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Abstract

This paper is to define a new iterative scheme under a special sequence of asymptotically nonexpansive
mapping with a special sequence. We prove some convergence, existence in CAT(0) space.
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1. Introduction and preliminaries

Let (C,d) be a metric space.In [I9] A geodesic path joining x € C to w € C is a map ¢ from
[0,k] C Rto Cif c(0) =x, c¢(k) =w, andd(c(z),c(z)) = |z — 2’| for each z — 2" € [0,k].In a
geodesic metric space (C,d), the geodesic triangle A (x1, x2, x3) consists of threepoints ofy1, x2, x3
in C between the vertices of A and a geodesic segment between the vertices of each pair ( edge of
A ). In the Euclidean plane E? a comparison triangle for the geodesic triangle A (x1, Y2, x3) is a
triangle A (X1, x2, X3) '= A (X1, X2, X3) such that dg=(X;, X;) = d(X;, X;) for 4,7 € {1,2,3}.

If all geodesic triangles satisfy the axiom of comparison,is called to be a CAT(0) space.
If x, 1,9 € CAT (0), ifwog is middle point of segment|ww;, ws], where CAT(0) inequality is

1 1
d(x, @) < =d(x,@1)” + §d(X7w2)2 1 (w1, @2)” (AN)
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This is Bruhat and Tits(AN) inequality [2]. In [I] a geodesic space is a CAT(0) space if and only if it
satisfies (AN). In [9] special sequence {¥ (n)} is Fibonacci sequence if W (n+1) =W (n)+¥ (n — 1),
where ¥ (0) =¥ (1) =1,Vn>1.

Definition 1.1. A mapping of nonempty subset A (B : A — C) of a CAT(0) space .B is an
asymptotically nonexpansive if

nh_)nolo oy =1, d (B‘I’(”) (x),BY™ (@)) < Eymyd (x, @) for both n>1 and y,= € A

If x = Bx, x € A is considered a point y € A is called a fixed point of B. Denote the set of fixed
points of B with F(B).In this work we assume that A be a nonempty bounded closed and convex
subset of CAT'(0) and a complete space

In Kirk [6] the existence of fixed points in C'AT'(0) spaces then

Theorem 1.2. [ Let A be subset of a CAT(0) space C and B satisfy Definition Then B has
a fixed point,
A bounded sequence {x,}in a metric space C. For x € C, we get
(X {xn}) = lim supd (x; xn)
An asymptotic radius r({xn}) of{xn} is defiend by

r({xn}) = nf{r (x, {xa}) : x € C},
and the asymptotic center F({xn}) of{xn} is defiend by

F({xn}) ={x€C:r(x; {xa}) =7 {xn})}

Definition 1.3. [7, [§] If x is the unique asymptotic center of {v,} for all {v,} C {xn} , then a
sequence {xn} in a metric space C' is said to A— converge to x € C,we write A —lim,, x,, = x and
call x the A —limix of {xn}-

The metric space C' and K C C'is called A— compact [§]if each sequence in K has an A— convergence
subsequence. Mapping B : C' — K is called completely continuous.
In this work, B is asymptotically nonexpansive mapping.

Lemma 1.4. [7/ In a CAT(0) space. FEach bounded sequence has a A— convergent subsequence.

Lemma 1.5. [3] The asymptotic center of {x,} is in A of a CAT(0) space and if{x,} is a bounded
sequence in A.

Lemma 1.6. [18] Let A be of a CAT(0) spaceC' and B mapping, {xn} be a bounded sequence
in Alim, d (xn, Bxn) =0 and A — lim,, x,, = x. Then x = By

Lemma 1.7. [5] Let (C,d) be a CAT(0) space.

i. x,w € C and x € [0, 1], there exists a unique point 1) € [x,w| where

We use (1 —z) x ® xw for a unique point ¢ hold (1).
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ii. x,w,¥ € C and x € |0, 1], we have
d((1—2)x ®rw,¢) < (1 —2)d(x, ) +xd (@, )
iii. For x,w,v € C and x € [0,1] , we have
d((1—2)x @ 2w, ¢)* < (1—2)d(x,¥)" +2d(w,¢)" =2 (1 —2)d (v, =)
Lemma 1.8. [20] Let Let {p,},{q.} € R satisfying inequality

n=1

then lim,, .o p,, €xists.

2. Main Rsults

In this section we have new iteration sequence and some theorems for fixed point in C'AT(0)
space.

Theorem 2.1. Let A be a subset of a CAT(0) space C' and let B be a mapping, {5\1,(”)} satisfying
Comy > 1 and Y07, (Comy — 1) < oo. Let{na},{pn}, {0} be real sequences in [0,1]. For a given
X1 € A, concider the sequence {x,},{w,} and {1, } defined new Iteration Sequence by

U = 0,8 x0 & (1= 6,) X
@ = B & (1= )Xo n>1
Xnt1 = 1BV, @ (1= n0) X
If F (B) is nonempty set of fized point, and ¥¢ € F (B) then lglmd (Xn, Q) exists for all( € F (B)
Proof . F(B) # @ by Theorem[1.4 for all { € F (B), then
d (Y0, ¢) = d (0B xn @ (1= 0,) X0, ¢) < Ond (BYxn, () + (1= 0,) d (X, €)
< Onamyd (Xn, ) + (L= 0,) d (X ¢) = (L = Onuny — 0n) d (X, €) (2.1)
Also

d (@, ¢) = d (4B 1hn @ (1 = 1) X, €) < pnw(myd (¥n, Q) + (1 = 1) d (X ) (2.2)
By and , we have
d (Xn11,¢) = d (1, B* M@ & (1= 1) X, ) < My (@n, ) + (1 = 1) d (X, €)
< M&wny [Hn€umd ($n, Q) + (1= pin) d (Xns O] + (1 = 1) d (X )
< o) [n&omy (1= 0namy = n) d (X Q) 4+ (1 = pin) d (X, )] + (1 = 1) d (X, €)
= (M ttnOnEmy + MntinEumy + M) (Ewem) — 1) d (xn, ¢) + d (Xn, ¢)
< (&3 + ey + 1) (Ewmy — 1) d (Xn, O) +d (Xn, )
= [1+ (Ehm) + Evem +1) (Gom) —1)] d (xns Q)
Since{f\p(n)} is bounded, there exists G > 0,

d(xXn+1,C) < (1+ G (Cgmy — 1)) d (xn, €)
By Lemma and the fact that > 7, (fq,(n) — 1) < 00, we get lim, o d (xn, () ezists. O
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Theorem 2.2. Let A, C, B, {&wm)}, {m} . {un} {6}, {xn} {@n}, {tn} are asin Theorem
[. If0 < lim infn, < lim supn, <1, then lim d (B‘I’(”)wn,xn) =0
n—oo n—oo n—oo
IT. If 0 < lim inf p, < lim sup p, < 1 and lim infn, > 0, then lim d (B\Ij(")wn,xn) =0
n—o0 n—oo n—oo n—oo

Proof . B has a fized point ¢ in A. Choose an arbitrary number 2 > 0 and a number r > 0 such
that A C B, and A — A C B,.. It follows from Lemma that

d(n —¢)* =d (00 (B"™x0 — ) @ (1= 6,) (xn — ()
< 0,d (BY "y = )" @ (1= 0,) d (xtn — €)* = (6n) d (B¥™x, — x)
< On&myd (Xn — O)° & (1= 0,) d (xn — ¢)°
< (140,853 — 0n) d (xn — ¢)?

2

Also

d(wn = )% < d (jtn (BY = Q) ® (1= i) (xn — ©))
S ,und (B\Il(n)wn - 6)2 D (1 - ,un) d(Xn - C)z — Hn (1 - ﬂn) d (B\Il(n)wn - C)
S ané,(n)d (wn - C)Q D (1 - en) d (Xn - C)Q — Hn (1 - Mn) d (B‘Ij(n)@bn - Xn)

Thus

d(xXny1 = €)* = d (na (B" ™M, — ¢) @ (1 = 0,) (xn — ©))
< 0d (BYMw, — )’ @ (1= 0,) d (xn — O = 1 (1 = 1) (BY ™, — x»)
< namd (@0 — ) @ (1= n0) d (X0 — O)° = 1 (1 = 0,) d (B, — xn)
< D€iim) (Hnapnd (U — Q)7 ® (1= pin) d (Xn = )* = pin (1 = 1) d (BY ™ty — x2)
(1 =) d(xn— ) = (1 =) d (B* M, — xn))
< My Hn€my (L@ 0n€lm) = 0n) d (xn = O)* @ Mgy (1 — 1) d (xn — )
— Doy (1= i) d (BY ™1, — x0) @ (1= ) d (xn — ¢)?
— 1t (1= 1) d (BY M, — )
= d(x0 = ) & (Muttnbn (Eh)” © Mtin€hiay & 7 ) (€5 = 1) d (n — €
— & ytin (1= pin) d (B¥™ 0 = xn) = 1 (1 = 1) d (BY M, — )
<=0 @ ((Shn)" + S +1) (€ = 1) d (xa = )
— Dattn (1= 1) d (BY ™, — x0) =00 (1 = 1,) d (B* ™, — x,) (2.3)
The convergence of {f\p(n)} and the bounded property of G imply that there exists a constant G > 0

2
where ((5?1,(”)) &) fé(n) &) 1) d(Xn — C)Q < G. Then from ([2.3)) we obtain

2

M (L= n,)d (B @, — xn) <d(xn —)° = d (X1 — )° ® G (Emy — 1) (2.4)

And

Matin (1= i) d (BY ™, = xn) < d(xn =€) = d (X1 = O)* @ G (E5ny — 1) (2.5)
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[. If 0 < lim infn, < lim supn, < 1, there exists some real number p > 0 and a natural
n—oo n—oo
numberNy, such that

M (1=nn) =00 (L—n) > @02 (1—1n,) > p>0,Yn> N

It follows from inequality (2.4]) that for any natural number m > Ny

m m

Y d(B"™wm, —xn) £ > nu(1=n,)d (B* M@, — x,)
n=DNp n=DNp
<d(xn =)’ —d(Xm1 —O)? @G Y (& — 1)
n=Ng
<d(xn—¢)’0GC Z (&3 — 1) (2.6)
n=Ng

It is easy to verify that x> —1 < 2x (x — 1) for a > 1 by the application of the Lagrange mean
value theorem. This together with the assumption - (5\1,(”) — 1) < oo implies that

Yo <§?I,(n) — 1) < 00. Let m — oo in inequality (2.6)); we get
ZZO:NO d (B‘I’(")wn — Xn) < 400 and therefore lim d (B\I’(”)wn — Xn) = 0. It follows that

n—oo

lim d (B*™w, — x,) =0

n—o0

IT. If0 < lim inf pu,, < lim sup pu, < 1 and lim infn, > 0, then lim (B‘I'(”)wn,xn) =0, using a
n—oo

n— 00 n— 00 n—00
similar method, together with inequality (2.5)), it can be proved that lim d (B‘I’(”)@/Jn — Xn) = 0.
n—oo

O

Theorem 2.3. Let A be a subset of a CAT(0) space C' and let B be a mapping with {fq,(n)} satisfying
{€om} > 1 and 307 | (Swmy — 1) < oo. Let {n,}, {pa},{0n} be real sequence in [0,1] satisfying

[. 0 < lim infn, < lim supn, < 1 and
n—o0

n—oo
IT. 0 < lim inf pu, < lim sup p, < 1
n—oo

n—oo
For a given x1 € A, define
U = 0,BY "y, @ (1 —60,) Xn

Xns1 = 1B, & (1= 1,) xn

If F (B) is nonempty set of fixved point, and ¥ € F (B)thenlim,, o d (BXn, Xn) =0
Proof . from Theorem (2.4, we have

lim d (B‘I'(")wn,xn) =0 and lim d (B‘I’(")v,bn,xn) = 0.

n—oo n—oo
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Thus

< Eympnd (BY M, x0) +d (B" ™M@, xn) — 0 As n — oo (2.7)

So that

d (Xnt15 Xn) +d (BY™x0i1, BY™x,) + d (BY ™y, x0)

d (Xnt1: Xn) + Eum)d (Xnt1, Xn) +d (B\I’ Xn»> Xn)

= (1 + &wm) d (1. B" ™M@, © (1 = 10) Xns Xn) + d (B x, X0)

< (1 + fq,(n)) Nnd (B‘I’(”)wn, Xn) +d (B‘I’(”)Xn, Xn) —0 Asn — o0 (2.8)

By (2.7) and (2.8)), we have

d (Xnt1, Bxnt1) < d (XnH’ B\I](n)ﬂ ) +d (B\P(n)HXnﬂ, BXn+1)
< d (Xnt1, By, +1) + &eyd (B ) X1, Xn41) = 0. Asn — oo

d (Xn+1> B\I}(n)Xn+1>

[VARVAN

Which implieslim,, oo d (BXn, Xn) = 0 as desired O

Theorem 2.4. Let A be a subset of a CAT(0) space C' and let B be a mapping with {gq,(n)} satisfying

{Com} > 1 and 3277 (Gwim) — 1) < oo Let {na}, {pn}, {0n} € [0,1] satisfying
[. 0 < lim infn, < hm supn, < 1 and
n—oo

I1. 0 < lim inf pu, < hm sup fn, < 1

n—oo

Such that x1 € A, define
Py, = enB‘I’(")Xn D (1 _ ‘911) Yn
@n = B, © (1 — 113) X, n>1

If F(B) is nonempty set of fived point, and ¥ € F (B), then {x,} A— converges to a fized point

of B

Proof . Since Theorem lim d (xn, Bxn) = 0. Let wy (xn) = UF ({vn}) where,{v,} of {xn}
n—oo

We claim that wy, (xn) C F (B). Let v € wy (Xn), {vn} C {xn} where F({v,}) = {v}. By Lemmas

and (1.5, then {y,} C {v,} and A—lim,y, =y € A. Since lim, d (y,, By,) =0, then y € F (B)
by Lemma . Assume that v = y. Suppose not, since y € F (B), by Theorem lim,, d (X, Y)
exists. By the uniqueness of asymptotic centers,

lim sup (y,,, y) < limsup (y,,v) < limsupd (v,,v) < limsupd (v,,y)

= limsupd (xn,y) = limsupd (y,y)

A contradiction, and hence v =y € F(B), it suffices to prove that w, (x,) consists of exactly one
point. []

3. Open problem
The study for results in papers [10], 111, 12} 13], 14}, 15, [16] 17] under new iteration.
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4.

Conclusion

The idea in this research includes obtaining a new iteration that is subject to a sequence and

describing this iterationin obtaining the fixed point theorems in C AT'(0) space.
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