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Abstract

Predicting the maximum ground surface settlement (MGS) beneath road embankments is crucial for
safe operation, particularly on soft foundation soils. Despite having been explored to some extent,
this problem still has not been solved due to its inherent complexity and many effective factors. This
study applied support vector machines (SVM) and artificial neural networks (ANN) to predict MGS.
A total of four kernel functions are used to develop the SVM model, which is linear, polynomial,
sigmoid, and Radial Basis Function (RBF). MGS was analysed using the finite element method
(FEM) with three dimensionless variables: embankment height, applied surcharge, and side slope.
In comparison to the other kernel functions, the Gaussian produced the most accurate results (MARE
= 0.048, RMSE = 0.007). The SVM-RBF testing results are compared to those of the ANN presented
in this study. As a result, SVM-RBF proved to be better than ANN when predicting MGS.
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1. Introduction

Road embankments built on soft ground encourage lateral and vertical surface movement. The
vertical surface movement, also known as ground surface settlement, is a major risk to surface and
subsurface facilities and is particularly significant in soft soil [7]. As infrastructure development has
expanded rapidly, many roads built on soft soil have been constructed worldwide. One of the main
contributors to significant surface settlement is the poor quality of soft soil engineering properties.
Thus, settlement control is a critical phase of any construction activity on soft ground, even if the
surface ground is safe for facilities. The magnitude of ground surface movements prior to construction
is a critical piece of essential information for settlement control. Several researchers have attempted
to develop various methods for resolving the maximum ground surface settlement (MGS) caused
by road embankments to address this critical issue. The wide range of parameters that influence
surface settlement make it challenging to determine a closed-form mathematical solution [26]. As a
result, many researchers attempted to use alternative methods, such as analytical [30], empirical [5],
numerical [28], and artificial intelligence methods [15].

Empirical approaches have interpretations only relevant to the same conditions, which means they
offer slight generalization [3]. Model development in numerical methods should be very sophisticated,
incorporating many details and parameters [12]. As a result, building and running the model takes
a long time. As an alternative, the application of artificial intelligence (AI), especially machine
learning as a professional tool for modelling and analysing complex engineering systems, has recently
been noted. Due to their high accuracy, machine learning techniques are extremely useful in various
branches of civil engineering applications [4, 11, 16]. Ground settlement predictions are one of the
most common applications of machine learning. Several different types of machine learning tools,
including random forest (RF) [31], gene expression programming (GEP) [1], artificial neural networks
(ANN) [23], smooth relevance vector machine (SRVM) [27], multivariate adaptive regression splines
(MARS) [14], and the adaptive neuro-fuzzy inference system (ANFIS) [20] are often used to predict
ground settlement beneath civil engineering structures.

Recently, researchers have made efforts to evaluate performance based on comparisons of results
from several types of machine learning prediction tools. Liu et al. [13] predicted the load-settlement
behaviour of raft-pile foundation installed in soft marine clay using ANFIS and ANN. The results
established that ANN outperformed ANFIS. Moghaddasi et al. [19] developed more accurate models
for predicting tunnelling-induced surface settlement through ANN and imperialist competition algo-
rithms. They demonstrate that the presented method is more reliable than the multiple regression
for arranging ground surface settlement. Zhang et al. [29] estimated tunnelling-induced settlement
using two machine learning tools based on ANN and RF. Based on the comparative result, the ANN
demonstrated superior prediction capability to the RF.

The support vector machine (SVM) is a relatively new machine learning technique that is highly
effective in various fields, including regression [22], pattern recognition [21], classification [25] and
project management [32]. SVM has three advantages. It can simulate nonlinear functional relation-
ships and generalize in high dimensional space with only a few training samples [18]. Due to this
advantage, SVM can be successfully applied in a wide variety of engineering fields.

The purpose of this paper is to develop an SVM based on four different kernel functions for MGS
prediction beneath a road embankment stabilized with prefabricated vertical drains (PVDs). In
order to estimate the MGS, a numerical analysis was conducted using the embankment design with
various geometric features, followed by the application of different kernel functions to determine the
best SVM model. Statistical indices are used to measure the performance of each kernel function.
Furthermore, the performance of the more developed models in predicting MGS employing SVM is
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compared with ANN.

2. Materials and methods

2.1. Numerical analysis

In order to estimate MGS, a total of 100 embankment designs were modelled with different
geometric features were performed using FEM. The range of values for the FEM modelling design
parameters is presented in Table 1. The numerical modelling for this study is performed using two-
dimensional Plaxis, a finite element software commercially available, which includes geotechnical
engineering deformation analysis. The present study developed a numerical model for a PVDs-
stabilized embankment located on soft clay, as illustrated in Figure 1. The width of the embankment
is set at 11m to facilitate the design of FEM modelling. The groundwater level (GWL) is on the
surface of soft clay with a thickness of 20 m. The PVD is 100 mm x 4 mm, 16 m long, and the spacing
was 1.3 m centre to centre in a triangular layout. The geotextiles are installed on the foundation soil
surface to increase the shear strength with a tensile stiffness value of 19 kN/m.

Figure 1: The profile model of embankment construction

The embankment construction stage is a crucial input parameter in FEM final settlement calcu-
lations. In this study, FEM analysis was performed after the embankment was constructed for 180
days. An adapted Cam-clay model is used to model the soft clay, while the Mohr-Coulomb model
is used for modelling the embankment fill. In modelling PVDs in foundation soils, the smear effect
was considered with a permeability ratio of 1.2. The model of PVDs includes a rectangular drains
element with zero thickness, which is then converted to an equivalent cylindrical shape using the
Hansbo [10] solution. Table 2 presents the material parameters used in FEM modelling. The Rinter

values of 1 have been utilized to represent a geotextile with a non-slip mechanism regarding the
surrounding soil elements.

Table 1: The range parameters value of embankment design

Height of embankment, h (m) Applied surcharge, q (kN/m2) Side slope, β(◦)
1-3 0-15 25-45

The simulation contains a FEM model where the standard fixity was applied. In order to prevent
the domain from warping, the lower edge was made stiff, with vertical and horizontal fixities used for
the vertical and horizontal edges, respectively. Due to the apparent lack of rigid elements, the slope
face has free movement. In this study, MGS was evaluated at the centre of the embankment, at the
soil surface of the foundation. The geometry has been divided into a finite number of finite elements
for the finite element simulation. The 15-node triangular elements were selected over the six-node
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triangular elements, as they have more nodes and Gauss points. This study was performed with a
fine mesh, and local refinements were used wherever large stress concentrations were expected.

Table 2: Material parameters for FEM analysis

Materials γ(kN/m3) k(m/day) c(kPa) ϕ(o) E(kPa) ν M λ κ
Embankment 19 0.045 5 20 10,000 0.3 - - -

Soft clay 16 1.6 × 10−3 30 1 - 0.3 1.5 0.2 0.03

2.2. SVM model development

The SVM is a statistical learning theory-based method that uses the structural risk minimization
principle [6]. This approach is a compelling computational method for classifying and predicting
outcomes. The SVM regression method, also known as support vector regression (SVR), is used for
regression problems. The SVR purpose is to construct a model that predicts the data set used in
experiments and measured outcomes. The features of SVM can be studied in the many available
books and literature [9, 2, 24]. Figure 2 shows the flowchart for the methodology used to develop
SVM model creation in this study.

Regression models use a small amount of noisy training data to estimate an unknown continuous-
valued function. An overview of SVR may be useful when thinking about a regression function
y(x) that is calculated from given training data, where {(xn, yn)|n = 1, 2, ..., N} are the training
datasets. The input data with an input vector of d-dimension is x ∈ Rd and the output space with
a dimension of y ∈ R. The following equation describes the linear regression model, which relates
input and output variables.

y(x) = wTφ(x) + b (1)

where input space φ(x) is non-linearly mapped to high-dimensional feature space (x). Also, the
model’s weights and biases are w and b, respectively. The loss function (Lf ) is used in the SVR
procedure to penalize the model. It is characterized as:

Lf (tn, yn) =

{
0 |tn − yn| ≤ ε
ξ |tn − yn| > ε

(2)

where the non-negative slag variable, ξn, is concerned. Equation (1) penalizes the model when the
target-output vector difference exceeds a constant, ε.

Instead of optimizing agreement with a given training set, SVMs seek to balance model complexity
and the ability to reproduce empirical data. The kernel function and its parameters define the
distribution of the training set of samples in the high-dimensional feature space. SVR can use a
variety of kernel functions. Therefore, it is essential to select an appropriate kernel function. The
performance of four SVR models with different kernel functions is compared in this study. Table
3 lists the considered kernel functions. Good optimization of the SVR parameters determines how
well the model performs. Thus, the SVR model must be trained using predefined C and constant,
. These constants have a significant impact on SVR prediction performance. Table 3 also requires
that each kernel function predefine the kernel constant. Parameters of the model were optimized by
trial and error, resulting in more accurate predictions [8]. Therefore, three parameters C, ε, and the
kernel constant are found by trial and error. So, to find the best trial and error constants, the main
SVR program was extended with new loops and nearly 1000 runs. Using STATISTICA software,
10-fold cross-validation was used to find the constant parameters of SVR for this study.
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Figure 2: SVM Model Development Flowchart

Table 3: Types of kernel functions in SVR

Kernel Equation Constant
Linear k(xn, xi) = xn, xi -

Polynomial k(xn, xi) = γ((xn, xi) + r)d γ, r, d
Sigmoid k(xn, xi) = tanh(γ(xn, xi) + r) γ, r

Radial Basis Function (RBF) k(xn, xi) = exp(−γ||xn, xi||2 + C) γ

2.3. ANN model development

Recent studies suggest that neural networks are a universal approximation for any nonlinear
continuous function with arbitrary precision. The architecture of their brains is based on the human
brain’s neural network, which consists of many linked components called neurons. The system
performs nonlinear feature extraction on input data to locate an indirect relationship between input
vectors and the system’s target parameters. Also, weights connect different neurons in different
networks, and network performance is highly dependent on weights.

The most widely used neural network is a backpropagation MLP. An MLP typically has an input
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layer, one or more hidden layers, and an output layer of nodes. The number of input and output
variables can vary depending on the problem. As hidden layers provided acceptable results in this
field study [17], hidden layers were incorporated into the neural networks in this study.

This study employed neural networks that were constructed with the Simulink in MATLAB 6.5
toolbox neural network components. Due to the data contain both positive and negative values,
the input data were scaled to the interval [1, 1] using a simple linear transformation. In this study,
a sigmoid transfer function was selected for the hidden nodes and the output node. Furthermore,
Levenberg-Marquardt (MLP) is regarded as the most efficient gradient algorithm in various studies
for training an MLP network.

2.4. Statistical indices

Various model performance appraisal measures can be considered using statistical parameters.
The two indices used in this study to evaluate the performance of the presented models and compare
them with existing methods are the root mean square error (RMSE) and the mean absolute relative
error (MARE). The RMSE index is the square difference between the observed and predicted values,
and this index’s best value is zero. It is worth noting that MARE, an unbiased, non-negative index
with a zero-lower limit, is used to measure the relative error in error functions, not correlation. In
other words, less variation between the predicted and actual values is found as the MARE draws
closer to zero.

RMSE =

√∑N
i=1(yprd.i − yobs.i)2

N
(3)

MARE = (
1

N
)

N∑
i=1

(
|yobs.i − yprd.i|

yobs.i

)
(4)

where N is the number of data, yobs.i is the ith observed value and yprd.i is the ith predicted value.

3. Results and discussion

The scatter plot of four different kernel functions used in developing the SVM model for MGS
prediction beneath a road embankment is shown in Figure 3. The sigmoid and polynomial kernel
functions exhibited overestimation when the MGS values were less than 0.3m than the RBF, and
linear kernel functions approaching the line is y = x. However, the polynomial, linear, and RBF
kernel functions show good agreement when the MGS values are in the range of 0.4–0.6 m. Thus,
the RBF kernel outperforms other kernel functions, as it provides superior performance compared to
other models for all of the MGS ranges. On the other hand, a quantitative model study is required
to determine the model’s superiority over other models.

The results of the SVM can be seen in Figure 4, which uses different kernel functions. The
MARE index that showed the lowest relative error was RBF which was around 0.048, followed by
linear (0.073), polynomial (0.124), and sigmoid (0.89). Surprisingly, the difference in MARE values
between RBF and sigmoid is seen to be quite significantly around 0.842. In contrast, the difference in
values for the other two kernel functions with RBF was smaller than 0.08. Therefore, RMSE indices
were developed to measure the root mean square and absolute error (RMSE = 0.007) and use the
RBF kernel function, the best-performing method of all kernel functions. As expected, sigmoid is
seen to produce the highest RMSE values of 0.37. Thus, the best MGS lead predictions can be made
using the RBF kernel function in SVM design.
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Figure 3: Correlation between predicted and measured

Figure 4: Statistical indexes for four kernel functions

The capabilities of SVM-RBF to estimate MGS in comparison with ANN is evaluated in Figure 5.
The ANN model was seen to have the worst performance compared to the SVM-RBF for evaluating
MGS whose values were less than 0.4 m. However, several of the MGS samples for which ANN
predictions were made exhibited high error in their prediction results, with overestimations and
underestimations occurring. Increasing MGS has a positive effect on the accuracy of ANN, but some
samples show high relative error in ANN underestimations with a greater of MGS. The statistical
indices in Table 4 are used to choose the best machine learning techniques. According to the data
in this table, SVM-RBF is the most effective index, proving that it is the best performing predicting
model. With regard to the values of MARE and RMSE found in this table, the SVM model is
significantly different from the ANN model.

Table 4: Statistical indices of SVM-RBF and ANN
Kernel Equation Constant

Machine learning MARE RMSE
SVM-RBF 0.048 0.007

ANN 0.073 0.019
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Figure 5: Comparison of SVM-RBF with ANN

4. Conclusion

This study predicted MGS beneath road embankment using SVM with three inputs: height of
embankment, applied surcharge, and side slope. FEM was used to estimate MGS with 100 different
geometric designs. The SVM model is best compared to ANN for performance evaluation. Thus, the
study’s findings are summarized as follows:

• Four kernel functions were used to design the SVM network. The RBF kernel function outper-
forms the SVM (MARE = 0.048, RMSE = 0.007).

• Comparing SVM-RBF to ANN showed that using SVM-RBF improves MGS prediction accu-
racy over neural networks.

• The proposed SVM-RBF for predicting MGS was compared to ANN. The results show that
SVM-RBF outperforms ANN in MGS prediction and overcomes their high relative error.
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