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Abstract

Based on Global Cancer 2015 statistics, the lung cancer of all types constitutes 27% of overall
cancers while 19.5% of cancer deaths are due to lung cancer. In lieu of this, an effective lung
cancer screening test using Computed Tomography (CT) scan is crucial to detect cancer at the early
stage. The interpretation of the CT images requires an advanced CAD system of high accuracy
for instance, in classifying the lung nodules. Recently, Deep Learning method that is Convolution
Neural Network (CNN) shows an outstanding success in lung nodules classification. However, the
training of CNN requires a great number of images. Such a requirement is an issue in the case of
medical images. Generative adversarial network (GAN) has been introduced to generate new image
datasets for CNN training. Thus, the main objective of this study is to compare the performance of
CNN architectures with and without the implementation of GAN for lung nodules classification in
CT images. Here, the study used Conditional GAN (cGAN) to generate benign nodules images. The
classification accuracy of the combined cGAN-CNN architecture was compared among CNN pre-
training networks namely GoogleNet, ShuffleNet, DenseNet, and MobileNet based on classification
accuracy, specificity, sensitivity, and AUC-ROC values. The experiment was tested on LIDC-IDRI
database. The results showed cGAN-CNN architecture improves the overall classification accuracy as
compared to CNN alone with the cGAN-ShuffleNet architecture performed the best, achieving 98.38%
accuracy, 98.13% specificity, 100% sensitivity and AUC-ROC at 99.90%. Overall, the classification
performance of CNN can be improved by integrating GAN architecture to mitigate the constraint of
having a large medical image dataset, in this case, CT lung nodules images.
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1. Introduction

According to World Health Organization (WHO) in 2014, the ratio of deaths due to lung cancer
in Malaysia is 19.1 deaths per 100,000 and this accounts for 3.22% of all deaths [6]. Correspondingly
significant, there are 131,880 deaths due to lung cancer in the United States in this year alone (2021)
that consume 28.99 % of all cancer deaths [3]. One of the biggest risk factors of lung cancer is
smoking; either the primary or secondary smokers [10]. Lung cancer or lung carcinoma occurs when
there is out-of-control cell growth in the lung tissues. Normally, the body has its own inspection
and balance system to monitor the process of cell division to produce new cells. However, when
the system is disrupted, the grow of out-of-control cells happens leading to tumors. The tumors are
categorized into benign (non-cancerous) and malignant (cancerous) [23].

Early screening is very important to detect lung cancer so that proper intervention can be planned.
Computed tomography (CT) screening is the commonly used screening method to detect lung cancer
due to its high resolution capability [19]. In CT machine, computer aided diagnostic (CAD) system is
utilized to assist the physicians and radiologists to detect and diagnosis the nodules or tumors. The
CAD systems consist of two types; computer aided detection (CADe) system and computer aided
diagnosis (CADx) system [16]. The CADe system is to detect nodular from non - nodular parts and
CADx system is used to classify lung nodules into benign or malignant nodules. However, most of
the available CAD systems that are based on non- artificial intelligent based algorithms have the
disadvantage to generate fast diagnostic results [4].

Currently, deep learning has become the most advanced machine learning method and is com-
monly used in many applications in conjunction with the readily available supercomputing tech-
nologies and large databases [8]. There are various architectures that have been introduced in deep
learning. Significantly, convolution neural network (CNN) architecture is considered as the most es-
tablished deep learning network especially in image recognition application [18]. To further improve
CNN performance, various types of CNN extended networks have been proposed. However, CNN
training requires large datasets that becomes an issue for medical images. This problem is alleviated
through the application of GAN architecture that can generate additional images [12].

There are several published methods that work on lung cancer classification that integrate GAN
architecture. Yan Kuang et al. [9] compared Multi-Discriminators GAN and Encoder (MDGAN
and Encoder), GAN and Encoder, and GAN architecture for lung nodule classification. They have
showed that MDGAN and Encoder showed the best performance with 95.32% accuracy, 90.79%
specificity, and 94.15% sensitivity.

Defang Zao et al. [22] proposed a method of increasing the dataset to improve the classification
performance of lung lesions via Forward and Backward GAN (F&BGAN). There are two levels of
F&BGAN that is Forward GAN (FGAN) where it can produce various images while Backward GAN
(BGAN) is used to increase image quality. They compared five architectures namely M-VGG16,
VGG-16, Resnet, GoogleNet, and CNN. It was shown that the M-VGG16 architecture obtained an
excellent performance compared to all other architectures with 95.24% accuracy, 92.47% specificity,
and 98.67% sensitivity.

Yuya Onishi et al. [13] proposed three-dimensional convolution neural network (3DCNN) using
lung nodules synthesized by 3DGAN. It is a multi-scale 3DCNN (M-scale 3DCNN) architecture where
nodule areas of different sizes are inserted into the 3DResnet and combined into the last convolution
layer to produce a comprehensive classification result. The convolution layer uses a 3x3x3 pixel
kernel and produces a feature map with the same shape. Then, the convolution layers from each
3DResnet are combined. After that, the feature map is expanded to one fully connected dimension
and the classification probabilities are extracted through the softmax function. The proposed method
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obtained a sensitivity of 90.9%, a specificity of 74.1% and an accuracy of 82.5% . In the next study,
they proposed a classification model based on the CNN and GAN called as WGAN [14].

On a different note, this paper presents the comparison between CNN and GAN-CNN specifically
Conditional GAN (cGAN) to classify 2D CT scans of lung nodules into benign and malignant.
Four pre-training CNN networks are chosen and the percentage of improvement of each network
when cGAN is utilized is investigated. These CNN pretraining networks are GoogleNet, ShuffleNet,
DenseNet, and MobileNet. Correspondingly, the ideal ratio between benign and malignant images
used for CNN training is also studied so that a significant classification improvement can be achieved
as compared to sole CNN classification.

2. Methodology

In this study, The Lung Image Database Consortium image collection (LIDC-IDRI) datasets was
used [1]. Figure 1 shows the information about the dataset. This dataset consists of 1018 cases
collected from seven academic institutions and eight medical imaging companies. There are 1646
data containing benign and malignant nodules. There are 1423 malignant cases and 223 benign
cases. Then, these data were resized to 244 × 244 and saved in PNG file.

Figure 1: LIDC-IDRI datasets

The software used in this study was MATLABR2020a Deep Learning Toolbox. It is used to design
the deep learning architecture, set the appropriate parameters, and conduct the training and testing
for each of the selected architecture. The computer environment used in this study was Intel (R)
Core (TM) i5-7200U CPU@ 2.50 Hz, NVIDIA GeForce 920MX graphics card. The effectiveness of
the GAN-CNN classifier to classify CT lung nodules was studied. There were four CNN pretraining
networks selected, namely GoogleNet, ShuffleNet, DenseNet and MobileNet.

Generative Adversarial Network (GAN) [20] consists of two deep learning networks, which are
the generator and the discriminator. The generator network generates new fake image where it
receives random input or noise. On the other hand, the discriminator network receives inputs from
two images; the real image and the fake image generated by the generator. The discriminator will
then discriminate each data as fake or not, that is it belongs to the actual training dataset or not
repeatedly. This is explained in Figure 2. As there are 1423 malignant cases and 223 benign cases
in LIDC-IDRI dataset, Conditional GAN (cGAN) [11] that is an extension of GAN was utilized to
generate more benign images to match the number of malignant images. In cGAN, the label of the
generated images can be determined beforehand (Figure 3). The generator of this scheme receives
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two inputs: random (noise) input as in GAN scheme as well as label input. This is to ensure that
the generated images of cGAN follows the predetermined label from the label input. In our case,
cGAN was used to generate benign images so that they match the number of malignant images in
LIDC-IDRI dataset.

Figure 2: Generative Adversarial network (GAN) architecture

Figure 3: Conditional Generative Adversarial network (cGAN) architecture

In our implementation, malignant (1423) and benign (223) images of LIDC-IDRI database were
fed to the cGAN architecture in which the benign images were arranged first in the sequence of 1 to
223 while the malignant images were arranged from 224 to 1646. The datasets were also randomly
augmented through horizontal flipping and were reshaped to 64×64. The generator network was fed
with two inputs; labels and noise (random vectors). The random vectors were of size 100 and it will
be converted to 4× 4× 1024 arrays. On the other hand, the labels were also changed to vectors and
reshaped to 4 × 4 array. These two types of inputs were then concatenated to produce 4 × 4 × 1025
array. This array was upscaled to 64 × 64 × 3 via transposed convolution layers of 5 × 5 filter size
and followed by ReLU tanh layers. The embedding dimension for the labels input was 50.

The discriminator network inputs were coming from 64 × 64 × 1 images and labels. The images
(input) were added with noise with a dropout probability of 0.7. The output was the probability
score obtained via series of convolutional layers (5 × 5 filter size) and ReLU layers (scale 0.3). This
network was completed with a convolutional layer (4×4). The cGAN network was trained according
to Table 1 using Adam optimization method. To improve the learning of the generator and the
discriminator, the labels of some of the real images were flipped with 0.5 flipping factor.

Four pre-training CNN architectures (GoogleNet, ShuffleNet, DenseNet and MobileNet) [2] to
investigate the percentage of improvement when integrating cGAN into the CNN framework were
compared. In basis, the CNN network consists of three layers (Figure 4). They are convolutional,
pooling and fully-connected layers. The input layer holds the input values. The convolutional layer
describes the output of neurons connected to local regions of the input through the calculation of
the scalar product between their weights and the region connected to the input volume. The pooling
layer downsamples along the spatial dimensionality of the given input, further reducing the number
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Table 1: Training Parameters for cGAN Network

Parameter Values
Mini-batch size 128

Number of epochs 400
Learning rate 0.0001

Gradient decay factor 0.25
Squared gradient decay factor 0.9999

Flipping factor 0.5

of parameters within that activation. Finally, the fully connected layers produce class scores from
the activations, to be used for classification.

Figure 4: Convolutional Neural Network (CNN) architecture [7]

Google introduces GoogleNet [17] that contains an inception module. It is a 1 × 1 convolution
layer that is capable to minimize the dimensionality of the array. This enables less computational
burden. Exhaustive computational requirement when processing deep learning is also alleviated
with the introduction of ShuffleNet [21]. In this network, shuffle channel is used to perform shuffle
operation before feeding the data to the next convolution layer. Point wise group convolution is
also performed before the shuffle operation under ShuffleNet scheme. These features increase the
computation efficiency of ShuffleNet.

On the other hand, DenseNet [5] has a closed packed network that requires less parameters but
able to achieve good accuracy. The computational constraint and memory are used efficiently as
well. MobileNetV2 [15] is a memory efficient network created by Google via the use of an inverted
residual structure module. Table 2 shows the values of training parameters for these CNN based
pretraining networks used in the experiment.

The performance of each of the four networks with and without cGAN was assessed based on
accuracy, specificity, sensitivity, and area under the curve of the receiver operating characteristic
curve (AUC-ROC). Accuracy is defined as the ratio of correctly predicted data with respect to the
total data as represented in Equation 1. TP is True Positive, TN is True Negative, FP is False
Positive and FN is False Negative.

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Specificity is the ratio of correctly predicted data as negative with respect to the whole negative
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Table 2: Training Parameters for CNN Based Networks

Parameter Values
Mini-batch size 64

Number of epochs 20
Learning rate 0.011

Learn rate drop factor 0.2
Learn rate drop period 5
Validation frequency 50

Momentum 0.9

data. It is defined as:

Specificity =
TN

TN + FP
(2)

Sensitivity is the ratio of correctly predicted data as positive with respect to the whole positive data.
It is calculated as:

Sensitivity =
TN

TN + FP
(3)

Area under the curve (AUC) is measured from the Receiver Operating Characteristics (ROC) curve.
It indicates the accuracy of the classifier to classify the data into the correct class. It is in the range
of [0,1] whereby 1 implies perfect classification while 0 implies zero classification accuracy.

3. Results and discussion

3.1. Image generation using cGAN

Figure 5 shows some of the generated benign images using cGAN at 500, 4000 and 6500 training
iteration respectively. As the iteration increases, the generated images mimic closer to the actual
images. This is because the discriminator has learned the strong features efficiently to differentiate
fake images from the truth images while the generator network has learned the powerful features to
produce realistic images.

3.2. Generated images at iteration 500 (top left), 4000 (top right), and 6500 (buttom)

The performance of the cGAN-CNN when different proportion of malignant and benign dataset
is used was also investigated. As previously mentioned, LIDC-IDRI dataset has an imbalance pro-
portion of benign images (223) in comparison to malignant images (1423). The performance of the
cGAN-CNN when 500, 1000 and 1500 benign images versus 1423 malignant images were compared.
As the original benign images is 223, cGAN was used to provide the additional 277 images so that
the total amount of benign images is 500. The same approach was carried out to prepare the 1000
and 1500 benign images. Figure 6 shows some of the benign and malignant datasets used in PNG
format.

Table 3 shows the performance of different cGAN-CNN pretrained networks when different ratio
of benign and malignant was used. Here, first stage implies that 500 benign images were used,
second stage is when 1000 benign images were used and lastly third stage is when 1500 benign
images were used. In all stages, 1423 malignant images were used. In overall, second stage and
third stage obtain better performance than the first stage in terms of the accuracy. Moreover, both
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Figure 5: Generated images at iteration 500 (top left), 4000 (top right), and 6500 (buttom)

Figure 6: Benign (above) and Malignant (below) nodules

second and third stage show comparable performance with the third stage is slightly better in cGAN-
GoogleNet and cGAN-DenseNet than the second stage. However, the second stage is slightly better
in case of cGAN-ShuffleNet and cGAN-MobileNet. This experiment implies that the accuracy of lung
lesions classification using cGAN-CNN can be improved if the ratio of benign images with respect to
malignant datasets is more than 0.7.

3.3. Performance of cGAN-CNN vs CNN

The performance results for cGAN-CNN vs CNN are shown in Table 4. Here, only the third
stage of cGAN-CNN implementation is presented. In general, the introduction of cGAN to CNN in
increasing benign images to be comparable to the number of malignant images has greatly improved
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Table 3: Comparison of cGAN-CNN of Different Ratio of Benign-Maligant Images.

Network Accuracy Specificity
cGAN-GoogleNet

First stage 95.34% 98.83%
Second stage 95.55% 97.89%
Third Stage 95.95% 99.06%

cGAN-ShuffleNet
First stage 97.77% 98.13%

Second stage 98.79% 98.59%
Third Stage 98.38% 98.13%

cGAN-DenseNet
First stage 96.96% 96.72%

Second stage 97.17% 96.96%
Third Stage 97.98% 98.59%

cGAN-MobileNet
First stage 91.90% 91.10%

Second stage 95.55% 98.83%
Third Stage 97.94% 95.78%

the original CNN classifier. Considering CNN classifier alone, in overall, ShuffleNet obtains the best
classification performance, followed by DenseNet, GoogleNet and lastly MobileNet. Although the
accuracy achieved by ShuffleNet is equal to DenseNet, this network performs better in terms of
sensitivity and AUC-ROC values. On the other hand, MobileNet stands last with 92.91% accuracy,
62.69% sensitivity and AUC-ROC of 82.11%.

When comparing cGAN-CNN and CNN networks, cGAN-GoogleNet improves the GoogleNet
performance with an increment of 0.62% in accuracy, 11.94% in sensitivity and 2.30% in AUC-
ROC. cGAN-ShuffleNet improves the accuracy of ShuffleNet classifier by 4.86% while the sensitivity
and AUC-ROC are increased by 40.3% and 17.48% respectively. The third architecture is cGAN-
DenseNet that shows an increase for accuracy value by 4.46%, sensitivity by 29.85% and AUC
by 13.80% in comparison to DenseNet. Lastly, in terms of cGAN-MobileNet, an improvement of
accuracy value by 2.03% is seen while the sensitivity and AUC-ROC are improved by 26.86% and
16.54% respectively as compared to MobileNet.

Here, the best architecture is cGAN-ShuffleNet that achieves 100% of sensitivity and 99.99% of
AUC-ROC. The minimum percentage of improvement is seen in cGAN-GoogleNet & GoogleNet as
compared to other models. In obvious, cGAN-CNNs improve the CNN classifiers with an average
improvement of 2.99 % in accuracy, an average improvement of 27.24% in sensitivity and an average
improvement of 12.53% in AUC-ROC. Figure 7 shows the percentage of improvement of cGAN-CNN
on all pretrained networks.

Figure 8 shows the receiver operating curve (ROC) for each cGAN-CNN architecture. cGAN-
ShuffleNet achieves an AUC of 99.90% followed by cGAN-DenseNet (AUC 99.98%), then cGAN-
MobileNet (AUC 98.65%) and lastly cGAN-GoogleNet (AUC 93.04%).

The next simulation is the prediction of each cGAN-CNN architecture (Third Stage) to correctly
classify a randomly selected image. In this case, it is an image with a malignant lesion. Figure
9 shows the prediction results. All cGAN-CNN have successfully classify this image as malignant
with cGAN-ShuffleNet obtains the highest prediction of 0.96, followed by cGAN-DenseNet, cGAN-
GoogleNet and finally cGAN-MobileNet with a prediction accuracy of 0.91.
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Table 4: Comparison of CGAN-CNN of Different Ratio of Benign-Maligant Images.

Architecture Acc Sens AUC-ROC
GoogleNet 93.93% 61.19% 82.41%

cGAN-GoogleNet (Third Stage) 95.55% 73.13% 94.71%
ShuffleNet 93.52% 59.70% 82.42%

cGAN-ShufleNet (Third Stage) 98.38% 100% 99.90%
DenseNet 93.52% 64.18% 86.00%

cGAN-DenseNet (Third Stage) 97.89% 94.03% 99.80%
MobileNet 92.91% 62.69% 82.11%

cGAN-MobileNet (Third Stage) 94.94% 89.55% 98.65%

Figure 7: Improvement of Classification Performance by cGAN-CNN on four pretrained CNN networks

Figure 8: Comparison of ROC curve for each cGAN-CNN network



1056 Nur Nabila, Siti Salasiah, Ashrani, Fatihah

Figure 9: Prediction data for each GAN CNN architectures (Third Stage)

4. Conclusion

This paper has presented the comparison of 4 CNN based pretraining networks with and without
cGAN for lung lesions classification in LIDC-IDRI CT images. In overall, the classification accuracy
of CNN classifier could be improved via cGAN as it provides large number of datasets used for
CNN training. By comparison, cGAN-ShuffleNet achieves the best classification performance of
98.38% accuracy, 98.13% specificity, and 100% sensitivity than cGAN-DenseNet, cGAN-GoogleNet
and cGAN-MobileNet. Furthermore, it is also shown that the classification accuracy of cGAN-CNN
is significantly improved if the ratio of benign images to malignant images is more than 0.7:1.
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