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Abstract

This article deals with the nonlinear parabolic equation with piecewise continuous arguments
(EPCA). This study, therefore, with the aid of the θ -methods, aims at presenting a numerical
solution scheme for solving such types of equations which has applications in certain ecological
studies. Moreover, the convergence and stability of our proposed numerical method are investigated.
Finally, to support and confirm our theoretical results, some numerical examples are also presented.
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1. Introduction

It seems that the strong interest in partial differential equations with piecewise constant arguments
(EPCA) is motivated by the fact that it describes a hybrid dynamical system a combination of
continuous and discrete. These types of equations have the structure of continuous dynamical systems
within intervals of unit length. In fact, the equations of EPCA are a combination of both differential
and difference equations. The general theory and basic results for EPCA have by now been thoroughly
investigated in the book of Wiener [27]. As we studied in the literature, there are some theoretical and
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numerical works that have been published, see [9, 23] and [5, 6, 8, 18, 21, 22, 24, 25, 26] respectively.
This book and many other articles have mentioned to applications of EPCA equations in biology,
mechanics, electronics, and a mathematical model for the dynamics of gas absorption. There are also
some authors who have considered the initial-boundary problem for linear delay partial differential
equations of the parabolic type and give a sufficient condition for the stability of the solution of this
initial-boundary problem [1, 3, 4, 5, 6, 7, 8, 20, 25, 26].

Ashyralyev and Agirseven, in 2018, presented first and second order accuracy difference schemes
for the solution of one dimensional nonlinear hyperbolic equation with time delay [10]. Poorkarimi
et al, in the nineties, are investigated the existence and uniqueness of a bounded solution for a
nonlinear parabolic and hyperbolic partial differential equations with piecewise continuous time delay
[17, 18, 19].

In recent years, Bereketoglu and Lafci investigated the behavior of the solutions of a PDE with a
piecewise constant argument [11]. Also, Büyükkahraman and Bereketoglu have a study On a partial
differential equation with piecewise constant mixed arguments [12]. In addition, Esmailzadeh et al
in [14, 15], have used the finite difference technique for solving hyperbolic partial differential equa-
tions with piecewise constant arguments and variable coefficients and diffusion-convection equation,
respectively. In both papers, the stability condition of the numerical method is investigated, and
also with the aid of the figures and the tables of errors are compared the numerical and analytical
solutions to demonstrate the validity of the proposed scheme.

However, few authors have worked on nonlinear EPCA. So providing numerical methods for this
category of equations still requires a lot of work. Hence in this article, we will use finite difference
methods to investigate the numerical solution for treating a wider class of nonlinear EPCA equa-
tions. This type of equation may be considered as a generalization of Fisher’s equation which has
applications in certain ecological studies.

Consider the following initial-boundary value problem

ut (x, t) = a2uxx (x, t) + C (x, t, u (x, t) , u (x, [t])) , a < x < b, t > 0. (1.1)

with the initial condition

u (x, 0) = ϕ (x) , a < x < b, (1.2)

and boundary conditions

u (a, t) = ga (t) , u (b, t) = gb (t) , t ≥ 0, (1.3)

in the domain Ω = (a, b) × (0,∞), where [t] denotes the greatest-integer function. The analytic
solution of Eq (1.1) on the interval 0 ≤ t < 1 is as follows [17]:

u (x, t) =
1√

4a2πt

∫ b

a

e−
(x−ξ)2

4a2t ϕ(ξ)dξ

+
1√
2π

∫ t

0

1√
t− τ

(
1√

4a2πt

∫ b

a

e−
(x−ξ)2

4a2t C(ξ, τ, u(ξ, τ), ϕ(ξ))dξ

)
dτ. (1.4)

As you can see, the analytical solution has a lot of computational complexity, and this has interested
us to provide a suitable approximation for this type of equation using θ-methods.

Definition 1.1. [17] A function u(x, t) is called a solution of the initial-boundary problem (1.1)–
(1.3) if it satisfies the following conditions:
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i. u(x, t) is continuous in Ω = (a, b)× (0,∞).

ii. ut and uxx exist and are continuous in Ω with the possible exception of the points (x, [t]) where
one-sided derivatives exist.

iii. u(x, t) satisfies ut (x, t) = a2uxx (x, t)+C (x, t, u (x, t) , u (x, [t])) in Ω with the possible exception
of the points (x, [t]), and condition u (x, 0) = ϕ (x), a < x < b.

The conditions of existence and uniqueness of the analytical solution of the problem (1.1)–(1.3) are
as follow

Theorem 1.2. [17] Assume the following hypotheses:

i. The function ϕ (x) is twice continuously differentiable and bounded on R.

ii. The function C (x, t, u, v) : Ω× R× R→ R is continuous and bounded on Ω, and satisfies the
Lipschitz condition |C (x, t, u, w)− C (x, t, v, y)| ≤ L |u− v|, where L is a positive constant and
u, v ∈ (−∞,∞).

Then there exists a unique solution to problem (1.1)–(1.3) which is bounded in Ω, Eq (1.4).

2. Numerical solution

In this section, an efficient finite difference technique for the problem (1.1)–(1.3) is introduced.
Based on the good experience we had of using the θ-methods method to the EPCA linear equations
in [14] and [15] we were interested in testing the efficiency of this method for nonlinear equations as
well. The numerical scheme will be presented in a finite domain a ≤ x ≤ b and 0 ≤ t ≤ T .

Let ∆x and ∆t be step-sizes of spatial and temporal directions which satisfy ∆x = b−a
M

and
∆t = 1

N
, where M,N ≥ 1 are positive integers. Denote the spatial and temporal nodes as xm =

a+m∆x, m = 0, 1, . . . ,M and tn = n∆t, n = 0, 1, . . . , NT respectively, and Un
m as an approximation

to u(xm, tn). Using Taylor expansion we have

(Ut)
n
m ≈

Un+1
m − Un

m

∆t
, (2.1)

(Uxx)
n
m ≈

Un
m+1 − 2Un

m + Un
m−1

(∆x)2 . (2.2)

By applying the θ-methods and using the approximations (2.1) and (2.2) we have

− θa2Un+1
m−1 + (α + 2θa2)Un+1

m − θa2Un+1
m+1

= (1− θ)a2Un
m−1 + (α− 2(1− θ)a2)Un

m + (1− θ)a2Un
m+1

+ (1− θ)(∆x)2C(xm, tn, U
n
m, U

h (xm, [tn]))

+ θ(∆x)2C(xm, tn+1, U
n+1
m , Uh (xm, [tn+1])), (2.3)

where m = 1, 2, . . . ,M − 1, n = 0, 1, . . . , NT − 1, α = (∆x)2

∆t
and, Uh (xm, [tn]) is an approximation

to uh (xm, [tn]).
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If we denote n = kN + l, k = 0, 1, . . . , T − 1 and l = 0, 1, . . . , N − 1, then both Uh (xm, [tn]) and
Uh (xm, [tn+1]) can be defined as UkN

m . Actually UkN
m is the solution at discontinuous points. So, the

Eq (2.3) can be written as

− θa2UkN+l+1
m−1 + (α + 2θa2)UkN+l+1

m − θa2UkN+l+1
m+1

= (1− θ)a2UkN+l
m−1 + (α− 2(1− θ)a2)UkN+l

m + (1− θ)a2UkN+l
m+1

+ (1− θ)(∆x)2C(xm, tkN+l, U
kN+l
m , UkN

m ) + θ(∆x)2C(xm, tkN+l+1, U
kN+l+1
m , UkN

m ). (2.4)

To solve this nonlinear system, the trust-region-dogleg method has been used [13]. For this purpose
we have used the fsolve MATLAB function.

3. Error analysis

3.1. Convergence

In this section, numerical convergence is discussed. Suppose that u(xm, tn) and Un
m be the exact

and the approximate solution at the (m,n)th grid point, respectively. To prove convergence of the
presented scheme, we need to examine the discretization error behavior, which is defined as follows:

enm = u (xm, tn)− Un
m. (3.1)

Lemma 3.1. Suppose u(x, t) is a sufficiently smooth function and 0 ≤ θ ≤ 1. Then

ut(x, tn+θ) = (1− θ)ut(x, tn) + θut(x, tn+1)− (1− θ)θ(∆t)2uttt(x, tn+θ) +O((∆t)3), (3.2)

ut(x, tn+θ) =
u(x, tn+1)− u(x, tn)

∆t
− (1− 2θ)(∆t)utt(x, tn+θ) +O((∆t)2), (3.3)

uxx(xm, tn) =
u(xm+1, tn)− 2u(xm, tn) + u(xm−1, tn)

(∆x)2

− (∆x)2

12
uxxxx(xm, tn) +O((∆x)4). (3.4)

Using the Taylor extension, the above lemma can be easily confirmed.

Theorem 3.2. Let u(x, t) be a sufficiently smooth function and 0 ≤ θ ≤ 1, then

− θa2en+1
m+1 + (α + 2θa2)en+1

m − θa2en+1
m−1 − θ(∆x)2Ln1e

n+1
m

= (1− θ)a2enm+1 + (α− 2(1− θ)a2)enm + (1− θ)a2enm−1 + (1− θ)(∆x)2Ln2e
n
m

+ (1− 2θ)(∆x)2(∆t)utt(xm, tn+θ) + (∆x)2O((∆t)2) +O((∆x)4), (3.5)

where Ln1 , L
n
2 ∈ R are the Lipschitz Constants.

Proof . Using Eq (1.1) and substituting Eq (3.3) in Eq (3.2), yields

u(x, tn+1)− u(x, tn)

∆t
= (1− θ)

(
a2uxx (x, tn) + C (x, tn, u (x, tn) , u (x, [tn]))

)
+ θ

(
a2uxx (x, tn+1) + C (x, tn+1, u (x, tn+1) , u (x, [tn+1]))

)
+ (1− 2θ)(∆t)utt(x, tn+θ) +O((∆t)2). (3.6)
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In Eq (3.6), first put x = xm and then by using Eq (3.4) and rewriting Eq (3.6), we have

− θa2u(xm+1, tn+1) + (α + 2θa2)(xm, tn+1)− θa2u(xm−1, tn+1)

− θ(∆x)2C (xm, tn+1, u (xm, tn+1) , u (xm, [tn+1]))

= (1− θ)a2u(xm+1, tn) + (α− 2(1− θ)a2)u(xm, tn) + (1− θ)a2u(xm−1, tn)

+ (1− θ)(∆x)2C (xm, tn, u (xm, tn) , u (xm, [tn]))

+ (1− 2θ)(∆x)2(∆t)utt(xm, tn+θ) + (∆x)2O((∆t)2)+O((∆x)4). (3.7)

From the subtraction of Eq (3.7) and Eq (2.3), we get

− θa2en+1
m+1 + (α + 2θa2)en+1

m − θa2en+1
m−1

− θ(∆x)2
[
C (xm, tn+1, u (xm, tn+1) , u (xm, [tn+1]))− C(xm, tn+1, U

n+1
m , Uh (xm, [tn+1]))

]
= (1− θ)a2enm+1 + (α− 2(1− θ)a2)enm + (1− θ)a2enm−1

+ (1− θ)(∆x)2
[
C (xm, tn, u (xm, tn) , u (xm, [tn]))− C(xm, tn, U

n
m, U

h (xm, [tn]))
]

+ (1− 2θ)(∆x)2(∆t)utt(xm, tn+θ) + (∆x)2O((∆t)2)+O((∆x)4). (3.8)

According to the second condition of the Theorem 1.2, there are two finite real numbers Ln1 and Ln2
such that

C (x, t, u(xm, tn+1), w)− C
(
x, t, Un+1

m , y
)

= Ln1 (u(xm, tn+1)− Un+1
m ) = Ln1e

n+1
m , (3.9)

C (x, t, u(xm, tn), w)− C (x, t, Un
m, y) = Ln2 (u(xm, tn)− Un

m) = Ln2e
n
m. (3.10)

By substituting Eq (3.9) and (3.10) in Eq (3.8), we have

− θa2en+1
m+1 + (α + 2θa2)en+1

m − θa2en+1
m−1 − θ(∆x)2Ln1e

n+1
m

= (1− θ)a2enm+1 + (α− 2(1− θ)a2)enm + (1− θ)a2enm−1 + (1− θ)(∆x)2Ln2e
n
m

+ (1− 2θ)(∆x)2(∆t)utt(xm, tn+θ) + (∆x)2O((∆t)2) +O((∆x)4).

�
Now everything is ready to prove the convergence theorem. In this theorem, we prove that by

decreasing ∆t and ∆x, the maximum absolute error tends to zero, and this is exactly the concept of
convergence.

Theorem 3.3. Let En = max
0≤m≤M

|enm|,

Ψnen+1
m = −θa2en+1

m+1 + (α + 2θa2)en+1
m − θa2en+1

m−1 − θ(∆x)2Ln1e
n+1
m ,

and (∆x)2 < ∆t, that is α tended to zero as ∆x and ∆t tending to zero. Then En → 0 as ∆x → 0
and ∆t→ 0.

Proof . Induction is used to prove the theorem. From Eq (3.5) ,we have∣∣Ψnen+1
m

∣∣ ≤ (1− θ)a2
∣∣enm+1

∣∣+
∣∣α− 2(1− θ)a2

∣∣ |enm|+ (1− θ)a2
∣∣enm−1

∣∣+ (1− θ)(∆x)2 |Ln2 | |enm|
+ |1− 2θ| (∆x)2(∆t) |utt(xm, tn+θ)|+ (∆x)2

∣∣O((∆t)2)+O((∆x)2)
∣∣ .

That is

max
0≤m≤M

∣∣Ψnen+1
m

∣∣ ≤ KnE
n + (∆x)2

(
∆t |1− 2θ| max

0≤m≤M
|utt(xm, tn+θ)|

+
∣∣O((∆t)2)+O((∆x)2)

∣∣ ), (3.11)
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where Kn = 2(1− θ)a2 + |α− 2(1− θ)a2|+ (1− θ)(∆x)2 |Ln2 |.
Note that the initial discretization error is zero because the initial values used with the finite

difference formula are those given for the partial differential equation. Therefore by knowing E0 = 0,
for n = 0 in Eq (3.11), yields

max
0≤m≤M

∣∣Ψ0e1
m

∣∣ ≤ |1− 2θ| (∆x)2(∆t) max
0≤m≤M

|utt(xm, tθ)|+ (∆x)2
∣∣O((∆t)2)+O((∆x)2)

∣∣ .
Let ∆x→ 0 and ∆t→ 0. So, max

0≤m≤M
|Ψ0e1

m| → 0, that is E1 → 0.

Now, suppose that En tends to zero as ∆x → 0, ∆t → 0. Then due to the recursive Eq (3.11)
and boundness of Kn we have max

0≤m≤M
|Ψnen+1

m | → 0.

Hence, En+1 → 0 as ∆x→ 0 and ∆t→ 0. Thus the proof is complete.
�

3.2. Stability

In this subsection, we show that the numerical scheme (2.3) is stable. In the sense that by
increasing the time steps in the numerical scheme (2.3), the errors resulting from subtracting the
exact solution U and its calculated values remain limited.

Suppose that Ũn
m be the approximation of exact solution Un

m for numerical scheme (2.3).

Theorem 3.4. Let Un = U(x, tn), εn = Un − Ũn, εnm = Un
m − Ũn

m and α tended to zero as ∆x and
∆t tending to zero. Then εn is bounded as ∆x→ 0.

Proof . According to the proof of Theorem 3.2 we have

− θa2
(
εn+1
m−1 + εn+1

m+1

)
+ (α + 2θa2 − θ(∆x)2Ln1 )εn+1

m

= (1− θ)a2
(
εnm−1 + εnm+1

)
+ (α− 2(1− θ)a2 + (1− θ)(∆x)2Ln2 )εnm, (3.12)

Using Taylor expansion in (3.12) around (xm, t) we have

− θa2

(
2εn+1

m + (∆x)2 (εxx)
n+1
m +

(∆x)4

12
(εxxxx)

n+1
m + · · ·

)
+ (α + 2θa2 − θ(∆x)2Ln1 )εn+1

m

= (1− θ)a2

(
2εnm + (∆x)2 (εxx)

n
m +

(∆x)4

12
(εxxxx)

n
m + · · ·

)
+ (α− 2(1− θ)a2 + (1− θ)(∆x)2Ln2 )εnm, (3.13)

or

(α− θ(∆x)2Ln1 )εn+1
m − θa2(∆x)2

(
(εxx)

n+1
m +

(∆x)2

12
(εxxxx)

n+1
m + · · ·

)

= (α + (1− θ)(∆x)2Ln2 )εnm + (1− θ)a2(∆x)2

(
(εxx)

n
m +

(∆x)2

12
(εxxxx)

n
m + · · ·

)
, (3.14)

By tending ∆x to zeros we can eliminate the terms contain derivatives and the results is as follows

εn+1
m = Wnε

n
m, (3.15)
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where

Wn =
α + (1− θ)(∆x)2Ln2
α− θ(∆x)2Ln1

. (3.16)

From (3.15) one can conclude that

max
0≤m≤M

∣∣εn+1
m

∣∣ ≤ (W )n+1 max
0≤m≤M

∣∣ε0
m

∣∣ , (3.17)

where W = max
0≤j≤n+1

Wj. From (3.16) we know that lim
∆x→0

Wn = 1 and hence from (3.17) we have

max
0≤m≤M

∣∣εn+1
m

∣∣ ≤ max
0≤m≤M

∣∣ε0
m

∣∣ , (3.18)

and the error is bounded. �

4. Numerical Experiments

In this section, the efficiency of the proposed method has been evaluated using various examples.
We have tried to show this with the plots and table of errors. To estimate the error, we use the
following norms

EN,M = max
m,k,l

∣∣u(xm, tkN+l)− UkN+l
m

∣∣ , 0 ≤ m ≤M, 0 ≤ k ≤ L− 1, 0 ≤ l ≤ N,

L∞(t) = max
m
|u(xm, t)− U(xm, t)| , 0 ≤ m ≤M.

In all numerical examples, we assume that a = 1.
It is notable that, we perform all of the computations by MATLAB® R2019a software (V9.6.0.1072779,

64-bit (win64), License Number: 968398, MathWorks Inc., Natick, MA) running on a Sony VAIO
Laptop (Intel® Core™ i5-2410M Processor 2.30 GHz with Turbo Boost up to 2.90 GHz, 8 GB of
RAM, 64-bit) PC.

Example 4.1. In Eq (1.1), we assume that

C (x, t, u (x, t) , u (x, [t])) = u(x, t)u(x, [t]) +
(
a2 − 1

)
exp(−t) sin(x)

− exp(− (t+ [t]))sin2(x),

with the exact solution u(x, t) = exp(−t) sin(x), where −π ≤ x ≤ π. Therefore Eq (1.1) can be
written as 

ut (x, t) = a2uxx (x, t) + u(x, t)u(x, [t]) + (a2 − 1) exp(−t) sin(x)

− exp(− (t+ [t]))sin2(x), −π < x < π, 0 < t ≤ 20,

u (x, 0) = sin(x), −π ≤ x ≤ π,

u(−π, t) = u(π, t) = 0, 0 ≤ t ≤ 20.

(4.1)

The finite difference schemes (2.4) is used to solve the Eq (4.1). The exact and numerical solutions
on all mesh grids are plotted in Figure 1 using N = 100 and M = 50. In Figure 2 the absolute errors
in all mesh grids and the logarithm of absolute errors in integer time levels are shown using N = 100
and M = 50. In Table 1, the EN,M error norms are reported for different values of N , M and θ.
Also, the L∞(t) error norms for different values of N and t are tabulated in Table 2 using M = 50
and θ = 0.5.
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Figure 1: The exact solutions (left) and the numerical solutions (right) on all mesh grids using N = 100 and M = 50
for Example 4.1.

Figure 2: The absolute errors in all mesh grids (left) and the logarithm of absolute errors in integer time levels (right)
using N = 100, M = 50 and θ for Example 4.1.

Table 1: The EN,M error norms for different values of N , M and θ for Example 4.1.

EN,M

θ N M = 10 M = 20 M = 50

0.3 1.989816e− 02 4.477085e− 03 8.544827e− 04
0.5 100 2.148904e− 02 6.104647e− 03 1.935009e− 03
0.7 2.308263e− 02 7.744292e− 03 3.588892e− 03

0.3 2.026016e− 02 4.839383e− 03 5.352103e− 04
0.5 200 2.105541e− 02 5.649270e− 03 1.363847e− 03
0.7 2.185134e− 02 6.460539e− 03 2.192068e− 03

0.3 2.047630e− 02 5.058768e− 03 6.869624e− 04
0.5 500 2.079435e− 02 5.382041e− 03 1.018635e− 03
0.7 2.111252e− 02 5.705563e− 03 1.350240e− 03
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Table 2: The L∞(t) error norms for different values of N and t using M = 50 and θ = 0.5 for Example 4.1.

L∞(t)

t N = 100 N = 200 N = 500

0.5 5.013596e− 04 5.037531e− 04 5.044232e− 04
1.5 1.683969e− 03 1.257683e− 03 1.000757e− 03
2.5 1.433337e− 03 1.044193e− 03 8.110082e− 04
3.5 1.030662e− 03 7.330615e− 04 5.562178e− 04
4.5 7.423716e− 04 5.165676e− 04 3.819745e− 04
5.5 5.543977e− 04 3.799266e− 04 2.755322e− 04
6.5 4.250325e− 04 2.888744e− 04 2.074885e− 04
7.5 3.293611e− 04 2.232741e− 04 1.596718e− 04
8.5 2.560948e− 04 1.735161e− 04 1.239634e− 04
9.5 1.994653e− 04 1.350674e− 04 9.642891e− 05

Example 4.2. This example is inspired by the generalized Fisher equation [16]. In the Eq (1.1),
assume that

C (x, t, u (x, t) , u (x, [t])) = su(x, t)(1− u(x, t)) + qu(x, [t])(1− u(x, [t]))

+
(10 + 2a2) exp(x− 5t)

(exp(x− 5t) + 1)3 − a2 6 exp(2x− 10t)

(exp(x− 5t) + 1)4

+
s

(1 + exp(x− 5t))2

(
1

(1 + exp(x− 5t))2 − 1

)
+

q

(1 + exp(x− 5[t]))2

(
1

(1 + exp(x− 5[t]))2 − 1

)
.

where s and q are positive constants.
The exact solution of this problem is u(x, t) = 1

(1+exp(x−5t))2
, where 0 ≤ x ≤ 1. The initial and

boundary conditions can be obtain using exact solution. For numerical computations we assume that
s = q = 6.

In Figure 3, the exact and numerical solutions on the time interval [0,10] are plotted. The error
figures is also drawn in Figure 4. Also for a more detailed review, the absolute error estimates are
reported by different parameters in the Tables 3 and 4. As you can see, the results from the graphs
and tables show that the proposed method works very well.
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Figure 3: The exact solutions (left) and the numerical solutions (right) on all mesh grids using N = 100 and M = 50
for Example 4.2.

Figure 4: The absolute errors in all mesh grids (left) and the logarithm of absolute errors in integer time levels (right)
using N = 100 and M = 50 for Example 4.2.

Table 3: The EN,M error norms for different values of N , M and θ for Example 4.2.

EN,M

θ N M = 10 M = 20 M = 50

0.3 1.432407e− 04 1.453905e− 04 1.485814e− 04
0.5 2000 2.333241e− 04 2.380192e− 04 2.420419e− 04
0.7 3.214901e− 04 3.292817e− 04 3.341418e− 04

0.3 9.587827e− 05 9.707846e− 05 9.974485e− 05
0.5 3000 1.568234e− 04 1.593426e− 04 1.633430e− 04
0.7 2.168762e− 04 2.210983e− 04 2.251891e− 04

0.3 5.761418e− 05 5.912604e− 05 6.018532e− 05
0.5 5000 9.462335e− 05 9.642043e− 05 9.896447e− 05
0.7 1.312988e− 04 1.332348e− 04 1.373292e− 04
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Table 4: The L∞(t) error norms for different values of N and t using M = 50 and θ = 0.5 for Example 4.2.

L∞(t)

t N = 2000 N = 3000 N = 5000

0.5 4.495196e− 07 4.572568e− 07 4.612182e− 07
1.5 6.869937e− 05 4.584562e− 05 2.752666e− 05
2.5 1.196958e− 05 7.989056e− 06 4.796314e− 06
3.5 4.281064e− 06 2.856610e− 06 1.714577e− 06
4.5 1.594541e− 06 1.063907e− 06 6.385296e− 07
5.5 6.015322e− 07 4.013463e− 07 2.408741e− 07
6.5 2.274286e− 07 1.517417e− 07 9.106998e− 08
7.5 8.600112e− 08 5.738044e− 08 3.443770e− 08
8.5 3.252186e− 08 2.169877e− 08 1.302283e− 08
9.5 1.229840e− 08 8.205562e− 09 4.924686e− 09

Example 4.3. Consider the nonlinear parabolic equation with piecewise constant arguments

ut (x, t) = uxx (x, t) + 2u(x, t) + u3(x, [t])

−2 exp(−2t− 3)(sin(πx) + 1) + a2p2 exp(−2t− 3) sin(πx)

−2(1 + sin(πx)) exp(−2t− 3)

−(1 + sin(πx))3 exp(−6t− 9), −1 < x < 1, 0 < t ≤ 10,

u (x, 0) = (1 + sin(πx)) exp(−3), −1 ≤ x ≤ 1,

u(−1, t) = u(1, t) = exp(−2t− 3), 0 ≤ t ≤ 10.

(4.2)

The exact solution of (4.2) is u(x, t) = (1 + sin(πx)) exp(−2t − 3). The finite difference schemes
(2.4) is used to solve (4.2) and the exact and numerical solutions on all mesh grids are shown in
Figure 5 . You can see the absolute errors in all mesh grids and the logarithm of absolute errors in
integer time levels in Figure 6. Tables 5 and 6 report EN,M and L∞(t), respectively. In this example,
the figures and tables also support and confirm our theoretical results.

Table 5: The EN,M error norms for different values of N , M and θ for Example 4.3.

EN,M

θ N M = 10 M = 20 M = 50

0.3 1.256031e− 03 3.309113e− 04 5.988944e− 05
0.5 500 1.245338e− 03 3.233433e− 04 5.146612e− 05
0.7 1.264275e− 03 3.425828e− 04 7.210778e− 05

0.3 1.252955e− 03 3.287159e− 04 5.720910e− 05
0.5 700 1.245324e− 03 3.233368e− 04 5.145979e− 05
0.7 1.258848e− 03 3.370581e− 04 6.604691e− 05

0.3 1.250658e− 03 3.270844e− 04 5.536010e− 05
0.5 1000 1.245319e− 03 3.233335e− 04 5.145660e− 05
0.7 1.254782e− 03 3.329272e− 04 6.158071e− 05
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Figure 5: The exact solutions (left) and the numerical solutions (right) on all mesh grids using N = 100 and M = 50
for Example 4.3.

Figure 6: The absolute errors in all mesh grids (left) and the logarithm of absolute errors in integer time levels (right)
using N = 100 and M = 50 for Example 4.3.

Table 6: The L∞(t) error norms for different values of N and t using M = 50 and θ = 0.5 for Example 4.3.

L∞(t)

t N = 500 N = 700 N = 1000

0.5 3.837580e− 05 3.836263e− 05 3.835563e− 05
1.5 5.690931e− 06 5.639367e− 06 5.596700e− 06
2.5 8.668563e− 07 8.366163e− 07 8.112880e− 07
3.5 1.823262e− 07 1.613985e− 07 1.446629e− 07
4.5 7.183382e− 08 5.664441e− 08 4.422819e− 08
5.5 4.223182e− 08 3.212265e− 08 2.365444e− 08
6.5 2.639148e− 08 2.001526e− 08 1.466487e− 08
7.5 1.655096e− 08 1.255225e− 08 9.195397e− 09
8.5 1.037971e− 08 7.871980e− 09 5.766774e− 09
9.5 6.509502e− 09 4.936813e− 09 3.616560e− 09
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Example 4.4. In this example we consider an extended of generalized Burgers’–Fisher equation [2]
with assuming

C (x, t, u (x, t) , u (x, [t]))

=
r

γ
u(x, t)(1− uγ(x, t)) +

q

λ
u(x, [t])(1− uλ(x, [t]))

− 2 exp(−2t− 3)(sin(πx) + 1) + a2π2 exp(−2t− 3) sin(πx)

− r

γ

(
1

2
+

1

2
tanh

(
2

γ + λ
x+

1

γ + λ
t

))(
1−

(
1

2
+

1

2
tanh

(
2

γ + λ
x+

1

γ + λ
t

))γ)
− q

λ

(
1

2
+

1

2
tanh

(
2

γ + λ
x+

1

γ + λ
[t]

))(
1−

(
1

2
+

1

2
tanh

(
2

γ + λ
x+

1

γ + λ
[t]

))λ)
.

where r, γ, q and λ are real known constants. The exact solution of this example is given as

u(x, t) =
1

2
+

1

2
tanh

(
2

γ + λ
x+

1

γ + λ
t

)
,

where −1 ≤ x ≤ 1.

The results of exact and numerical solutions on all mesh grids are plotted in Figure 7. The EN,M and
L∞(t) are illustrated for different parameters in Table 7 and 8, respectively . In this example, we have
tried to investigate the behavior of this type of equation over a longer period of time. Fortunately,
the results were satisfactory and this shows the positive performance of the proposed method.

Figure 7: The exact solutions (left) and the numerical solutions (right) on all mesh grids using N = 100 and M = 50
for Example 4.4.
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Figure 8: The absolute errors in all mesh grids (left) and the logarithm of absolute errors in integer time levels (right)
using N = 100 and M = 50 for Example 4.4.

Table 7: The EN,M error norms for different values of N , M and θ for Example 4.4.

EN,M

θ N M = 10 M = 20 M = 50

0.3 3.654497e− 04 1.636857e− 04 1.211278e− 04
0.5 500 4.098334e− 04 2.311309e− 04 1.936102e− 04
0.7 4.721719e− 04 3.009616e− 04 2.663118e− 04

0.3 3.279388e− 04 1.122344e− 04 6.411813e− 05
0.5 1000 3.493955e− 04 1.435832e− 04 9.999333e− 05
0.7 3.708342e− 04 1.767315e− 04 1.362908e− 04

0.3 3.091622e− 04 9.098579e− 05 3.606308e− 05
0.5 2000 3.199010e− 04 1.026646e− 04 5.353636e− 05
0.7 3.306353e− 04 1.180200e− 04 7.141037e− 05

Table 8: The L∞(t) error norms for different values of N and t using M = 50 and θ = 0.5 for Example 4.4.

L∞(t)

t N = 500 N = 1000 N = 2000

0.5 7.139638e− 06 7.141298e− 06 7.141713e− 06
1.5 2.985599e− 05 1.233810e− 05 7.709319e− 06
2.5 3.677496e− 05 1.704852e− 05 7.388486e− 06
3.5 4.290270e− 05 2.080779e− 05 9.847334e− 06
4.5 3.938572e− 05 1.991772e− 05 1.018735e− 05
5.5 2.989411e− 05 1.546726e− 05 8.226404e− 06
6.5 1.835514e− 05 9.609810e− 06 5.223582e− 06
7.5 1.068857e− 05 5.618041e− 06 3.070219e− 06
8.5 5.653797e− 06 2.985283e− 06 1.645639e− 06
9.5 3.073078e− 06 1.621247e− 06 8.916753e− 07
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5. Conclusion

In this work, a θ finite difference scheme was introduced to the numerical solution of nonlinear
parabolic PDEs with piecewise constant arguments. The scheme leads to a nonlinear system of
algebraic equations which was solved using the trust-region-dogleg method. The convergence and
stability of the presented method were investigated. Also, we considered four examples to test the
presented method. The numerical results show that the solutions are very accurate and the presented
scheme is efficient.
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