the system (3.1) with J > 0.
2-Assume that h is strictly decreasing in [0,+∞[. Then there exist a bright Solitons of the form
ϕne

iωt with h∞ + 2
∑M−1

l=1
1

l1+α < ω < h(0) for the system (3.1) with J < 0.
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Proof . Assume that h is strictly increasing and J > 0. Then it follows that f(z) has only three
zeros if h(0) + 2

∑M−1
l=1

1
l1+α < ω < h∞ and f ′(0) = (ω − h(0))/J < 0 for J > 0. Therefore system

(3.1) admits bright solitons solutions by the theorem 2.6. Similarly the other cases can proved by
theorem 2.6. □

Theorem 3.2. Assume that h′(r) > 0 (< 0) for r ∈ [0,+∞[. Then there exist a dark Solitons of the
form ϕne

iωt with h(0) + 2
∑M−1

l=1
1

l1+α < ω < h∞ (h∞ +2
∑M−1

l=1
1

l1+α < ω < h(0)) for the system (3.1)
with J < 0 (> 0).

Proof . The proof is abvious by the theorem 2.7. □

4. Conclusion

The existence of bright soliton solutions has been investigated by this method for a discrete
Schrodinger equation with short term interaction in [15] and also by the variational method in
[17]. The frequency ω associated with the sequence ϕn in which is a minimizer for some variational
problem. Thus, one must first solve a variational problem to obtain a minimizer, and then derive
the corresponding frequency. One cannot explicitly determine the allowed region of the ω frequency
by the variational method. However, our approach gives the frequency ω and the corresponding
sequence ϕn simultaneously, and thus one can obtain the existence interval of the frequency ω.
Another efficient tool to find soliton solutions is the anti-integrability method [1, 7]. On the other
hand, if we apply the anti-integrability method, we need the coupling strength to be small in order
to apply the implicit function theorem. On the other hand, in our result, the existence of bright
solitons implies that the coupling strength could be large.
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