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Abstract

In this paper, we investigate existence and uniqueness of solutions of nonlinear Volterra-Fredholm
impulsive integrodifferential equations. Utilizing theory of Picard operators we examine data depen-
dence of solutions on initial conditions and on nonlinear functions involved in integrodifferential
equations. Further, we extend the integral inequality for piece-wise continuous functions to mixed
case and apply it to investigate the dependence of solution on initial data through e-approximate
solutions. It is seen that the uniqueness and dependency results got by means of integral inequity
requires less restrictions on the functions involved in the equations than that required through Picard
operators theory.
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1. Introduction

Numerous evolution processes are described through the specific snapshots of time as they expe-
rience a difference in state unexpectedly. In such a cases span may be irrelevant in correlation with
the length of the process. It is expected that in such cases these perturbations act instantaneously,
means in the form of impulses. Different issues of the theoretical and practical importance lead us
to consider the evolution of real processes with short-term perturbations. Such process are often
described in the frameworks of differential and integrodifferential equations with impulse effect [I} 2].
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It is seen that [3] the differential equations with impulse conditions are commonly used to model the
phenomena that cannot be modeled by the conventional initial value problems. In the perspective
on its application the differential and integrodifferential equations with impulse effect have been an-
alyzed by various scientist for existence, uniqueness, stability and different types data dependency
by using various techniques [4, [5, [6} [7, 8, O, [10] and the references cited therein.

Frigon and O’regan [I1], using the fixed point approach proved existence results for impulsive
initial value problem

w'(r)=f(r,w(r)),0<7<b, T#T,
Aw(Tk) I( (1)), k=1,2,--- ;m, meN,
w(0) =

and utilizing the idea of upper and lower solutions, authors have derived existence results for the
boundary value problem

g

"(T)= f(r,w(7)),0< 7 <b, T#T4,
Aw(t) = I (w(mg)), k=1,2,--- ,m, meN,

(
w(0) = w(b),
where Aw(m) = w(rh) — w(r, ), where w(r;") = lir(l]}rw(m +e¢) and w(r, ) = hIgl_w(Tk +€).

Using Picard, weakly Picard operators theory Bielecki norms, Wang et al. [4], have examined
nonlocal problem

w'(r) = f(r,w(r)), T € [0,b],
w(0) = wo + g(w),

for existence, uniqueness and data dependence . Authors have expanded the acquired outcomes at
that point to a class of impulsive Cauchy problems by adapting the same strategies. Wang et al. [12],
by applying the integral inequality of Gronwall type for piece-wise continuous functions investigated
Ulam—Hyers stability for impulsive ordinary differential equations. Liu [3], studied the existence and
uniqueness of mild and classical solutions for a nonlinear impulsive evolution equation

w' (1) = dw(t)+ f(r,w(r)),0<7<b, T#T,
Aw(Tk)—Ik( (16)), k=1,2,--+, p<m <---<b
w(0) =

in a Banach space X, where &7 is the generator of a strongly continuous semigroup.

Anguraj et al. [13], using semigroup theory and contraction mapping principle, proved the exis-
tence and uniqueness of the mild and classical solutions for the impulsive evolution mixed Volterra-
Fredholm integrodifferential equation. Muresan [14] explored existence, uniqueness and data depen-
dence of the solutions to mixed Volterra-Fredholm integrodifferential equation in Banach space by
Utilizing Picard and weakly Picard operators’” method and Bielecki norms.

On the other hand, Campiti [I5] has explored various properties and a resolvent estimate for
second-order differential operators with non-local Ventcel’s boundary conditions. Park et al. [16]
have inspected the Hyers-Ulam stability of the set-valued additive functional equations by utilizing
the fixed point strategy.

It is noticed that in many of the works [17]-[20], differential and integral inequalities [25, 26] play
central role in the investigation of different properties of solution such as uniqueness, boundedness,
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stability etc. Motivated by works [4, 2], [13] [14], we will investigate the existence, uniqueness and

continuous data dependence of solutions of nonlinear Volterra-Fredholm impulsive integrodifferential
equations (VFIIDEs) of the form:

W(7) = w(r) + G (mu(T), /0 Fu(r, 0, w(o))do, /Ob Ry(r, U,w(a))da) ,

Trel, 7 # 7, k=1,2,--- n, (1.1
w(0) = wp, wg € X (1.2)
Aw(Tk) = Ik(w(Tk)), k’ = 1,2, e, N,

where I = [0,0], &/ : X — X is the infinitesimal generator of Cy-semigroup {.7(7)},>0 in Banach
space (X, [|-]|), Ix : X — X (k= 1,---n) are continuous functions and G, F; and F; are the functions
specified later. The impulsive moments 75 are such that 0 < 7o <7 < --- <7, < 71 < b,n € N.
Further, Aw(r,) = w(r) — w(r, ), where w(r;}) = hli)rghw(m + h) and w(r, ) = hli)rgl_w(ﬂf + h) are
respectively the right and left limits of w at 7.

The dependence of solutions on initial conditions is firstly obtained via Picards’ operator tech-
nique. Further, we extend the integral inequality for piece-wise continuous functions given in Theorem
2 of [27] for mixed case. The extended version of integral inequality we obtained then utilized to
analyze the dependence of solution on initial data through e-approximate solutions. It is seen that
results we obtained via integral inequity regrading uniqueness and dependence of solution requires
less restrictions on the nonlinear functions involved in the equations than that are demanded through
Picard operators theory.

This paper is organized as follows. Section 2, relates with preliminaries. We will discuss exis-
tence, uniqueness and continuous data dependence in section 3. Section 4, deals with dependency
of solutions via Picard theory. In section 5, we prove the variant of integral inequality for piece-wise
continuous functions. In section 6, we provide the application of integral inequality we obtained to
study of data dependence via e-approximate solution to VFIIDEs. Paper finishes with concluding
remarks.

2. Preliminaries

Definition 2.1 ([12} 28], 29]). . Let (X, d) be a metric space. An operator A: X — X is a Picard
operator (PO), if there exists w* € X satisfying the following conditions:

(a) Fy={w'}, where Fy:={we X : A(w) =w}.

(b) the sequence (A™(wy)), ey converges to w* for all wy € X.

Theorem 2.2 ([12], 28], 29]). . Let (Y,d) be a complete metric space and A, B : Y — Y two
operators. We suppose the following:

(a) A is a contraction with contraction constant o and F 4 = {w%} ;
(b) B has fized point and wy € Fp;
(c) there exists p > 0 such that d (A(w), B(w)) < p for allw €Y.

Then

* * p
d < :
(w.A7wB) — 1 —
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Lemma 2.3 ([27], Theorem 16.4 ). . Let for 7 > 1y the inequality

u(r) <alr)+ /T g(1,0)u(o)do + Z B (1) u(Tk),

70 To<TE<T

hold, where Bi(T)(k € N) are nondecreasing functions for v > 19, a € PC([r0,00),Ry) is a
nondecreasing function, u € PC([1y,00),R,), and g(1,0) is a continuous nonnegative function for
7,0 > 19 and nondecreasing with respect to T for any fived o > 1.

Then, for T > 1y the following inequality is valid:

wn) <atn) T[T (+amnes ([ ol )iz).

TO<TR<T

Theorem 2.4 ([27], Theorem 2). . Let for 7 > 7y the following inequality hold

T

u(r) <alr)+ /TO b(t,o)u(o)do + /TOT (/T: k(r, o, §)u(§)d§> do + Z Br(7) u(y),

TO<TR<T

where u,a € PC([r9,00),Ry), a is a nondecreasing, b(t,0) and k(T,0,5) are continuous and non-
negative functions for T,0,¢ > 19 and are nondecreasing with respect to T, p(7) (k € N) are nonde-
creasing for T > 19. Then, for T > 1y, the following inequality is valid:

w(t) < a(r) H (14 Bi(7)) exp </TOT b(r,0)do + /TOT /T: k(t, o, g)dgda) :

TOLTE<T
We need the following theorem from Pazy [30].

Theorem 2.5 ([30]). . Let {.7(7)},>0 is a Co-semigroup. There exists constants w > 0 and M > 1
such that

|7 (T)]| <Me*T, 0 <7 < 0.
3. Existence and uniqueness

Consider the following space

© ={w: I — X :w(r) is continuous at 7 # 7, left continuous at 7 = 7y,

the right limit w(7;") exists for k =1,---n, n € N and w(0) = wp } .

Consider the following Banach space Opg = (O, ||-||p5), Where

Jw(T)]]
Hw”PB:SHII){ o ,we O, v>0,
TE

is the piece-wise Bielecki norm, and Op¢ = (0, ||| 5¢), where |[w|| . = sup {||w(7)[|} , w € O is the
tel
piece-wise Chebyshev norm.
Definition 3.1. A function w € © is called a mild solution of (1.1)-(1.3) if it satisfies the following
impulsive integral equation
T o b
win) =7+ [ 7= 016 (a.uio). [ o uas. [ R o)) do
0 0 0
+ Y T -tk (wmw), TeT (3.1)

O0< T <T
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We need the following hypothesis to obtain our main results.

(H1) Let G : I x X x X x X — X be continuous function and there exist constant Lg > 0 such
that

3
|G (7, v1,v2,v3) = G(7, w1, wo, w3)|| < L (Z Jvi — wi”) ;

=1

for all 7 € I and v;,w; € X (i = 1,2,3).

(H2) Let F; (j =1,2): I xIx X — X are continuous functions and there exist constants Ly, (j =
1,2) > 0 such that

HFj(T,O’,Ul) _Fj(Tvgﬂwl)H < LFjHU1 —le, J=12
for all 7,0 € I and vy, w; € X.

(H3) There exist constant L;, > 0 such that ||I;(v) — Ix(w)| < Ly, ||lv —w||; for v,w € X, (k =
1, ,n).

Theorem 3.2. Suppose that hypothesis (H1)-(H3) are holds and there exist constant v > 0 such
that

n
Lr = AL [(1 76_76) <17L LFl) JrLFQbe’Yb] +///eVbZLIk <L
vy g
k=1

Then the VFIIDE (| . . has a unique solution in Opg.

Proof .
Define the operator R : ©pp — Opg, Ops = (0, |||pg) by
T o b
R(w)(1) = T (1)wp —i—/o T(t—0)G (J,w(a),/o Fi(o, g,w(g))dg,/o FQ(a,g,w(g))dg) do
+ > T =)k (w(m), T €[0,b].

0<m<T

Then fixed point of the operator R is the solution of the problem ([1.1))-(1.3]). Let any w,v € ©
and 7 € [0,b]. Then

R(w)(7) = R(v)()]

< (176 - Do |6 (5000, [ Fitors,wishds, [ Faios,wis)is
J | ( / [, mters i)
)i, /

-G <a v / Fi(o,s,v h(o,s, v(g))dg) do
+ D NTE =)o) Mk (wm)) = I (o(m)] - (3.2)
O<TE<T

By the Theorem there exist constant .#Z > 1 such that

1T (Nl pxy < A, 7> 0. (3.3)
Using hypothesis (H1)-(H3) and the condition to the inequality (3.2), we have
[R(w) () = R(v)(7)]|
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< /OT///LG [llw(o) —v(o)|[ e 7] e?%do + /OT /OOJ/ZLG L, [Jlw(c) = v(<)||e™7¢] €7 *dsdo

T b
" /0 /0 M L Ly [[w(6) = v(©)l| €] €5dsdo + 3 o L, () — v(m)l| 7] €7

0<TE<T

T T g
< / M Lg ||w —v||pge’ ?do +/ / M LG Lp, [|w —v|pge’dedo
0 o Jo

T b n
+ / / M Le Ly, |w—v||pg e dsdo + .4 " Ly, ™ Ly, [w—v||pg
0 0

k=1
Tl T 1
Y Y Y Y Y
e 1 -
+ M LeLF, (7 — 7) T+ M Zew’“ Ly, ¢ lw—v]pg
k=1

1 1 e’ b
< {///LG < - > + M LaL, <2 - 2> M LgLpy b— + M Y Ly, ¢ llw —v|pg, 7 € 1.
v v v v k=1

Thus
vy 1—e 7 1—e 7
[R(w)(7) = R(v)(7)|| e < {//1ch + %LGLHT

b n
+.# LcLF, ;evbe_w + M Z le} lw—vpg
k=1
1— e 17
< {.///LG;3 +. LaLp, ;

b n

k=1
Therefore
B B [R(w)(1) — R(v)(7)||
|R(w) = R(v)||pg = ‘Té?{ T
(4o -4 15) am ot E) e i
k=1

=Ly |lw— UHPB-

Choose v > 0 such that

L L =
Lr = ///7 & [(1—6’”’) <1+ §1> +LF2be“’] + ey Ly <1
k=1

Then R is contraction operator. By Banach fixed point theorem it has a fixed point w € ©pg which
is unique solution of VFIIDE ([1.1)-(1.3). O
4. Dependency of solutions via PO

In this section, we analyse the dependency of solutions on the initial condition and functions in
the equations by means of Picard operator theory.
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Consider the following problem

w'(1) = dw(t) + G (T,w(T), /OT Fy(r,0,w(0))do, /Ob Fy(r, a,w(a))da> ,

TEIaT#Tk’ak:LQa”'anv (41
w(0) = wo, Wo € X (4.2)
AU)(Tk) = jk(w(Tk))7 k= 17 27 e, N, (43)

Where@:IxXxXxX%X,E-(jzl,Z):IX]XX—)Xandfk:X—>X(k;:1,---n) are the
continuous functions.

A function w € © is called a mild solution of (4.1)-(4.3)) if it satisfies the following impulsive

integral equation

w(r) = F(7)io + /0 Z(r—0)C (U,w(a),/oa Fulo, s, w(c))ds, /Ob ﬁg(a,g,w(g))dg> do

+ Y T =) (w(m)), T E0,b]. (4.4)

0<TE<T

Theorem 4.1. Suppose that the following conditions are holds

(A1) All the conditions in Theorem are satisfied and w* € © is the unique solution of the integral
equation (i3.1)).

(A2) There exists constants Lg, L , Ly, > 0 such that

~

3
HG(ﬂ wy, wa, w3) — G(7, 1)1,1)2,1)3)H <Lg (Z [|wi — Ui\\)
i=1

and
| L5 (o) = L (roovwn)|| < Lo (s —will), 5 =12

forall o € I and w;,v; € X (i =1,2,3).
(A3) There exist constant L; such that ka(w) — fk(v)H < L |lv—wl; forv,we X.

(A4) There exists a constants p, n > 0 such that
|G u v w) = Gruo,@)| < u

and )
| () = By | <

forall T € I and u, v, v, w, w € X.
Then, if v* is the solution of integral equations (4.4) then

*

< M ||wo — ol + oA pp+n .M

[w | Ix

- U*”PB

(4.5)
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Proof .
Define the operators R, T : (0, [|-||pg) = (©, |||/ p;) defined by

T 4 b
R(w)(r) = F()wo + /0 T(r—0)C <0,w(0), /O Fu(o, 6, w(<))ds, /O Fz(a,g,w(g))d§> do
+ Y T =) (w(m)

O0<TE<T

and
T . o b
Tw(r) =9 (1)Wo +/ T (r—0)G <a,w(0), ; Fi(o, g,w(g))dg,/o F2(0,§,w(§))d§> do
+ Y T =)k (w(m).

0< T <T
With (A1), it is already prove that R is a contraction. On the similar line 7 is contraction provided

that
ot

L n

. ) —l—Lﬁzbe“ﬂ’} + A e”bZLfk < 1.
k=1

Let Fgr = {w*} and Fr = {v*}. For any w € ©. Then any 7 € I, we have

IR@w)(r) — T(w)(@)]
< 17 gy oo = ol + [ 176 =l HG (a,ww), [ At

/ObF2(m <7w(<))d€) a (a w(o / Fi(o,¢,w(s))ds, /Ob Fy (0,5, w(s ))dg) ‘
+ 2 170 =)l || (wm) = I (w(n)|.

0<mi<T

In the view of assumptions (A4), we have
IR(w)(7) = T(w)(7)|| < A |[wo — ol| + b4 pu+ 1A 1.
Therefore,

IR (1) = T () s = sup { ||R(w>(7)e;T (w) (@) }
< M |wo — wol| +b.A p+n M. (4.6)

Applying the Theorem [2.2] to the inequality ([4.€]), we obtain

M ||wy — on—l—b,///u—l—n.///n
1—Lg

[w* — 0"l <

which is desired inequality (4.5)). O

5. Extended version of integral inequality for piece-wise continuous functions

In this section, firstly we extended the integral inequality given in the Theorem to the mixed
case, so as the results related to dependency of solutions on different data can be obtained for mixed
Volterra-Fredholm integrodifferential equations with impulses.
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Theorem 5.1. Let 7 € [0,b], the following integral inequality hold

u(r) < a(r)+ /OT b(,o)u(o)do + /OT </00 ki(r, 0, g)u(g)dg) do + /OT (/Ob ka(T, 0, ()u(g)dc) do

+ 3 Burulny) (5.1)

O<T<T

where u,a € PC([0,b],R,), a is a nondecreasing, b(t,0), ki(7,0,<) and kao(T,0,<) are continuous
and nonnegative functions for T,0,¢ € [0,7] and are nondecreasing with respect to T, Br(7) (k € N)
are nondecreasing for T € [0,7]. Then, for T € [0, 7], the following inequality is valid:

u(r) <atr) T[ (1+Ber)exp (/OTb(T,J,)dU—l—/()T/Oakl(T,a,g)dgda

0<TE<T
T b
—I—/ / k:g(T,J,g)dgdg). (5.2)
0o Jo

Proof . Denote the right hand side of following inequality (5.1)) by #'(7)

YV (r) =a(r)+ /OT b(t,0)u(o)do + /OT (/Oa ki(T, o—,g)u(g)dg) do + /OT </0b ka(T, U,g)u(g)dg) do

+ ) Br(ulm)

0<ti<T

Then the function ¥ (1) € PC ([0,b],R,) is nondecreasing, u(7) < #(7) and

¥(7) Sa(T)—i-/oTb(T,a)”i/(a)da—i—/oT /Oakl(T,U,g)”i/( )da—i— ( k2 (.0,9)V )dg) do
+ Y B (r

0<TE<T

<a(r)+ /OT b(r,0)¥ (o)do + /OT (/OU ki(T, U,c)"f/(a)dg) do + /OT </Ob ka(T, 0, g)"//(o)dg) do

+ ) BV (1)

0<TE<T

o)+ [ [f<f,a>+ | ptro s+ /Obq(T,J,c)dc] Yoo+ Y B V(). (53)

O<tp<t

Applying Lemma to the inequality (5.3)), with

o b
g(T,a):f(T,U)—i—/O p(T,J,g)dg+/0 q(t,0,¢)ds,
Br(T) = Br(7),

we obtain

V(r)<a(r) [ (1+Be(r))exp </07b(7',0)d0+/OT/OUkzl(T,U,g)dgda+/OT/0bk‘2(7',a,§)dgda).

O<T <1

(5.4)
From the inequality (5.4]), we obtain the desired inequality (5.3)). [



532 Shikhare, Kucche, Sousa

6. Applications of mixed version of integral inequality

In this section, we give the application of the mixed version of integral inequality to examine the
continuous dependence of solutions on initial data and functions involved in equation. Further, we
analyse the dependency by means of concept of e-approximate solutions and utilizing mixed version
of integral inequality.

Theorem 6.1. Suppose that the hypothesis (H1)-(H3) and (A4) are satisfied. Let w and v are the

mild solutions of (1.1)-(1.2) and (4.1))-(4.2)) respectively. Then

= vllps < (A g — o + bt s+l )

2

- b
H 1+.//L[k exp <,//Lgb+,//LgLF1 + /# Lg L, b2> . (6.1)
k=1

Proof .
Let w and v be the mild solution of (1.1)-(1.3) and (4.1)-(4.3) respectively. Then utilizing
hypothesis (H1), (H2), (H3) and (A4), we get

() — o)
< 17 oo = ol + [ 176 = gy HG (o—,w<a>, [ Asutoas

/ObFQ(U,g,w(g))d§> _G <a,v(a),/00 Fulo,s,0(s ))dg,/ob By, 6, (g))dc)
DI EaCEE A P ACICAES ATCH)]

0<TE<T

do

<17 sy oo = ol + [ 17 = Dl HG (a,w@, [ Ao

/Ob F2(0,§,w(§))d§) -G (o,v(a),/og Fi(o,¢,v(s))ds, /Ob FQ(O’,g,U(g))dg) do
- /OT 1.7 (7 = o)l gy HG (070(0)7/00 Fi(o,s,v(s))ds,
/ObF2(0,§,v(<))d<> -G (a,v(a),/oa Fi(o,¢,v(s ))dg,/ob b (o, (s ))d§> do

+ D 1T = m)llax) 1k (w(m) = Tu(v(m)

0<ti<T

+ Y 170 = m)laen) [ 0m) = Iue(n)|

O<T<T
< M ||lwy — Wo| +T///,u+n//ln+/ M Le ||w(o) v(a)||da+/ / MLGLp,
(@)~ o) dsdo + [ [ L e v asto + 3 ALy ) ol (62)
0<ti<T
Applying impulsive inequality from the Theorem to (6.2]) with
u(t) = |lw(r) —o(7)],

a(t) = M ||wo — Wol| + 7. pu+n A,
(7-70> %LGa
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kl(T,O',g) = %Lngl,
kQ(T, g, C) = ,//LG LFQ,

Bi(T) = M Ly,
we obtain
Jw(r) = v(7)]
< (M |lwo — Dol| + Ty +n.tn) [ A+.4Ly,)exp (///Lgb+///Lngll;2 +.# Lg Ly, b2>
0<1,<0

_ = b2
< (M |Jwo — Dol| + b o+ nd ) [[1+ 4 Ly,) exp (%Lgb+.//LGLFI2+,///LgLF2b2>.

k=1
Thus we get
[w(T) — v(7)]|
lw = vllpe :Téll){ o
< (A ||wo — Wol| + b p+n.n)x
X H(1+%L[k>exp (%Lgb+%LgLF12+%LgLFQb2>,
k=1

which is desired inequality (6.1]). O

Definition 6.2. For a given constant € > 0, a function w € Opg satisfying the inequality

subject to w(0) = wy and Aw(1y,) = Ix(w(mg)), k=1,2,--- ,n, is called a e-approximate solution of
the VFIIDE (1.1)).

’Se, Tel

W(7) — w(r) — G <T, w(r), /0 " Fu(r, 0, w(0))do, /0 " For. a,w(a))da>

Theorem 6.3. Assume that (H1)-(H3) holds. If w;(7), (j = 1,2) be ¢;-approzimate solutions of
VFIIDE (1)) corresponding to w?(0) = wi) € X, Aw;(r) = Ii(wj(m)) € X, k = 1,2,---,n
respectively. Then

[wr = wallpg < {(e1 + €2) A (b+ 1) + M |Jwg — wi]|}
[T+ Ly,) exp (///Lgb+///LGLF12+//1LgLF2 b2>. (6.3)
k=1

Proof . Let w;(7), (j = 1,2) be ¢;-approximate solutions of VFIIDE ([L.1]) corresponding to w?(0) =
w) € X, Aw;(m;) = I(wj(1x)) € X, k=1,2,--- ,n respectively. Then we have

Then there exist P, € PC(I,X) and a sequence (P,,); (dependence on w; ) such that
(i) ||Po, (D] < ey 7eET and |(Pu)k|| <€, k=1,2,-- ,n.
(ii) w}(T) = dw;(t)+ G <7', w;(T), fOT Fy(r,0,wj(0))do, fob Fy(T,0, wj(a))da) + Py, (1), €.

(111) AU}j(Tk) = Ik(wj(Tk)) + (ij)k, k= 1,2, e, N.

W (1) — wy(r) — G <T, w;(7), /0 " Fu(r, 0, w;(0))do, /0 "Fyro wj(a))da) ‘ < rel (64)
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This gives

— Tl + /0 " - o) [G (a, w; (@), /0 " (0,5, w;(s))ds, /0 bFQ(U,g,wj(g))ck) + pwj(a)} do

wir) = 7w~ [ 7= 0)G (o, w(@). [ Filosuo)s, [ B, wj<<>>d<) do

> T (r— )i (wi(i)

k=1
< /0 17 (7 = o)l || P (@) || do + > 1.7 (7 = i) ||| (Pusy i |
k=1
<te;+ Mne;=¢€; MT+n), j=1,2, TEL (6.5)

Therefore from ((6.5) we have

/yf—a <a wi(o )/ Fi(o, 6, w1(c) dg,/ Folo, 6, wi(s ))dg)d

+297—Tk)1k(w1(7k)) /97—0 (o, wa (o),

k=1

o b
/0 Fl(a,g,wg(g))dg,/o FQ(O’,§,U)2(§))d§) da—i—;ﬁ(T—Tk)Ik(wg(Tk)) .

(e1 +€2) A (T +n)

>

_l’_

(6.6)

As we know for any &1,8 € X, [|§1 — &aof| < 6] + [[&2]] and [[|&:]] — [I€2]]] < [[€1 — &2f|- Using this in
Eq.(6.6), we get

(61 + €2) A (T +n)

H{m / T (T — o) (a w1 (o), / Fi(o,s,wi(s))ds, /b b(o, ¢, wi(s ))dg> do
_;9(7—%).&; (wl(rk))} { / F(r — 0)G (0, wa(0)
/oUFl( 75 wals dg’/ Folo, 5, w2 dg) do — En:y (7 — ) Iy (wz(Tk))} ‘

w1 (7) — wal(7)] — (7(7) {/0 F(r—0 [ (0 wi(o / Fi(o,s,wn(<))ds,

/Ong(U,g,wl(g) ) G (g ws(o /0 Fi(o,<, ws(s /ObFQ(U e ))dg)] da}

- {Z T (1 = 7k) [ (w1 (7)) — I (w2(Tk))]}H

k=1 / F(r— o) [ (U w1(0>/00F1(a< wi(s))ds

/ObFz(cr,c,w1(<))d<> -G (0 wa(o )/0 Fi(o,¢,wa(s d<,/ Fy(o,¢,wa(s ))dcﬂ do

|

> [lwi(r) = wa(7)]| = || 7 () [wp — wi] || -
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—>_ T =) g (wn(m)) = L (wz(ﬂc))]H- (6.7)

k=1

In Eq. can be written as
w1 () — wa(7)]]
< (€1 +e) A (T+n)+ Hﬂ(T) [w(l) — wg] H + H/O T (1 —o0) {G (a,wl(a)/o , Fi(o,0,w1(s))ds

/Ob Fy(o, g,wl(c))ck) ye (a, wa(0) /00 Fi(o,5,wa(s))ds, /ObFQ(g,g,wQ(g))dgﬂ do

+ é T (7 = 1) Uk (wi(7h)) = Tk (wa(7))] H : (6.8)
Using hypothes;s (H1)-(H3) and let B(r) = |jw1(7) — ws(7)|| in we get,
B(7) < (&1 + €2) A (T +n) + M ||w) — wi|| + /OT,///LgB(a)da + /OT /00.///LG Lp,B(¢)dsdo
/OT /Ob///LgLFQB(g)dgdo+§///leB(Tk). (6.9)

Applying inequality from the Theorem to with

u(t) = B(7),

a(t) = (€1 + €) ,///(T+n)+///Hw0—w0||
b(r,0) = M Lg,

ki(7,0,¢) = M Lg Lp,,

ky(T,0,¢) = M Lg L,

Bi(T) = A Ly,,

we get

B(r) < {(61—1—62) ///(T+n)+///Hw(1)—w(2)H}
2
H ( -I—///L[k)exp (%L0b+%L0LF1b

0<TE<0

< {(er + ) A (b+n) + A ||wh —wi||}

+//LgLF2b>

n b2
[[+.#Ly,)exp <///Lgb+///LGLF1
k=1

But B(7) = [[wi(7) — wa(7)[| we have
w1 — w2l pe = sup {”()Wv(T)H}

+ .4 Lg L, b2)

€
< { €1+ e2) M(b+n)+ A ||wg — wi||}
n 2
H(l—i—//L]k)exp <%ch+%LGLF1b
k=1

Which gives the required inequality (6.3]). O

+%L0Lp2b>.
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Remark 6.4. e (i) Continuous dependence of solutions of (1.1) on initial conditions obtained
by putting €, = €3 = 0 in inequality (6.3).

e (ii) Uniqueness of the solution of problem (L.1)-(1.2]) obtained by putting ¢, = e = 0 and
wy = wi in inequality (6.3).

7. Concluding Remarks

Existence and uniqueness of solution of the Volterra-Fredholm impulsive integrodifferential equa-
tions (VFIIDESs) have been successfully achieve, through Banach’s fixed point theorem. We favourably
achieve an interesting extension that is a mixed version of integral inequality for piece-wise contin-
uous functions. Further, continuous data dependence of solutions on initial condition and functions
involved in right hand side of VFIIDEs obtained by two techniques first via Picard operator theory
and secondly via mixed version of integral inequality for piece-wise continuous functions.

In view of obtaining continuous data dependence via PO, the Eq. is holds when

L L "
Lp = ///7 G [(1—(3—7’?) <1+ f) +LF2beV”} +%e7b§ Ly, <1.
k=1

This restriction have removed when we obtained same results by mixed version of integral inequality.

One can extend similar types of impulsive integral inequalities in fractional case that can be ap-
plied to analyze various qualitative properties of fractional integrodifferential equations with impulse
condition.
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