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Abstract

Let R be a commutative ring with identity, and UR be an R-module, with E = End(UR). In
this work we consider a generalization of class small essential submodules namely E-small essential
submodules. Where the submodule Q of UR is said E-small essential if Q ∩W = 0 , when W is
a small submodule of UR, implies that NS (W ) = 0, where NS (W ) = {ψ ∈ E | Imψ ⊆ W}. The
intersection BR(U) of each submodule of UR contained in Soc(UR). The BR(U) is unique largest
E-small essential submodule of UR, if UR is cyclic. Also in this paper we study BR(U) and WE (U).
The condition when BR(U) is E-small essential, and Tot ( U,U) = WE (U) = J(E) are given.

Keywords: Small submodule, Small essential submodules, E-small essential submodules,
Endomorphism ring.

1. Introduction

Throughout this treatise, all ring R is a associative with identity, and all module over a ring
R is unitary right module. Let UR will always denoted such an R-module and E is endomorphism
ring and denoted by E = End(UR) of ring module. The submodule W is called essential of UR (
denoted by: W ⊴ UR ) if 0 ̸= G ≤ UR, then W ∩ G ̸= 0 ( see [1] ), where the submodule G of UR

is denoted by (G ≤ UR).The submodule Q of UR is said small submodule (denoted by: Q ≪ UR), if
∀ W ≨ UR then Q +W = UR (see [2]). The left annihilator of an submodule Q of UR is denoted
by δE(Q), and the right annihilator of an endomorphism h of UR is denoted by kU(h), specifically
that Ker (h). We also denoted NE (Q) = {θ ∈ E | Imθ ⊆ Q} for each Q ⊆ U . Nicholson and Zhou
defined annihilator-small right ideals [5]. Also Amouzegar and Keskin introduced and study the
right annihilator-small submodules of an R-module. Let UR be an R-module and F ≤ UR, then
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F is a said to annihilator- small submodule if F + W = U , where W is a submodule of UR, so
δE (W ) = 0 [4]. From [7] the Zhouaud and Zhang, give a definition of small- essential submodules.
Let K be a submodule of a module UR, then K is called small-essential in UR( denoted by K ⊴E U , if
K ∩W = 0, with W ≪ UR implies that W = 0. In this paper we introduced new concept namely E-
small essential submodule, where a submodule Q of a module UR is called E-small essential (denoted
by Q ⊴E−s U) if Q ∩W = 0, for each W ≪ UR, implies that NE (Q) = 0, where E = End(UR). In
[7], essential submodule is small essential submodule. It is clearly that small essential submodule is
E-small essential, so every essential is E-small essential. Also give us the condition that makes every
E-small essential is essential ( see proposition 2.2 ), and every E-small essential is small essential (see
proposition 2.4 and 2.5 ). We have verified that the equality is correct for the following statement
Tot ( U,U) = WE (U) = J(E).

2. Main Results

Definition 2.1. Let Q be an submodule of a module UR, then Q is called E-small essential (denoted
by Q ⊴E−s U ) if Q∩W = 0, where W is small submodule of UR( or denoted by W ≪ UR ), implies
that NE (W ) = 0, where E = End(UR).

It is clearly that every small essential submodule is E-small essential submodule, but the opposite is
generally not true (meditation the submodule mZ of the Z-module Z).

The left R-module UR is called retractable if there exists a non-zero homomorphism β : U → Q
for each anon-zero submodule Q of UR.

Proposition 2.2. Let UR be an retractable R-module. If Q ⊴E−s UR, then Q ≤e UR.
Proof . Let Q ∩ F = 0, for an F ≤ UR, then by hypothesis NE (F ) = 0. But UR is retractable, then
F = 0, that mean Q ≤e UR.□

Corollary 2.3. If UR is retractable R-module and Q ⊴E−s UR, then Q ⊴s UR.

Proposition 2.4. Let UR be a cyclic and π-projective module. Then Q is small essential submodule
if and only if Q is E-small essential submodule of UR.
Proof . Let UR = uR for some u ∈ UR, and Q ⊴E−s UR. Let V ≪ UR, we put 0 ̸= v ∈ V , so
then there exists 0 ̸= n ∈ R, such that v = un, but UR = uR = unR + u (1− n)R, since UR is
π-projective then there exists β ∈ End(UR), with Imβ ⊆ unR ⊆ V , so Im(1− β) ⊆ (1− n)uR, that
is NE (V ) ̸= 0. As Q ⊴E−s UR, and Q∩ V ̸= 0. That mean Q ⊴E−s UR. The converse is evident. □

Proposition 2.5. Let UR be a cyclic R-module and R be a commutative ring. Then Q ⊴E−s UR if
and only if Q ⊴s UR.
Proof . Is evident. □

Lemma 2.6. Let UR be an R-module. If V ≤ Q ≤ UR, and Q ⊴E−s UR, then V ⊴E−s UR.
Proof . Is evident. □

Proposition 2.7. Let UR be an R-module. If Q ⊴E−s UR and F ⊴s UR, then Q ∩ F ⊴E−s UR.
Proof . Let Q ∩ F ∩ V = 0, where V ≪ UR. Since F ⊴s UR, that is Q ∩ V = 0 and NE (V ) = 0. □

Lemma 2.8. Let UR be a module, and Q be a submodule of UR if NE(Q) ⊴s EE, then NE(Q)UR ⊴E−s

UR. In specially, Q ⊴E−s UR.
Proof . Let NE (Q)UR ∩ V = 0, so NE (Q) ∩NE (V ) = 0, thus NE (V ) = 0. But NE(Q) ⊴s EE. So
that the last perception by (Lemma 2.6) and since NE(Q)UR ⊆ Q ⊆ UR always achieve. □
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Note that the converse of Lemma 2.8 is true if (NE (Q) ∩ vE)UR = NE (Q)UR ∩ vUR verified for
each submodule Q of UR, and all small element v ∈ E. And to watch it, let NE (Q) ∩ vE = 0, for
any small element v ∈ E. Thus NE (Q)UR ∩ vUR = 0, so NE (vUR) = 0. But NE(Q)UR ⊴E−s UR

and vE ⊆ NE (vUR) = 0, then v = 0. Hence NE(Q) ⊴s EE.
Recall that an R-module UR is called semi-injective if for each α ∈ E such that

Eα = δE (ker(α)) = δE (kU(α))

(equivalently for any monomorphism α : Q → U , where Q is a factor module of UR, and for any
homomorphism β : Q→ U , then there exists γ : U → U such that αγ = β ) [5, p. 261].

Lemma 2.9. Let us have the following situation for any R-module UR and u ∈ E:

(1) kU(u) ⊴E−s UR.
(2) kU (u) ⫋ kU (ur) for all 0 ̸= r ∈ E.
(3) kE (1E − au) = 0 for all 0 ̸= a ∈ E.
(4) kE (1E − ua) = 0 for all 0 ̸= a ∈ E.
(5) kE (u− uau) = kE (u) for all 0 ̸= a ∈ E.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5). If UR is semi-injective, then (5) =⇒ (1).
Proof . (1) =⇒ (2) Suppose that 0 ̸= r ∈ E, and kU (r) = kU (ur). It is clear that kU (u) ∩ rU = 0.
According to kU(u) ⊴E−s UR, and NE (rU) = 0, so rE ⊆ NE (rU) = 0. That is r = 0.
(2) =⇒ (3) Let a ∈ E, and r ∈ kE (1E − au), so r = aur, then kU (ur) ⊆ kU (aur) = kU (r).
Then by (2), hence r = 0.
(3) =⇒ (4) Let r ∈ kE (1E − ua), for all a ∈ E, thus (1E − ua) r = 0, that mean (1E − au) ar =
(a− aua) r = a (1E − ua) r = 0, implies that ar = 0 that by (3), then r = uar = 0.
(4) =⇒ (5) Let r ∈ kE (u− uau), for all a ∈ E, so by (4) ur = 0. Then r ∈ kE (u). Other
embedding in a similar way.
(5) =⇒ (1) S uppose that UR is semi-injective. Now, let kU (u) ∩ V = 0 for a small submodule
V of UR, and let r ∈ NE(V ), implies that rU ∩ kU (u) = 0, then kU (r) = kU (ur). But UR is
semi-injective, then thereesxists ahomomorphism v ∈ E such that r = vur, so (u− uvu) r = 0. Thus
r ∈ (u− uvu) = kE (u), then ur = 0, and hence r = 0. □

Note that we us define WE (U) = {u ∈ E| ker v = kU (u) ⊴E−s UR} for any module UR.

Corollary 2.10. Let UR be a module, and u ∈ WE (U). Thus Eu ⊆ WE (U). If UR is semi-injective,
then uE ⊆ WE (U).
Proof . Let r ∈ E, and UR is semi-injective, we most show that kU (ur) ⊴E−s UR. Now let v ∈ E,
since kU (u) ⊴E−s UR, then by Lemma 2.9(4) kE (1E − urv) = 0. Once again form Lemma 2.9(4)
kU (ur) ⊴E−s UR. Thus uE ⊆ WE (U). Now through the Lemma ??, we get Eu ⊆ WE (U). □

Corollary 2.11. We own WE (U) ⊆ δE (Soc (EE)). Furthermore, J(E) ⊆ WE (U), if UR is a semi-
injective.
Proof . Let w ∈ WE (U), and 0 ̸= u ∈ Soc(EE), we want to prove that 0 = wSoc(EE). Now
u ∈ E1 ⊕ E2 ⊕ · · · ⊕ En, where E1, E2, . . . , En are simple right ideal of E, and n is positive integer.
Suppose that wu ̸= 0 and u = u1 + u2 + · · ·+ un where as uj ∈ Ej for some j ∈ {1, 2, . . . , n}, then
wuj ̸= 0. As Ej is simple so Ewuj = Ej. Thus uj = βwuj for all β ∈ E. So uj ∈ kE (1E − βw),
but kU(w) ⊴E−s UR , then from Lemma2.9 kE (1E − βw) = 0, that is uj = 0. This is acontradiction.
So wu = 0, hence WE (U) ⊆ δE (Soc (EE)). Now let v ∈ J(E) and w ∈ E. We must prove
that v ∈ WE (U), we take β ∈ kE (1E − wv). Thus (1E − wv) = 0, but 1E − wv is invertible, so
β = 0. Then kE (1E − wv) = 0 for all w ∈ E. Hence from Lemma2.9 v ∈ WE (U), implies that
J(E) ⊆ WE (U). □
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Corollary 2.12. Let UR is a semi- injective module and h ∈ E. Then Kerh = kU(u) ⊴E−s UR if
and only if Eh ≪a EE.
Proof . Let h ∈ E and suppose that kU (h) ⊴E−sUR. Now let E = Eh + P , where P is an ideal of
E. So 1E = rh + q, where r ∈ E and q ∈ P , then kU (h) ∩ kU (q) = 0. But kU (h) ⊴E−sUR, then
NE (kU (q)) = 0. That is NE (kU (P )) = 0, hence kU (P ) = 0 implies that Eh ≪a EE. The converse,
suppose Eh ≪a EE, then from ( [4], Corollary 2.8 ) kE (h− hrh) = kE (h), for all r ∈ E. Then from
Lemma 2.9 kU (h) ⊴E−sUR. □

Corollary 2.13. Let UR be an R-module. If h2 = h ∈ WE (U), then h = 0.
Proof . We can see from the lemma2.9 (4) and kU (h) ⊴E−sUR, kE (1E − h) = 0, and since h ∈
kE (1E − h). Implies that h = 0. □

Corollary 2.14. Let P be an maximal-ideal of E, where E = End(UR) and UR be amodule. Then
the following ferries are equivalent:

1. PU ⊴E−s UR

2. P ≤e EE

Proof . (1) =⇒ (2) Let PU ⊴E−s UR Suppose that P is not essential of EE. Then P ∩K = 0, foe
some K is a non-zero ideal of EE. But P is amaximal ideal, that mean P is direct summand of EE.
So there exists idempotent element i ∈ EE such that P = iE. Then PU = iU = kE (1E − i) ⊴E−s UR.
Hence 1E − i ∈ WE (U). Then from ( Corollary 2.13 ) i = 1. This is acontradiction.
(2) =⇒ (1) Let P ≤eEE, and PU ∩ V = 0 for an small submodule V of UR. So 0 = NE (0) =
NE (PU) ∩NE (V ). Then P ∩NE (V ) = 0. But P ≤e EE, then NE (V ) = 0. □

Recall that the element h in E is called to be partially invertible if hE contains anon-zero idempotent,
where ( hE equivalent Eh ). Where an R-module UR the total of UR is defined as Tot (E) =
Tot (U,U) = {h ∈ E|h is not partially invertible}.
Unable to closed the total under addition. In effect, if 0 and 1 are the only idempotent in E, then
the total of UR is the set of non-isomorphism.

Proposition 2.15. Let UR be a module. Then WE (U) ⊆ Tot(U,U).
Proof . If h ∈ WE (U) and h /∈ Tot(U,U), implies that h is partially invertible then there exists
0 ̸= i2 = i ∈ Eh. So by (Corollary 2.10), i ∈ WE (U). Thus acontradicts to (Corollary 2.13). □

Let P is a subset of a ring R, then R is called to be P-semi-potent if every ideal not contained in P
contains anon-zero idempotent, equivalently if every element q /∈ P is a partial inverse R is said to
be semi-potent if R is J(R)-semi-potent.

Lemma 2.16. Let UR be a module, if P is a subset of E = End(UR). Then the following ferries are
equivalent:

1. E is P-semi-potent.

2. Tot(U,U) ⊆ P .

Proof . Is evident from ( [5], Lemma 20). □

Proposition 2.17. Let E = End(UR) for any R-module UR. Then E is a semi-potent if and only if
J (E) = Tot(U,U).
Proof . Is evident from ([5], Theorem 21). □
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Proposition 2.18. Let UR be asemi- injective R-module, and E = End(UR) is a semi-potent. Then
WE (U) = J (E) = Tot(U,U).
Proof . It is evident that J (E) ⊆ WE (U) by (Corollary 2.11 ). Let u ∈ WE (U), if u /∈ J(E)
and E is J(E)-semi-portent, then WE (U) have anon-zero idempotent which is a contradiction (we
can see corollary 2.13). Then J (E) = WE (U). Now from Proposition 2.15 WE (U) ⊆ Tot(U,U).
From other hand, E is WE (U)-semi-portent and since J (E) = WE (U). Hence form Lemma 2.16
Tot(U,U) ⊆ WE (U). □

Proposition 2.19. Let UR be asemi- injective R-module, and E = End(UR), where kE (u) = 0, for
all u ∈ E, such that Eu = E. Then WE (U) = J (E).
Proof . It is clear that from Corollary 2.11 J (E) ⊆ WE (U). Let x ∈ WE (U), then kU (x) ⊴E−sUR,
hence kE (1E − ux) = 0, for all u ∈ E, so from Lemma 2.9 then E (1E − ux) = E, thus by hypothesis
x ∈ J(E). Implies WE (U) ⊆ J (E). □

A ring R is said to be right Kasch if every simple right R-module embeds in R, this is rewarding, if
kR (V ) ̸= 0 for every maximal right ideal E of R. Associated R aleft ideal W2 ring if every left ideal
is isomorphic to direct of RR is itself a direct summand of RR

Lemma 2.20. Let UR be asemi- injective R-module. In each of the following statements, we have
WE (U) = J (E).

1. E is semi-potent.

2. E is right Kasch.

3. E is a left W2 ring.

Proof .

1. Is evident from Proposition 2.18

2. Let u ∈ E, then kE (u) = 0. If uE ̸= E, then by (2) kE (uE) = 0, that is kE (u) ̸= 0. This is a
contradiction. Hence from Proposition 2.19 WE (U) = J (E).

3. Let v ∈ E, then kE (v) = 0. If Ev = E, then by (3) Ev is a direct summand of E, so vxv = v,
for some element x ∈ E. Since 0 = kE (v) = kE (vx) = E (1E − vx). Hence vx = 1E and
vE = E, from Proposition 2.19, WE (U) = J (E).

□

Lemma 2.21. Let u = uR, where u ∈ U , and U be a cyclic R-module. Then the following are
equivalent for w ∈ U :-

1. wR ⊴E−s U

2. g(wR) ⫋ f(U), for all g ∈ E

3. kE (u− wn) = 0, for all n ∈ R.

Proof . (1) =⇒ (2) Let g (wR) = g(U), then g (wn) = g(u), for all n ∈ R, hence g ∈ kE (u− wn).
But wR + (u− wn)R = uR = U , then by (1) kE (u− wn) = 0. Therefore g = 0.
(2) =⇒ (3) Let g ∈ kE (u− wn), for all n ∈ R, so g (u) = g(wn) ⊆ g(wR) by (2). Therefore g = 0.
(3) =⇒ (1) If wR+ V = U , where V is small submodule of UR, then u = wn+ v , for all n ∈ R and
v ∈ V . Now let g ∈ kE (V ) that mean g (u) = g(wn). Hence by (3) g ∈ kE (u− wn) = 0. Therefore
g = 0. □

Note: Let UR be a module, we can defined BR (U) = ∩{D ⊆ UR|D ⊴E−s UR}. It is clearly that
BR (U) ⊆ Soc(U).
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Proposition 2.22. If UR is an retractable and semi- projective R-module, then BR (U) = Soc (U) =
Soc(EE)U .
Proof . From Corollary 2.3 BR (U) = Soc (U). Since UR is semi- projective, then from ([3],
Proposition 2.4), BR (U) = Soc (U) = Soc(EE)U .
Let UR be an R-module, an element c ∈ UR is called E-small essential if cR ⊴E−s UR. For simplicity,
we denoted CR (U) = {c ∈ U |c is a E-small essential in U} = {c ∈ U |cR ⊴E−s UR}. It is evident
that CR (U) ⊆ BR (U). □

Proposition 2.23. Let U = aR be a cyclic R-module, and X be a submodule of UR. Then the
following are equivalent:

1. X ⊴E−sUR

2. X ⊆ CR(U)

3. kE (u− a) = 0, for all a ∈ R.

Proof . (1) =⇒ (2) Fore Proposition 2.7.
(2) =⇒ (3) Let X + Y = U , where Y is small submodule of UR, u = x+ y, for all x ∈ X and y ∈ Y ,
then kE (Y ) ⊆ kE (u− x) = 0.
(3) =⇒ (1) According to the hypothesis(3). Therefore X ⊴E−sUR. □

Proposition 2.24. Let UR be an R-module, Then

1. BR (U) = {c1 + c2 + · · ·+ cn|cj ∈ CR (U) for each n, j are positive integer}.
2. BR (U) = CR (U)R.

Proof . (1) Let the set F = {c1 + c2 + · · ·+ cn|cj ∈ CR (U) for each n, j are positive integer}.
If c ∈ BR (U), then c ∈ F1 + F2 + · · · + Fn, where Fj ⊴E−sUR, for each n, j are positive integer. If
c = c1 + c2 + · · · + cn, cj ∈ Fj, implies that from Proposition 2.7 cjR ⊴E−sUR. Thus cj ∈ CR (U).

Hence BR (U) ⊆ F . Simply we can note that F ⊆ BR (U).
(2) Evident by fact, CR (U) ⊆ BR (U), and by (1). □

Proposition 2.25. Let UR be an R-module, consider the following expression:

1. If F ⊴E−sUR and H ⊴E−sUR, then F +H ⊴E−sUR.

2. CR (U) is closed under addition.

3. BR (U) = CR (U).

4. BR (U) ⊴E−s UR

Can we get (1) =⇒ (2) =⇒ (3) and (4) =⇒ (1) .
But (3) =⇒ (4) , it can obtained by adding if UR is cyclic R-module. In addition, if U = uR, where
u ∈ U one of the above-mentioned condition the following:

(i) BR (U) is the unique largest E-small essential of U .

(ii) BR (U) = {u ∈ U |kE (a− uw) = 0, for all w ∈ R}
(iii) BR (U) = ∩{G ⊆max U |BR (U) ⊆ G}

Proof . (1) =⇒ (2) Since (u+ v)R ⊆ uR + vR, so CR (U) is closed under addition by Prop. 2.7.
(2) =⇒ (3) It is obvious that CR (U) ⊆ BR (U), then from Proposition 2.24 (1), BR (U) ⊆ CR (U).
(3) =⇒ (4) Let U = uR, for some u ∈ U , and BR (U) + F = U , where F is a small submodule of
UR. Thus by (3) CR (U) + F = U . If u = v + w, where v ∈ CR (U) and w ∈ F .Thus U = vR + F ,
so vR ⊴E−s UR. Then kE (U) = 0. Hence BR (U) ⊴E−s UR.
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(4) =⇒ (1) Let F ⊴E−s UR and H ⊴E−s UR. Thus F ⊆ BR (U) and H ⊆ BR (U), then F + H ⊆
BR (U). Hence from Proposition 2.7 and by (4), implies that F +H ⊴E−sUR.
Now, (i) is evident by (4), and (ii) is evident from Lemma 2.21 and by (3). Finally (iii) if u ∈ BR (U),
so uR is not E-small essential by (3), then uR + F = U , for an small submodule F of UR, with
kE(U) ̸= 0, by (4) BR (U) ⊴E−s UR, then we have BR (U) + F ̸= U . If BR (U) + F ⊆ G ⊆max U ,
thus u /∈ U . This is prove of (iii). □

Proposition 2.26. Let UR be a module. consider the following expression:

1. BR (U) ⊴E−s UR

2. If F ⊴E−s UR and H ⊴E−s UR, then F ∩H ⊴E−s UR

Note (1) =⇒ (2) verified. As well if UR finitely cogenerated, hence (2) =⇒ (1)
Proof . (1) =⇒ (2) Let F ⊴E−s UR and H ⊴E−s UR, so BR (U) ⊆ F ∩ H, then from Lemma 2.8
F ∩H ⊴E−s UR.
(2) =⇒ (1) If UR finitely cogenerated, and let BR (U) ∩ F = 0, where F is a small submodule of UR,
then F1 ∩ F2 ∩ · · · ∩ Fn ∩H = 0, for some Ej ⊆ BR (U). Therefore NE (H) = 0. that by (1). □
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[4] T. A. Kalati and D.K. Tütüncü, Annihilator-small submodules, Bull. Iran Math. Soc. 39 (2013) 1053–1063.
[5] W. K. Nicholson and Y. Zhou, Annihilator-small right ideals, Algebra Colloq. 18 (2011) 785–800.
[6] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
[7] D.X. Zhan and X.R. Zhang, Small-Essential Submodule and Morita Duality, Southeast Asian Bull. Math. 35

(2021) 1051–1062.


	Introduction
	 Main Results

