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Abstract

This work is concerned with the periodic solution of a doubly degenerate Allen-Cahn equation with
nonlocal terms associated with Neumann boundary conditions. Firstly, we define a new associated
auxiliary problem. Secondly, the topological degree theorem is applied to prove the existence of a
limit point to the auxiliary problem, where this limit point represents a nontrivial nonnegative time-
periodic solution of the main studied problem. It is observed that the topological degree theorem
technique plays an important role in proving the desired results. Furthermore, this technique can be
applied to other similar equations with homogeneous Dirichlet or Neumann boundary conditions.
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1. Introduction

In this work, we consider the following time-dependent problem, which is a doubly degenerate
Allen-Cahn equation with nonlocal terms associated with Neumann boundary conditions:
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∂v

∂t
− div(|∇vm|p−2∇v) = h(v3 − v), (x, t) ∈ ST , (1.1)

∂v

∂η
= 0, (x, t) ∈ ∂Ω× (0, T ), (1.2)

v(x, 0) = v(x, T ), x ∈ Ω, (1.3)

Where m ≥ 1, p ≥ 2 Ω ⊂ Rn is a bounded domain with smooth boundary; the outward normal
vector is denoted by η; ST = Ω × (0, T ), the function v represents the spatial densities of the
species at u(x, t) and the second term on the left-hand side in (1.1); div(|∇vm|p−2∇v) represents the
nonlinear diffusion term. Since the last decades, time-dependent partial differential equations have
played important roles in describing many phenomena in different scientific fields, such as physics,
chemistry and engineering, see for instance [10, 11, 12, 15]. One of the most common-studied problems
is Allen-Cahn equation, which is considered a simple type of nonlinear reaction-diffusion equations.
It is commonly used to represent the interface motion in time, for instance, it is used in phase
separation in alloys. Moreover, this equation has several applications in many areas such as material
sciences, plasma physics, quantum mechanics, geology, image processing, as well as mathematical
biology.

During the past fifty years, many authors have worked on the linear parabolic equation with
nonlocal terms, see for example [1, 2, 3, 4]. In [1], Allegretto and Nistri have considered a special
model, namely they studied the following equation:

∂v

∂t
−∆v = f(x, t,m,Φ[v], v), (1.4)

Due to the realistic needs, some authors have concerned with nonlinear diffusion equations with
nonlocal terms, such as the porous equation [7, 8]:

∂v

∂t
−∆v = f(x, t,m,Φ[v], v), (1.5)

and the p-Laplacian equation [6]:

∂v

∂t
= div(|∇v|p−2∇v) + (m− Φ[v])v. (1.6)

It is clear that equation (1.5) and (1.6) are degenerate if (m > 1) and if (p > 2) , respectively,
while, they are singular if (0 < m < 1)and (1 < p < 2), respectively. Few exceptions are considered
to the cases m > 1 , and p > 2. In fact, equations (1.5) and (1.6) are studied with Dirichlet boundary
conditions, which refer that the boundary is lethal to the species. In each of these references,
the topological degree theory was used to prove the existence of nontrivial nonnegative time-periodic
solution. Recently, in [13], the following periodic Neumann-boundary value problem has been studied:

∂v

∂t
−∆vm = (m− Φ[v])v, (x, t) ∈ ST ,

∂v

∂n
= 0, (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) = v(x, T ), x ∈ Ω,
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where m > 1. The existence of the nontrivial nonnegative periodic solutions to the above problem
was established by using the topological degree theory and the parabolic regularized method. In
fact, considering a doubly degenerate Allen-Cahn equation with isolated Neumann condition leads
to additional difficulties in establishing the priori estimates comparing with studying the a doubly
degenerate Allen-Cahn equation with the Dirichlet boundary condition. Furthermore, for problem
(1.1)-(1.3), an auxiliary problem needs to be considered for applying the topological degree theory.
Other varies types of Allen-Cahn equation with (without) non-local terms have been considered in
our recent works, such as linear diffusion Allen-Cahn equation, p-Laplacian Allen-Cahn equation,
and a quasi-linear parabolic Allen-Cahn equation. The main goal of these works is to prove the
existence of periodic solutions to these problems. This work is considered a continuation of these
works. Namely, the aim of this work is to prove the existence of non-trivial nonnegative periodic
solution to problem (1.1)-(1.3).
This article is divided into four sections. In the second section, the necessary preliminaries and the
auxiliary problem is given. In the third section, the necessary priori-estimations of the solutions of
the auxiliary problem are established. Moreover, the existence of non-trivial nonnegative periodic
solution to problem (1.1)-(1.3) is proved. Finally, some conclusions are stated in the last section.

2. Preliminaries

In this work, it is assumed that:

F1) The functional Ψ[·] : L2
+(Ω) → R+ is bounded, continuous and satisfying the inequality:

0 ≤ Ψ[v] ≤ E∥v∥kLk(Ω), k > 0

where Ψ[v] = h(v3 − v) and E is a positive constant, and it does not depend on v; where,
R+ = [0,+∞), Lp

+(Ω) = {v ∈ Lp(Ω)|v ≥ 0, a. e. in Ω}.

F2) h(x, t) ∈ CT (ST ) and it satisfies that {x ∈ Ω : 1
T

∫ T

0
h(x, t) > 0} ≠ ∅, where CT (ST ) is the set of

T -periodic function with respect to t and continuous in Ω×R By (2), there exists x0 ∈ Ω, h0 > 0

such that 1
T

∫ T

0
h(x, t)dt ≥ h0 for all x ∈ B(x0, δ)

Due to the degeneracy of equation (1.1) at the points, where v = 0, the problem (1.1)- (1.3) does
not have generally a classical solution. Therefore, we shall discuss rather the solutions of problem
(1.1)-(1.3) in a weak sense .

Definition 2.1. We say that the function v is a weak solution to problem (1,1)-(1,3), if v ∈
L2(0, T ;H1(T )) ∩ CT (ST ) and satisfies∫∫

ST

(
−v

∂ϑ

∂t
+ |∇vm|p−2∇vm∇ϑ− h(t)(v2 − 1)vϑ

)
dxdt = 0, (2.1)

for any ϑ ∈ C1(ST ) with the periodic initial value ϑ(x, t) = ϑ(x, t+ T ).

Since equation (1.1) is degenerate, we need to define the following regularized problem:

∂vτ
∂t

− div((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )∇vτ ) = h(t)(v2τ − 1)v+τ , (x, t) ∈ ST , (2.2)

∂vτ
∂n

= 0, (x, t) ∈ ∂Ω× (0, T ), (2.3)

vτ (x, t) = vτ (x, t+ T ), x ∈ Ω, (2.4)
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where τ ∈ R+ and it is sufficiently small; and s+ = max{0, s} and A(vτ ) = mvm−1
τ + τ, τ is a

sufficiently small positive constant .In this work, we shall discuss the existence of the limit point to
the solutions of problem (2.2) - (2.4) , which represents the weak solution to problem (1.1)- (1.3).
Next, we introduce a map as follows:

∂vτ
∂t

− div((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )∇vτ ) = f, (x, t) ∈ ST , (2.5)

∂vτ
∂n

= 0, (x, t) ∈ ∂Ω× (0, T ), (2.6)

vτ (x, t) = vτ (x, t+ T ), x ∈ Ω, (2.7)

Moreover, the map is defined as vτ = Qf where Q : [0, 1] × CT (ST ) → CT (ST ).By classical
estimates (see [9]), it follows that vτ is Holder-continuous in ST and ∥vτ∥L∞(ST ) is bounded by
∥f∥L∞(ST ). Let Then by the Arzela-Ascoli theorem, the map Q is compact. Thus, it is compact
continuous. f(vε) = (m((v+τ )

2−1)v+ε ) where v
+
τ = max{uτ , 0}.It follows that the nonnegative solution

vτ of problem (2.2) - (2.4) is a nonnegative fixed point of the map vτ = Q(1, (h((v+τ )
2−1)v+τ )). as well.

So, one can study the existence of nonnegative fixed points of the map: vτ = Q(1, (h((v+τ )
2 − 1)v+τ ))

rather than looking for a nonnegative solution of problem (2.2) - (2.4).

3. The Main Results

By applying the same technique used in [16]:, we can show that the solutions of problem (2.2) -
(2.4) are nonnegative.

Lemma 3.1. let vτ ∈ CT (ST ) be a non-trivial solution for vτ = Q(1, h((v+τ )
2 − 1)v+τ ), then

vτ (x, t) > 0, for all (x, t) ∈ ST .

Next, by applying the Moser iterative technique, we obtain a priori estimate for the upper bound
for the nonnegative periodic-solutions of problem (2.2) - (2.4). For simplicity, the Lp(Ω) norm is
denoted by ∥.∥p (1 ≤ p ≤ ∞) .

Lemma 3.2. Let γ ∈ [0, 1], vτ (x, t) be a nonnegative periodic function, which solves vτ = Q(1, γh((v+τ )
2−

1)v+τ ), then there exists a constant,which is independent of γ, such that

∥v(t)∥∞ < R, (3.1)

where v(t) = v(·, t).

Proof . If we multiply equation (2.5) by vs+1
τ (s ≥ 0) and integrate it over Ω, it follows that

1

s+ 2

d

dt
∥vτ (t)∥s+2

s+2 +
mp−1(s+ 1)pp

[m(p− 1) + s+ 1]p
∥∇(v

m(p−1)+s+1
p

τ (t))∥pp ≤ ∥h(x, t)∥L∞(ST )∥vτ (t)∥s+4
s+2,

and hence

1

s+ 2

d

dt
∥vτ (t)∥s+2

s+2 +
E1

[m(p− 1) + s+ 1]p
∥∇(v

m(p−1)+s+1
p

τ (t))∥pp ≤ E2(s+ 1)∥vτ (t)∥m+4
m+2, (3.2)
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where for j = 1, 2, Ei are positive constants independent of vτ and m. We suppose that ∥v(t)∥∞ ̸= 0
set

vk(t) = v
m(p−1)+s+1

p
τ , αk =

p(sk + 2)

m(p− 1) + s+ 1
, sk =

pk − p

p− 1
(k = 1, 2, ...),

then , sk = pk +m− p
p−1

.
For simplicity, a positive constant, which is independent of k and m and it takes different values,

is denoted by E. By (3.2), it follows that

d

dt
∥vk(t)∥αk

αk
+ E∥∇vk(t)∥pp ≤ E(s+ 1)∥vk(t)∥αk+2

αk
. (3.3)

Applying the Gagliardo-Nirenberg inequality, yields that

∥vk(t)∥αk
≤ E∥∇vk(t)∥θkp ∥vk(t)∥1−θk

1 , (3.4)

with

θk =
sk(p− 1) + p

sk + 2
· N

(p− 1)N + p
∈ (0, 1).

By inequalities (3.3), (3.4) and the fact that ∥vk(t)∥1 = ∥vk−1(t)∥αk−1
αk−1 , we obtain the following

differential inequality:

d

dt
∥vk(t)∥αk

αk
≤− E∥vk(t)∥

p
θk
αk∥vk(t)∥

p(θk−1)

θk
1 + E(sk + 1)∥vk(t)∥αk+2

αk

≤− E∥vk(t)∥
p
θk
αk∥vk−1(t)∥

p(θk−1)

θk
αk−1

αk−1 + E(sk + 1)∥vk(t)∥αk+2
αk

.

Let
γk = max{1, sup

t
∥vk(t)∥2},

we have
d

dt
∥vk(t)∥αk

αk
≤ (sk + 1)−(p−2)∥vk(t)∥

αk(sk+1)

sk+2
αk {−E∥vk(t)∥

p
θk

−αk(sk+1)

sk+2
αk

χ
p(θk−1)

θk
αk−1

k−1 + E(sk + 1)p−1∥vk(t)∥
αk+2(sk+2)

sk+2
αk }.

(3.5)

By young’s inequality

cd ≤ ϵcp
′
+ ϵ

− q′
p′ dq

′
,

where c > 0, d > 0, q′ > 1, p′ > 1, ϵ > 0 and 1
p′
= q′−1

q′
. Set

a = ∥vk(t)∥
αk+2(sk+2)

sk+2
αk , b = (sk + 1)p−1, ϵ =

1

2
γ

p(θk−1)

θk
αk−1

k−1 ,

p′ = lk =

(
p

θk
− αk(sk + 1)

sk + 2

)
·
(

sk + 2

αk + 2(sk + 2)

)
,

then we obtain
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(sk + 1)p−1∥vk(t)∥
αk+2(sk+2)

rk+2
αk ≤ 1

2
∥vk(t)∥

p
θk

−αk(sk+1)

sk+2
αk γ

p(θk−1)

θk
αk−1

k−1 + E(sk + 1)
p−1

lk
lk−1γ

p(θk−1)

θk
αk−1

1
lk−1

k−1 .

(3.6)
It is easy to show the fact that p′ = lk > s > 1 for some s independent of k. Thus limk→∞ lk = +∞

lim
k→∞

lk = +∞.

Denote

ck =
lk(p− 1)

lk − 1
, dk =

p(θk − 1)

θk

αk−1

lk − 1
,

and combining (3.5) with (3.6) we have

d

dt
∥vk(t)∥αk

αk
≤ (sk + 1)−(p−2)∥vk(t)∥

αk(sk+1)

sk+2
αk {−E

2
∥vk(t)∥

p
θk

−αk(sk+1)

sk+2
αk γ

p(θk−1)

θk
αk−1

k−1 + E(sk + 1)ckγdk
k−1}.
(3.7)

Then

(sk + 1)
d

dt
∥vk(t)∥

αk
sk+2
αk ≤ −E

2
∥vk(t)∥

p
θk

−αk(sk+1)

sk+2
αk γ

p(θk−1)

θk
αk−1

k−1 + E(sk + 1)ckγdk
k−1. (3.8)

Since vk(t) is periodic, there exists t0 such that∥vk(t)∥αk
takes the maximum value at this point.

Therefore, the left hand side of (3.7) is vanished. It follows that

∥vk(t)∥αk
≤ {E[(sk + 1)ckγ

dk+
p(1−θk)

θk
αk−1

k−1 ]}
1

Υk ,

where

Υk =
p

θk
− αk(sk + 1)

sk + 2
=

αklk
sk + 2

.

Therefore we conclude that

∥vk(t)∥αk
≤ {E(sk + 1)ckγ

dk+
αk−1p(1−θk)

θk
k−1 }

1
Ek = {E(sk + 1)ak}

mk+2

αklk γ
αk−1p(1−θk)(mk+2)

(lk−1)θkαk
k−1 .

Since sk+2
(lk−1)θk

= αk

p−θkαk
and sk+2

αklk
and αk are bounded, we get

∥vk(t)∥αk
≤ Epa

′
kγ

(1−θk)αk−1p

p−θkαk
k−1 ,

where the constant a
′
does not depend on k.

As αk =
p(sk+2
sk+p

< p implies that

∥vk(t)∥αk
≤ EDkγp

k−1,

or

ln ∥vk(t)∥αk
≤ ln γk ≤ lnE + k lnD + p ln γk−1,

where D = pa
′
> 1. Thus
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ln ∥vk(t)∥αk
≤ lnE

k−2∑
j=0

pj + pk−1 ln γ1 + lnD(
k−2∑
i=0

(k − i)pi)

≤ (pk−1 − 1)

p− 1
lnE + pk−1 ln l1 + f(k) lnD,

or

∥vk(t)∥sk+2
≤ {E

pk−1−1
p−1 lp

k−1

1 Df(k)}
p

sk+p ,

where

f(k) =
k − (k + 1)p− pk−1 + 2pk

(p− 1)2
.

Letting k → ∞, we obtain

∥vτ (t)∥∞ ≤ Eγp−1
1 ≤ E(max{1, sup

t
∥vτ (t)∥2})p−1. (3.9)

On the other hand, it follows from (3.2) with s = 0 that

d

dt
∥vτ (t)∥22 + E1∥∇vτ (t)∥pp ≤ E2∥uτ (t)∥42. (3.10)

Applying the Sobolev’s theorem and Holder’s inequality, yields that

∥vτ (t)∥2 ≤| Ω |
1
2
− 1

p ∥vτ (t)∥p ≤ E | Ω |
1
2
− 1

p ∥∇vτ (t)∥p. (3.11)

Combined with (3.9), it yields that

d

dt
∥vε(t)∥22 + E1∥∇vτ (t)∥p2 ≤ E2∥vτ (t)∥42.

By applying the Young’s inequality, we obtain that

d

dt
∥vτ (t)∥22 + E1∥∇vτ (t)∥p2 ≤ E2. (3.12)

for Ej(j = 1, 2) are constants independent of v. since v is periodic,by (3.11) it follows that

∥vk(t)∥2 ≤ E,

Finally, the by last inequality and (3.8) we obtain (3.1), So, the theorem is proved.
□

Corollary 3.3. There is 0 < R , independent of τ , such that such that

deg(I −Q(1, h((v+τ )
2 − 1)v+τ ), BR, 0) = 1,

where BR is a ball with the origin center and radius R in L∞(ST ).
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Proof . By Lemma (3.2), there exists 0 < R, which is independent on τ , such that

vτ ̸= Q(γ(h((v+τ )
2 − 1)v+τ )), ∀vτ ∈ ∂BR, γ ∈ [0, 1].

Therefore, the degree is well defined on BR.
Based on the homotopy invariance of the topological degree, it follows that:

deg(1−Q(1, (h((v+τ )
2 − 1)v+τ ), BR, 0) = deg(1−Q(0), BR, 0).

Since the existence of a unique solution to uτ = Q(0) is guaranteed, it follows that
deg(1−Q(0), BR, 0) = 1. That is ,
deg(1−Q(1, (h((v+τ )

2 − 1)v+τ ), BR, 0)) = 1. The proof is completed. □

Lemma 3.4. There exist constants s0 > 0 and τ0 > 0, such that for any s < s0, τ < τ0,
Q(τ, h((v+τ )

2 − 1)v+τ + (1− γ)), γ ∈ [0, 1] does not have non-trivial solution vτ satisfy

0 < ∥vτ∥L∞(ST ) ≤ s

where s > 0 is independent of τ .

Proof . We shall proceed by contradiction, let vτ be a non-trivial solution of Q(τ, h((v+τ )
2 − 1)v+τ +

(1− γ)), γ ∈ [0, 1] satisfying 0 < ∥vτ∥L∞(ST ) ≤ s. For any given ϕ(x) ∈ C∞
0 (Ω), multiplying (2.5) by

ϕ2

vτ
and integrating over S∗

T = Bδ(x0)× (0, T ), we obtain

∫∫
S∗
T

ϕ2

vτ

∂vτ
∂t

dtdx+

∫∫
S∗
T

(
(|A(vτ )∇vτ |2 + τ)

p−2
2 A(vτ )∇vτ∇

(
ϕ2

vτ

))
dtdx

=

∫∫
S∗
T

ϕ2

vτ
(h(v2τ − τ − 1))vτ + (1− γ)

ϕ2

vτ
)dtdx.

(3.13)

since vτ , is periodic, in the left-hand side of (3.13) the first term is zero. By [7], in the left-hand
side of (3.13), the second term can be rewritten as follows:

∫∫
S∗
T

(
(|A(vτ )∇vτ |2 + τ)

p−2
2 A(vτ )∇vτ∇

(
ϕ2

vτ

))
dtdx

=

∫∫
S∗
T

((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )|∇ϕ|2)dtdx

−
∫∫

S∗
T

((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )v

2
τ

∣∣∣∣∇( ϕ

vτ

)∣∣∣∣2)dtdx
(3.14)

Combining (3.13) with (3.14), we obtain

∫∫
S∗
T

((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )|∇ϕ|2)dtdx−

∫∫
S∗
T

(ϕ2(h(v2τ − τ − 1))dtdx =∫∫
S∗
T

(
ϕ2

vτ
(1− γ)dtdx+

∫∫
S∗
T

((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )v

2
τ |∇(

ϕ

vτ
)|2)dtdx ≥ 0.

(3.15)
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From Theorem 5.1 and also some remarks in [[3]:.pp.238, 243], it follows that there exists a
constant γ = γ(N, p) such that

sup
[(x0,t0)+s( 1

2
s0,

1
2
p)]

|A(vτ )∇vτ | = c(N, p, x0, h0, µ1)

(∫∫
[(x0,t0)+s( 1

2
s0,

1
2
p)]

|A(vτ )∇vτ |pdtdx

) 1
2

∧1

2

(
h0

4µ1

) 1
2−p

.

For any (x0, t0) ∈ S∗
(T,3T ) = Ω× (T, 3T ), [(x0, t0) + (s0, p)] ⊂ S∗

(T,3T ) and p = min
{
T,

√
h0s0

2
p+6
2

}
. On

the other hand, by (2.2) - (2.4) , we have

∫∫
S∗
T

|A(vτ )∇vτ |pdtdx ≤ max
S∗
T

|h(x, t)|
∫∫

S∗
T

(|vτ |m+1 + |vτ |2)dtdx.

sup[(x0,t0)+s( 1
2
s0,

1
2
p)] |A(vτ )∇vτ | = c(N, p, x0, h0, µ1)

(∫∫
S∗
T
(|vτ |m+1 + |vτ |2)

) 1
2
dtdx ∧ 1

2

(
h0

4µ1

) 1
2−p

which implies

∥A(vτ )∇vτ∥L∞
B(x0,s0)×(0,T )

= C
(
∥vτ∥

m+1
2

L∞(S∗
T ) + ∥vτ∥L∞(S∗

T )

) 1
2

∧ 1
2

(
h0

4µ1

) 1
2−p

where C is a constant independent of τ , from τ ∈ (0, 1
2
) we have

A(vτ ) = mvm−1
τ + τ ≤ mvm−1

τ +
1

2

By the approximating process, we can let ϕ1 = ϕ is the positive eigenfunction of the first eigen-
value µ1 , then we have

∫∫
S∗
T

((|A(vτ )∇vτ |2 + τ)
p−2
2 A(vτ )|∇ϕ|2)dtdx ≥

∫∫
S∗
T

(ϕ2(h(v2τ − τ − 1))dtdx.. (3.16)

and then

∫∫
B(x0,

1
2
t0)×(0,T )

(ϕ2
1(h(v

2
τ − τ − 1))dtdx ≤

∫∫
B(x0,

1
2
t0)×(0,T )

((|A(vτ )∇vτ |p−2 + (τ)
p−2
2 )A(vτ )|∇ϕ|2)dtdx∫∫

B(x0,
1
2
t0)×(0,T )

(c(s
s+1
2 + τ)p−2 ∧ h0

4µ1

+ (τ)
p−2
2 )(msm−1 +

1

2
)|∇ϕ|2dtdx

= (cµ1(s
s+1
2 + τ)p−2 ∧ h0

4µ1

+ µ1(τ)
p−2
2 )(msm−1 +

1

2
t0)

∫
B(x0,

1
2
t0)

ϕ2
1dx.

On the other hand∫∫
B(x0,

1
2
t0)×(0,T )

(ϕ2
1(h(v

2
τ − τ − 1))dtdx ≤

∫
B(x0,

1
2
t0)

ϕ2
1

∫ T

0

h(∥vτ∥L∞(S∗
T ) − τ − 1)dtdx.

By the assumption 0 < ∥vτ∥L∞(S∗
T ) ≤ s and also we use |Ω| to denote the Lebesgue measure of

the domain Ω, we obtain
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0 ≤ (cµ1(s
s+1
2 + τ)p−2 ∧ h0

4µ1

+ 2
p−2
2 µ1(τ)

p−2
2 )(msm−1 +

1

2
)

∫
B(x0,

1
2
t0)

ϕ2
1dx

−
∫∫

B(x0,
1
2
t0)×(0,T )

(ϕ2
1(h(v

2
τ − τ − 1))dtdx

we get

0 ≤ (cµ1(s
s+1
2 + τ)p−2 ∧ h0

4µ1

+ 2
p−2
2 µ1(τ)

p−2
2 )(msm−1 +

1

2
)

∫
B(x0,

1
2
t0)

ϕ2
1dx

−
∫
B(x0,

1
2
t0)

ϕ2
1

∫ T

0

h(∥vτ∥L∞(S∗
T ) − τ − 1)dtdx

and then

0 ≤ (cµ1(s
s+1
2 + τ)p−2 ∧ h0

4µ1

+ 2
p−2
2 µ1(τ)

p−2
2 )(msm−1 +

1

2
)

∫
B(x0,

1
2
t0)

ϕ2
1dx

−h0(|Ω|s2 − τ − 1)

∫
B(x0,

1
2
t0)

ϕ2
1dtdx.

We get

τ ≤ 1
2
( h0

4µ1
)

2
p−2 , s = min

{
m−1

√
1
2m

, ( h0

4C2
)
1
2 , 1

2
( h0

4µ1C
)

1
p−2 , 1

}
we can get

h0 ≤
h0

4
+ (

h0

4
∧ h0

4
) +

h0

4
=

3h0

4

This inequality does not hold. Therefore there exists a positive constant s such that no nontrivial
solutions vτ of the equation of

vτ = Q(τ, h((v+τ )
2 − 1)v+τ + (1− γ)), γ ∈ [0, 1] satisfying 0 < ∥vτ∥L∞(ST ) ≤ s

Thus we complete the proof. □

Corollary 3.5. There is a small constant; 0 < s < R which does not depend on τ , such that

deg(I −Q(1, (h((v+τ )
2 − 1)v+τ ), Bs, 0) = 0,

where Bs is a ball with zero center and radius s in L∞(S∗
T ).

Proof . By following the same technique of Lemma (3.4), it follows that there is s ∈ (0, R) , which
does not depend on τ , such that

vτ ̸= Q(γ, h(h((v+τ )
2 − 1)v+τ ) + 1− γ), ∀v ∈ ∂Bs, γ ∈ [0, 1].

So the degree is well defined on Bs. Based on the homotopy invariance of the topological degree, it
follows that:

deg(I −Q(1, (h((v+τ )
2 − 1)v+τ )), Bs, 0) = deg(1−Q(1), Bs, 0).



The existence of periodic solutions to doubly degenerate Allen-Cahn equation 407

By Lemma 3.4 , vτ = Q(1) does not have a non-trivial solution in Bs.
Clearly, vτ = 0 cannot be a solution to vτ = Q(1). It follows that deg(1−Q(1), Bs, 0) = 0, which

leads to

deg(I −Q(1, (h((v+τ )
2 − 1)v+τ )), Bs, 0) = 0.

So, the corollary is proved. □

Theorem 3.6. If assumptions(F1)and(F2)are satisfied, then problem (1.1)-(1.3) has a non-trivial
non-negative periodic solution.

Proof . Based on Corollaries (3.3) and (3.5), it follows that.

deg(1−Q(f(.)),Ξ, 0) = 1,

where Ξ = BR \Bs, Bρ is a ball with zero center and radius ρ ∈ L∞(S∗
T ),

Since 0 < s ≤ R, by Lemma (3.1) and topological degree theorem, it follows that problem (2.2)
- (2.4) has a non-negative non-trivial solution vτ .

Based on Lemma 3.4 and by applying a similar technique used in [13], it follows that
∥∇vτ∥Lp(ST ) ≤ C ∥∂vτ

∂t
∥ ≤ C

If we combine the regularity results of [3] with a similar argument, given in [14], one can easily
show that the limit function of vτ is a non-negative non-trivial periodic solution of problem (1.1)-(1.3).
□

4. Conclusions

This work is devoted to study a nonlinear diffusion Allen-Cahn equation with isolated Neumann
boundary condition. For this problem, we have proved the existence of nontrivial periodic solutions
by using the topological degree theorem. Namely, we show that the solution of problem (2.2) - (2.4)
has a limit point, which is also considered the nonnegative nontrivial periodic solution to problem
(1.1)-(1.3 in infinite space. It is observed that the topological degree theorem technique plays an
important role in proving the desired results. Furthermore, this technique can be applied to other
similar equations with homogeneous Dirichlet or Neumann boundary conditions.
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