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Abstract

Let R be a commutative ring with identity, and Ur be an R-module, with £ = End(Ug). In
this work we consider a generalization of class small essential submodules namely E-small essential
submodules. Where the submodule ) of Ug is said E-small essential if Q NW = 0 , when W is
a small submodule of Ug, implies that Ng (W) = 0, where Ng (W) = {¢ € E | Imip) CW}. The
intersection Br(U) of each submodule of Uy contained in Soc(Ug). The Bgr(U) is unique largest
E-small essential submodule of U, if Uy is cyclic. Also in this paper we study Br(U) and Wg (U).
The condition when Br(U) is E-small essential, and Tot ( U, U) = W (U) = J(E) are given.

Keywords: Small submodule, Small essential submodules, E-small essential submodules,
Endomorphism ring.

1. Introduction

Throughout this treatise, all ring R is a associative with identity, and all module over a ring
R is unitary right module. Let Ui will always denoted such an R-module and E is endomorphism
ring and denoted by E = End(Ug) of ring module. The submodule W is called essential of Ug (
denoted by: W < Ug ) if 0 # G < Ug, then W NG # 0 ( see [1] ), where the submodule G of Ug
is denoted by (G < Ug).The submodule Q of Ug is said small submodule (denoted by: @ < Ug), if
VW S Ug then Q + W = Ug (see [2]). The left annihilator of an submodule Q of Ug is denoted
by 6g(Q), and the right annihilator of an endomorphism h of Uy is denoted by ky(h), specifically
that Ker (h). We also denoted Ng (Q) = {0 € E | Imf C @} for each () C U. Nicholson and Zhou
defined annihilator-small right ideals [5]. Also Amouzegar and Keskin introduced and study the
right annihilator-small submodules of an R-module. Let Uiz be an R-module and F' < Ug, then
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F is a said to annihilator- small submodule if FF+ W = U, where W is a submodule of Ug, so
g (W) =0 []. From [7] the Zhouaud and Zhang, give a definition of small- essential submodules.
Let K be a submodule of a module Ug, then K is called small-essential in Ug( denoted by K <g U, if
KNW =0, with W <« Ug implies that W = 0. In this paper we introduced new concept namely E-
small essential submodule, where a submodule Q of a module Ug, is called E-small essential (denoted
by Q g, U) if QW =0, for each W < Ug, implies that Ng (Q) = 0, where E = End(Ug). In
[7], essential submodule is small essential submodule. It is clearly that small essential submodule is
E-small essential, so every essential is E-small essential. Also give us the condition that makes every
E-small essential is essential ( see proposition ), and every E-small essential is small essential (see
proposition and ). We have verified that the equality is correct for the following statement
Tot (U, U) =Wg (U) = J(E).

2. Main Results

Definition 2.1. Let @) be an submodule of a module Ug, then Q is called E-small essential (denoted
by Q <p_s U ) if QNW =0, where W is small submodule of Ugr( or denoted by W < Ug ), implies
that Ng (W) = 0, where E = End(Ug).

It is clearly that every small essential submodule is E-small essential submodule, but the opposite is
generally not true (meditation the submodule mZ of the Z-module 7).

The left R-module Uy is called retractable if there exists a non-zero homomorphism £ : U — Q
for each anon-zero submodule Q of Ug.

Proposition 2.2. Let Ur be an retractable R-module. If QQ <g_s Ug, then Q) <. Ug.
Proof . Let QN F =0, for an F < Ug, then by hypothesis Ng (F') = 0. But Uy is retractable, then
F =0, that mean QQ <, Ug.lJ

Corollary 2.3. If Uy is retractable R-module and Q) <g_, Ug, then QQ <, Ug.

Proposition 2.4. Let Ug be a cyclic and m-projective module. Then @) is small essential submodule
if and only if () is E-small essential submodule of Ug.

Proof . Let Ug = uR for some u € Ug, and Q Jg_s Ug. Let V < Ug, we put 0 #£ v € V, so
then there exists 0 # n € R, such that v = un, but Up = uR = unR + u (1 —n) R, since Ug is
w-projective then there exists § € End(Ug), with ImpB CunR C V', so Im(1 — ) C (1 —n)uR, that
is Ng(V)#0. AsQ Jp_s Ugr, and QNV # 0. That mean Q) <g_s Ug. The converse is evident. [

Proposition 2.5. Let Ugr be a cyclic R-module and R be a commutative ring. Then Q) <g_s Ug if
and only if QQ < Ug.
Proof . Is evident. [J

Lemma 2.6. Let Ui be an R-module. If V < Q < Ug, and Q <g_s Ug, then V <g_, Ug.
Proof . Is evident. [

Proposition 2.7. Let Ur be an R-module. If QQ <g_s Ug and F <, Ug, then QN F <g_, Ug.
Proof . Let QN F NV =0, where V& Ug. Since F' <, Ug, that is @QNV =0 and Ng (V) =0. O

Lemma 2.8. Let Ur be a module, and @ be a submodule of Ug if Ng(Q) <s Eg, then Ng(Q)Ur <g_s
Ug. In specially, Q <p_s Ug.

Proof . Let Np (Q)Ur NV =0, so Ng (Q)NNg (V) =0, thus Ng (V) =0. But Ng(Q) <5 Eg. So
that the last perception by (Lemma[2.6) and since Np(Q)Ug C Q C Ug always achieve.
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Note that the converse of Lemma is true if (Ng (Q)NvE)Ugr = Ng(Q)Ug NoUg verified for
each submodule @ of Ug, and all small element v € E. And to watch it, let Ng (Q) NvE = 0, for
any small element v € E. Thus Ng (Q)Ur NovUg = 0, so Ng (vUg) = 0. But Ng(Q)Ur <g—s Ug
and vE C Ng (vUg) = 0, then v = 0. Hence Ng(Q) <, Fg.

Recall that an R-module Ug is called semi-injective if for each o € F such that

Ea =g (ker(a)) = g (ky(a))

(equivalently for any monomorphism a : @) — U, where Q is a factor module of Ug, and for any
homomorphism 5 : ) — U, then there exists v : U — U such that ay = 5) [5, p. 261].

Lemma 2.9. Let us have the following situation for any R-module Ug and u € E:

(1) kJU(U) SIE—S UR.

(2) ky (u) G ky (ur) for all 0#r € E.

(3) kg (g —au) =0 forall 0 #a € E.

(4) kg (g —ua) =0 forall 0 #a € E.

(5) kg (u—uau) = kg(u) forall0#ac€E.

Then (1) = (2) = (3) = (4) = (5). If Ug is semi-injective, then (5) = (1).

Proof . (1) = (2) Suppose that 0 #r € E, and ky (r) = ky (ur). It is clear that ky (u) NrU = 0.
According to ky(u) <g_s Ug, and Ng (rU) =0, so rE C Ng (rU) =0. That is r = 0.

(2) = (3) Leta € E, andr € kg(lg —au), sor = aur, then ky (ur) C ky (aur) = ky (r).
Then by (2), hence r = 0.

(3) = (4) Letr € kg (1lg —wua), for alla € E, thus (1g —ua)r = 0, that mean (1g — au) ar =
(a —aua)r = a(lg —ua)r =0, implies that ar = 0 that by (3), then r = uar = 0.

(4) = (5) Let r € kg (u—wuau), for alla € E, so by (4) ur = 0. Thenr € kg(u). Other
embedding in a similar way.

(5) = (1) S uppose that Ug is semi-injective. Now, let ky (u) NV = 0 for a small submodule
V of Ug, and let r € Ng(V), implies that rU N ky (u) = 0, then ky (r) = ky (ur). But Ug is
semi-injective, then thereesxists ahomomorphism v € E such that r = vur, so (v —uvu)r = 0. Thus
r € (u—uvu) = kg (u), then ur =0, and hence r = 0. O

Note that we us define W (U) = {u € E|kerv = ky (u) <dp_, Ug} for any module Ug.

Corollary 2.10. Let Ug be a module, andu € W (U). Thus Eu C Wy (U). If Ug is semi-injective,
then uE C Wg (U).

Proof . Letr € E, and Ug is semi-injective, we most show that ky (ur) <g_s Ugr. Now let v € E,
since ky (u) <g_s Ug, then by Lemma (4) kg (1g —urv) = 0. Once again form Lemma (4)
ky (ur) <gp_s Ug. Thus uE C Wg (U). Now through the Lemma 77, we get Eu C Wg (U). O

Corollary 2.11. We oun Wy (U) C 65 (Soc(Eg)). Furthermore, J(E) C Wy (U), if Ug is a semi-
mjective.

Proof . Let w € Wy (U), and 0 # u € Soc(Eg), we want to prove that 0 = wSoc(Eg). Now
ue B Ey®---® E,, where Ey, FEs, ..., E, are simple right ideal of E, and n is positive integer.
Suppose that wu # 0 and u = uy + ug + - - - + u, where as u; € E; for some j € {1, 2,..., n}, then
wu; # 0. As Ej is simple so Ewu; = E;. Thus uj = Pwu; for all § € E. Sou; € kg(lg— pw),
but ky(w) Qp_s Ug , then from Lemma?2.9 kg (15 — Pw) = 0, that is u; = 0. This is acontradiction.
So wu = 0, hence Wg (U) C g (Soc(Eg)). Now let v € J(E) and w € E. We must prove
that v € W (U), we take B € kg (1x —wv). Thus (1 —wv) = 0, but 1z — wv is invertible, so
B =0. Then kg (1g —wv) = 0 for all w € E. Hence from Lemma2.9 v € Wg (U), implies that
J(E)C Wg(U). O
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Corollary 2.12. Let Ug is a semi- injective module and h € E. Then Kerh = ky(u) <g_s Ug if
and only if Fh <, Eg.

Proof . Let h € E and suppose that ky (h) 4, Ugr. Now let E = Eh + P, where P is an ideal of
E. Solg =rh+gq, wherer € E and q € P, then ky (h) Nky (¢) = 0. But ky (h) <_,Ug, then
Ng (kv (q)) = 0. That is Ng (ky (P)) = 0, hence ky (P) = 0 implies that Eh <, Eg. The converse,
suppose Eh <, Eg, then from ( [Jl], Corollary 2.8 ) kg (h — hrh) = kg (h), for allr € E. Then from
Lemma ky (h) < Ug. O

Corollary 2.13. Let Ug be an R-module. If h> = h € W (U), then h = 0.
Proof . We can see from the lemma2.9 (4) and ky (h) < _Ug, kg (1lg —h) = 0, and since h €
kg (1g — h). Implies that h = 0. O

Corollary 2.14. Let P be an mazimal-ideal of E, where E = End(Ug) and Ugr be amodule. Then
the following ferries are equivalent:

1. PU Qg_, Ug
2. P<, kg

Proof . (1) = (2) Let PU <g_s Ug Suppose that P is not essential of Eg. Then PN K =0, foe
some K is a non-zero ideal of Eg. But P is amaximal ideal, that mean P s direct summand of Eg.
So there exists idempotent element i € Eg such that P = iE. Then PU = iU = kg (1g — 1) <g_s Ug.
Hence 1y —i € Wy (U). Then from ( C'orollary) t = 1. This is acontradiction.

(2) = (1) Let P <.Eg, and PUNV = 0 for an small submodule V' of Ug. So 0 = Ng(0) =
Ng (PU)NNg (V). Then PN Ng (V) =0. But P <., Eg, then Ng (V) =0. O

Recall that the element h in E is called to be partially invertible if hE contains anon-zero idempotent,
where ( hE equivalent Eh ). Where an R-module Uy the total of Ug is defined as Tot (E) =
Tot (U,U) = {h € Elh is not partially invertible}.

Unable to closed the total under addition. In effect, if 0 and 1 are the only idempotent in E, then
the total of Uy is the set of non-isomorphism.

Proposition 2.15. Let Ug be a module. Then Wg(U) C Tot(U,U).
Proof . If h € Wg(U) and h ¢ Tot(U,U), implies that h is partially invertible then there ezists
0+#1i%=1i¢€ Eh. So by (Corollary 2.10), i € Wg (U). Thus acontradicts to (Corollary . O

Let P is a subset of a ring R, then R is called to be P-semi-potent if every ideal not contained in P
contains anon-zero idempotent, equivalently if every element ¢ ¢ P is a partial inverse R is said to
be semi-potent if R is J(R)-semi-potent.

Lemma 2.16. Let Ur be a module, if P is a subset of E = End(Ug). Then the following ferries are
equivalent:

1. E is P-semi-potent.
2. Tot(U,U) C P.

Proof . Is evident from ( [3], Lemma 20). O
Proposition 2.17. Let E = End(Ug) for any R-module Ug. Then E is a semi-potent if and only if

J(E) = Tot(U,U).
Proof . Is evident from ([5], Theorem 21). O
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Proposition 2.18. Let Ug be asemi- injective R-module, and E = End(Ug) is a semi-potent. Then
Wg(U)=J(E)=Tot(U,U).

Proof . It is evident that J(E) C W (U) by (C’orollary ). Letu € Wg(U), ifu ¢ J(E)
and E is J(E)-semi-portent, then Wg (U) have anon-zero idempotent which is a contradiction (we
can see corollary|2.15). Then J(E) = Wg (U). Now from Pmposz’tion Wg(U) C Tot(U,U).
From other hand, E is W g (U)-semi-portent and since J (E) = Wg (U). Hence form Lemma
Tot(U,U) CWg(U). O

Proposition 2.19. Let Up be asemi- injective R-module, and E = End(Ug), where kg (u) =0, for
all u € E, such that Eu=E. Then Wg (U) = J (E).

Proof . It is clear that from Corollary|2.11|J (E) C Wg (U). Letx € Wg (U), then ky (z) <p_ U,
hence kg (1g —ux) =0, for allu € E, so from Lemma 2.9 then E (15 — ux) = E, thus by hypothesis
x € J(E). Implies Wy (U) C J(E). O

A ring R is said to be right Kasch if every simple right R-module embeds in R, this is rewarding, if
kg (V) # 0 for every maximal right ideal E of R. Associated R aleft ideal W5 ring if every left ideal
is isomorphic to direct of gR is itself a direct summand of gR

Lemma 2.20. Let Ug be asemi- injective R-module. In each of the following statements, we have
Wg(U)=J(E).

1. E is semi-potent.

2. FE s right Kasch.

3. Eis a left Wy ring.

Proof .

1. Is evident from Proposition

2. Letu € E, then kg (u) =0. IfuE # E, then by (2) kg (uE) =0, that is kg (u) # 0. This is a
contradiction. Hence from Proposition Wg(U) =J(E).

3. Letv € E, then kg (v) =0. If Ev = E, then by (3) Fv is a direct summand of E, so vazv = v,
for some element x € E. Since 0 = kg (v) = kg (vz) = E(1g —vz). Hence vx = lp and

vE =F, from Pmposz'tz’on Wg(U)=J(E).
0

Lemma 2.21. Let u = uR, where u € U, and U be a cyclic R-module. Then the following are
equivalent for w € U :-

1. wR S]E—s U
2. g(wR) G f(U), for allg € E
3. kg (u—wn) =0, for alln € R.

Proof . (1) = (2) Let g(wR) = g(U), then g (wn) = g(u), for alln € R, hence g € kg (u —wn).
But wR+ (u —wn) R =uR = U, then by (1) kg (u —wn) = 0. Therefore g = 0.

(2) = (3) Let g € kg (u—wn), for alln € R, so g(u) = g(wn) C g(wR) by (2). Therefore g = 0.
(3) = (1) If wR+V = U, where V is small submodule of Ug, then u=wn+v , for alln € R and
veV. Nowlet g € kg (V) that mean g (u) = g(wn). Hence by (3) g € kg (u —wn) = 0. Therefore
g=0.0

Note: Let Ur be a module, we can defined Br(U) = N{D C Ug|D <p_, Ug}. It is clearly that
Br (U) C Soc(U).
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Proposition 2.22. If Ug is an retractable and semi- projective R-module, then Br (U) = Soc (U) =
Soc(Eg)U.

Proof . From Corollary Br(U) = Soc(U). Since U is semi- projective, then from ([3],
Proposition 2.4), Bg (U) = Soc (U) = Soc(Eg)U.

Let Ui be an R-module, an element ¢ € Ug s called E-small essential if cR <g_s Ug. For simplicity,
we denoted Cr (U) = {c € Ulc is a E-small essential in U} = {c € U|cR Qg_s Ur}. It is evident
that Cr (U) C Br (U). O

Proposition 2.23. Let U = aR be a cyclic R-module, and X be a submodule of Ug. Then the
following are equivalent:

1. X S]E—SUR
2. X CCgr(U)
3. kp(u—a)=0, for alla € R.

Proof . (1) = (2) Fore Proposition [2.7

(2) = (3) Let X +Y = U, where Y is small submodule of Ur, u=x+y, forallz € X andy €Y,
then kg (Y) C kg (u—x) = 0.

(3) = (1) According to the hypothesis(3). Therefore X <p_,Ug. O

Proposition 2.24. Let Ui be an R-module, Then

1. BR(U)={ci+ca+ -+ culc; € Cr(U) for each n,j are positive integer}.
2. Br(U)=Cgr(U)R.

Proof . (1) Let the set F ={c1+ca+---+ culc; € Cr(U) for each n,j are positive integer}.
Ifce Br(U), thenc € Fy + Fs+ -+ + F,, where F; <, Up, for each n,j are positive integer. If
c=ci+co+--+ ¢y, ¢; €F}, implies that from Proposition ¢;R <, Ug. Thus c; € Cr(U).
Hence Bg (U) C F. Simply we can note that F C Bg (U).

(2) Bvident by fact, Cr (U) C Br (U), and by (1). O

Proposition 2.25. Let Ug be an R-module, consider the following expression:

1. [fF SlEfsUR and H SIE—SUR; then F+H SlEfsUR-

2. Cr(U) is closed under addition.

3. %(U) =Cgr(U).

4. B (U) <g_s Ug
Can we get (1) = (2) = (3) and (4) = (1) .
But (3) = (4) , it can obtained by adding if Ug is cyclic R-module. In addition, if U = uR, where
u € U one of the above-mentioned condition the following:

(i) Br (U) is the unique largest E-small essential of U.
(ii) Br(U) = {u € Ulkg (a — uw) = 0, for all w € R}
(iii) B (U) = n{G €™ U|B (U) C G}

Proof . (1) = (2) Since (u+v) R C uR+vR, so Cr (U) is closed under addition by Prop. [2.7
(2) = (3) It is obvious that Cr (U) C Bg (U), then from Proposition (1), Br (U) C Cg(U).
(3) = (4) Let U = uR, for some u € U, and Bg(U) + F = U, where F is a small submodule of
Ur. Thus by (3) CR(U)+ F =U. Ifu=v+w, wherev € Cr(U) and w € F.Thus U = vR+ F,
so vR dp_, Ug. Then kg (U) =0. Hence Br (U) <g_, Ug.
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(4) = (1) Let F Qp_, Up and H <p_, Ugr. Thus F C B (U) and H C Bg(U), then F + H C
Bg (U). Hence from Propositz’on and by (4), implies that F + H <p_,Ug.

Now, (i) is evident by (4), and (i1) is evident from Lemma 2.21 and by (3). Finally (iii) ifu € Br (U),
so uR is not E-small essential by (3), then uR + F = U, for an small submodule F of Ug, with
kp(U) # 0, by (4) Br(U) <p_, Ug, then we have Br(U) + F # U. If B (U)+ F C G C™* [,
thus w ¢ U. This is prove of (iii). O

Proposition 2.26. Let Ugr be a module. consider the following expression:

1. Br(U) <g_, Ug
2. [fF S]E—s UR (I’I"LdHSlE_S UR, thenFﬂHﬁE_s UR

Note (1) = (2) verified. As well if Ug finitely cogenerated, hence (2) = (1)
Proof . (1) = (2) Let F <p_, U and H <p_, Uy, so Br(U) C FN H, then from Lemma
FNHA<g_, Ug.
(2) = (1) If Ug finitely cogenerated, and let Br (U) N F = 0, where F is a small submodule of Ug,
then FyNEFyN---NF,NH =0, for some E; C B (U). Therefore Ng (H) = 0. that by (1). O
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