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Abstract

In this paper, the dynamical behaviour of an epidemiological system has been investigated. A stage-
structured prey-predator model includes harvest and refuge for only prey, the disease of type (SIS)
is just in the immature of the prey and the disease is spread by contact and by external source has
been studied. The transmission of infectious disease in the prey populations has been described by
the linear type. While Lotka-Volterra functional response is used to describe the predation process
of the whole prey population. This model has been represented by a set of nonlinear differential
equations. The solution’s existence, uniqueness and boundedness have been studied. ”The local
and global stability conditions of all the equilibrium points” have been confirmed. As a final point,
numerical simulation has been used to study the global dynamics of the model.

Keywords: A stage-structured, Prey-predator, SIS disease, Refuge, Harvesting.

1. Introduction

The first model of prey and predators was a simple hypothesis by the famous Lotka and Volterra in
1925. More realistic predator and prey models have been created by ecologists and mathematicians.
Berryman considered in 1992 that dynamic interactions between prey and predator had become
one of the most important topics that play a major role in the social, technological sciences, the
mathematical, natural environment, particularly in research in ecology and biology. One of the
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fundamental topics in ecology is the relationship between prey density and reparative density [8].
In the relationship between predator and prey, there is an essential factor, which is the disease
that must be investigated in eco-epidemiology, which includes epidemiology and environment, to
see how disease affects on the densities of prey and predator. [7] considered the SI disease in prey
population which is transmitted from external sources and by contact between the prey individuals.
[10] investigated and analyzed the stability of an epidemiological system with diseases of types SI and
SIS in the prey population only, the diseases are transmited from external sources and by contact
between the preys’ individuals. [3] studied the infection dynamics of an SIS disease in predator-prey
systems which spread in both species by contact and by predation. and [18] studied prey refuge and
harvested modified Leslie-grower predator-prey model with SIS-disease in predator.

Researchers have taken great interest in the prey and predator system to make it more realistic,
by including stage structure, different types of functional responses, many types of diseases etc. . The
impacts of stage- structure, refuge in the predator- prey ecosystem are the essential topics in the last
years. A lot of researchers have been studies stage structure models like [23, 11, 9, 13, 5, 12, 17, 15].
Also a lot of researchers studied the impact of prey refuges on the dynamical system like [4, 24, 12, 1].

Harvesting has a direct and powerful effect on population dynamics, and there are several studies
that have dealt with this topic, such as [6, 21, 19, 2, 20]. [22] studied a food chain model with
SIS in prey only with harvesting on infected prey, and studied the predation of the first predator of
susceptible and the infected prey and the predition of the second predator of the first predator.
In this work ”an epidemiological mathematical system” involving of stage-structured in prey-predator
model, the prey stages is U(T ) = U1(T )+U2(T ) where U1(T ) is the immature prey and U2(T ) is the
mature prey, the model involving SIS disease in the immature prey [susceptible immature species
S(T) and infected immature species I(T), where U1(T ) = S(T ) + I(T ) ] with refuge and harvesting
in prey population and a predator V which is predate all kinds of the above preys. In fact, because
of the complexity of the proposed model mostly between the disease of immature prey and the
stage-structure of prey, it was difficult to find an example

of this model in the environment, but it was not hopeless, so with the help of a biologist, we
could find an example represented by prey is Sheep with the SIS disease in Lambs and the predator
is a Wolf, where the disease is Hemorrhagic fever.

2. The Mathematical Model

In this section, an epidemiological mathematical model has been suggested. The model includes
of a stage-structured in ”prey whose population density at time T is represented by” U(T ) and a
predator is represented by V (T ). The following assumptions are assumed for this model:

1. The population density of the prey consists of stage structured, the immature represented by
U1(T ) and the mature which represented by U2(T ), where U(T ) = U1(T ) + U2(T ) .

2. An epidemic of type SIS disease in the immature prey’s population which divides the population
into two classes, namely S(T) that represents the susceptible immature prey’s at time T and
I(T) that represents the infected immature prey’s at time T , where U1(T ) = S(T ) + I(T ).

3. This disease is transmitted through contact between S and I and through an external source,
it does not spread to the mature prey and predator. The proposed disease can be treated and
does not give immunity to the immature.

4. The immature prey depends on the mature prey on their feeding.
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The predator predate the immature (susceptible and infected) and the mature of prey by Lotka
Voltera of functional response. Also, this model involving refuge and harvesting, and the parameters
are described in Table 1.

Table 1: The model’s parameters

Parameters Symbolizing from a biological point of view

r > 0 The growth rate of immature’s prey.

K > 0 The carrying capacity of the susceptibleprey.

βi , i=1,2,3. The maximum predation rate (MPR) of the predator over
the susceptible, infected and the mature of prey respectively
which are outside refuge.

γj,j=1,2. The infection rate.

mi, i = 1, 2, 3 The refuge rate of the susceptible, infected and the mature
of prey respectively.

γ3 The recovering rate.

α > 0 The grown up rate of the immature into mature (in prey
population).

ηi, i = 1, 2, 3 The conversion rate of food from susceptible, infected and
the mature of prey respectively.

d The natural death rate of the predator.

θi, i = 1, 2, 3 The harvesting rate of the susceptible, infected and the ma-
ture of prey respectively.

According to these assumptions, we propose the model by ”first order non-linear differential
equations”.

dS

dT
= rU2

(
1−

U2

K

)
− αS − θ1S − β1 (1−m1)SV − γ1SI − γ2S + γ3I

dI

dT
= γ1SI + γ2S − γ3I − β2 (1−m2) IV − θ2I

dU2

dT
= αS − β3 (1−m3)U2V − θ3U2

dV

dT
= η1 (1−m1)SV + η2 (1−m2) IV + η3 (1−m3)U2V − dV

(2.1)

Note that, the model has eighteen ”parameters which make the analysis difficult, so to simplify
it, we reduced the number of them by using dimensionless variables and parameters” as follows:

t = rT, h1 =
S

K
, h2 =

I

K
, h3 =

U2

K
, h4 =

V

K
, p1 =

α

r
, p2 =

γ2

r
, p3 =

θ1

r
, p4 =

γ1K

r
, p5 =

γ3

r
,

p6 =
β1 (1−m1)K

r
, p7 =

β2 (1−m2)K

r
, p8 =

θ2

r
, p9 =

β3 (1−m3)K

r
, p10 =

θ3

r
, p11 =

η1 (1−m1)K

r
,
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p12 =
η2 (1−m2)K

r
, p13 =

η3 (1−m3)K

r
, p14 =

d

r
.

So the dimensional system (2.1) can be formulated as:

dh1

dt
= h3 (1− h3)− (p1 + p2 + p3)h1 − p4h1h2 + p5h2 − p6h1h4 = f̂1 (h1, h2, h3, h4)

dh2

dt
= p2h1 + p4h1h2 − p5h2 − p7h2h4 − p8h2 = f̂2 (h1, h2, h3, h4)

dh3

dt
= p1h1 − p9h3h4 − p10h3 = f̂3 (h1, h2, h3, h4)

dh4

dt
= p11h1h4 + p12h2h4 + p13h3h4 − p14h4 = f̂4 (h1, h2, h3, h4)

(2.2)

With h1 (0) ≥ 0 , h2 (0) ≥ 0 , h3 (0) ≥ 0 and h4 (0) ≥ 0. It is noticed that the parameters’
number have been reduced from eighteen in system (2.2) to fourteen in system (2.2). Clearly, the
”interaction functions of system (2.2) are continuous and have continuous partial derivatives on the
following positive four dimensional space”.

R4
+ =

{
(h1, h2, h3, h4) ∈ R3

+ : h1 (0) ≥ 0 , h2 (0) ≥ 0 , h3 (0) ≥ 0 , h4 (0) ≥ 0
}
. So, ”these func-

tions are lipschitzian on R4
+, and hence the solution of system (2.2) exists and unique. Moreover, all

the solutions of system (2.2) with positive initial conditions are uniformly bounded as proven in the
following theorem”.

Theorem 2.1. The solutions of the system (2.2) are uniformly bounded.
Proof . Let H (T ) = h1 (t) + h2 (t) + h3 (t) + h4 (t)

dH

dt
=

dh1

dt
+

dh2

dt
+

dh3

dt
+

dh4

dt
= h3 (1− h3)− p3h1 − p6h1h4 − p7h2h4 − p8h2−p9h3h4 − p10h3 + p11h1h4 + p12h2h4 + p13h3h4 − p14h4.

dH

dt
< h3 (1− h3)− (p6 − p11)h1h4 − (p7 − p12)h2h4 − (p9 − p13)h3h4 − p3h1 − p8h2 − p10h3 − p14h4.

So, dH

dt
< 1

4
−MH , where M = min {p3, p8, p10, p14} ,

dH

dt
+MH <

1

4
.

For the initial value H (0) = H0 and by the comparison Theorem [16]. It becomes:

H (t) <
1

4M
+

(
H0 −

1

4M

)
e−Mt.

Thus, limt→∞ H (t) ≤ 1
4M

, and therefore, 0 ≤ H ≤ 1
4M

, ∀t > 0 . □

3. Existence of Equilibrium Points (EPs)

In this section, all the (EPs) of system (2.2) have been found. System (2.2) has six (EPs) as
bellow:

1. The trivial (EP) A0 = (0, 0, 0, 0) always exists.
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2. The (EP) A1 =
(
h̃1, 0, h̃3, 0

)
where h̃1 = p10

p2
1

(p1 (1− p10)− p3p10) and h̃3 = p1(1−p10)−p3p10
p1

provided that:

p10 < 1, (3.1)

p3 <
p1 (1− p10)

p10
. (3.2)

Hence A1 =
(
h̃1, 0, h̃3, 0

)
exist under conditions (3.1) and (3.2)

3. The (EP) A2 =
(
h1, h2, h3, 0

)
where h3 is the unique solution of the equation :

a1h
2
3 + a2h3 + a3 = 0, (3.3)

where a1 = p1p4p10 > 0, a2 = −p1 (p1 (p5 + p8) + p4p10 [1− p10]) + p3p4p
2
10,

a3 = p1 [(p5 + p8) [p1 (1− p10)− p3p10]− p2p8p10] , and h1 = h1

(
h3

)
= p10h3

p1
,

h2 = h2

(
h3

)
= p2p10h3

p1(p5+p8)−p4p10h3

exists if in addition to condition (3.1) and (3.2) the following

conditions hold:

p1 (p1 (p5 + p8) + p4p10 [1− p10]) > p3p4p
2
10 (3.4)

(p5 + p8) [p1 (1− p10)− p3p10]

p10
> p2p8 (3.5)

Hence A2

(
h1, h2, h3, 0

)
and A3

(
h′

1, h′
2, h

′

3, 0
)
exist under conditions (3.4) and (3.5)

4. The free disease (EP) A4 = (ĥ1, 0, ĥ3, ĥ4) where ĥ4 is the unique solution of the equation:

b1h
3
4 + b2h

2
4 + b3h4 + b4 = 0, (3.6)

where

b1 = −p6p9 (p9p11 + p1p13) < 0,

b2 = (p9p11 + p1p13) (p1 + p3 + p6p10) + p6p9p10p11 > 0

b3 = (p9p11 + p1p13) [p1 (1− p10)− p10p3]− p10p11 (p9 (p1 + p3) + p6p10)− p21p14,

b4 = p10p11 [p1 (1− p10)− p10p3] ,

and ĥ3 = h3

(
ĥ4

)
=

p1−(p10+p9ĥ4)(p1+p3+p6ĥ4)
p1

, ĥ1 = h1

(
ĥ3, ĥ4

)
=

ĥ3(p10+p9ĥ4)
p1

exists if in

addition to condition (3.1) and (3.2) the following conditions hold :

p1 >
(
p10 + p9ĥ4

)(
p1 + p3 + p6ĥ4

)
, (3.7)

(p9p11 + p1p13) [p1 (1− p10)− p10p3] > p10p11 (p9 (p1 + p3) + p6p10) + p21p14. (3.8)

5. The coexistence (EP) A5 = (h∗

1, h
∗

2, h
∗

3, h
∗

4) exists if and only if the set of the following equations
have a positive solution:

h3 (1− h3)− (p1 + p2 + p3)h1 − p4h1h2 + p5h2 − p6h1h4 = 0, (3.9)

p2h1 + p4h1h2 − p5h2 − p7h2h4 − p8h2 = 0, (3.10)

p1h1 − p9h3h4 − p10h3 = 0, (3.11)

p11h1h4 + p12h2h4 + p13h3h4 − p14h4 = 0 (3.12)
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From equation (3.12) we have,

h3 =
p14 − p11h1 − p12h2

p13
. (3.13)

By substituting (3.13) in (3.11) we get

h4 =
p1p13h1 − p10 [p14 − p11h1 − p12h2]

p9 [p14 − p11h1 − p12h2]
. (3.14)

Now by substituting (3.13)and (3.14) in (3.9) and in (3.10) yield the following two isoclines:

F1 (h1, h2) = p9p
3
11h

3
1 + p9p

3
12h

3
2 + p9p

2
14(p13 − p14) + h1h2[p9p11p12 (p13 − 4p14 + 3p12h2)

+ p213 [p9 (p4 [p12h2 − 2p14]− p5p11)− p6p10p12]] + h2
1[p9p11h2

(
3p211p12 + p4p

2
13

)

+ p213[p9p11(p1 + p2 + p3)− p6(p1p13 + p10p11)]− 3p9p
2
11p13p14] + p14h1[p9p11(3p14 − 2p13)

− p213[p6p10 − p9(p1 + p2 + p3)]] + p9p12h
2
2[p12(p13 − 3p14)− p5p

2
13]

+ p9p12p14h2(3p14 − 2p13) = 0, (3.15)

F2 (h1, h2) = p2p9h1(p14 − p11h1) + h2[h1(p9[p4p14+p11(p5 + p7 + p8)−p7(p1p13 + p10p11)]− p4p9p11h1)

+ p12h2(p9[p5 + p7 + p8]− p7p10 − p9h1[p2 + p4]) + p14[p7p10 − p9(p5 + p7 + p8)]] = 0.
(3.16)

Now from (3.15) we observed that, when h2 → 0, h1 → h∗

1
′ , where h∗

1
′ is the unique solution of the

equation:
c1h

3
1+c2h

2
1 + c3h1 + c4 = 0, (3.17)

where c1 = p9p
3
11 > 0, c2 = p213 [p9p11 (p1 + p2 + p3)− p6 [p1p13 + p10p11]]− 3p9p

2
11p13p14 ,

c3 = p14 [p9p11 (3p14 − 2p13)− p213 [p6p10 − p9 (p1 + p2 + p3)]] , c4 = p9p
2
14 (p13 − p14) .

According to the following conditions

p9p11 (p1 + p2 + p3) > p6 [p1p13 + p10p11] , (3.18)

p213 [p9p11 (p1 + p2 + p3)− p6 [p1p13 + p10p11]] > 3p9p
2
11p13p14, (3.19)

3p14 > 2p13, (3.20)

p6p10 < p9 (p1 + p2 + p3) , (3.21)

p9p11 (3p14 − 2p13) > p213 [p9 (p1 + p2 + p3)− p6p10] , (3.22)

Further, from eq. (3.16) we notice that, when h2 → 0, then h1 → h∗

1 =
p14
p11

.

Now, from eq. (3.15) we have: dh1

dh2

= −

(
∂F1

∂h2

)

(
∂F1

∂h1

) . So dh1

dh2

< 0 if one of the following of conditions hold:

(
∂F1

∂h2

)
> 0,

(
∂F1

∂h1

)
> 0 or

(
∂F1

∂h2

)
< 0,

(
∂F1

∂h1

)
< 0. (3.23)

Further, from eq. (3.16) we we have: dh1

dh2

= −

(
∂F2

∂h2

)

(
∂F2

∂h1

) . So dh1

dh2

> 0 if one of the following of conditions

holds: (
∂F2

∂h2

)
> 0,

(
∂F2

∂h1

)
< 0 or

(
∂F2

∂h2

)
< 0,

(
∂F2

∂h1

)
> 0 (3.24)
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Then A4 = (h∗

1, h
∗

2, h
∗

3, h
∗

4) where h∗

3 = h3 (h
∗

1, h
∗

2) and h∗

4 = h4 (h
∗

1, h
∗

2) provided

p14 > p11h
∗

1 + p12h
∗

2 (3.25)

h∗

1 (p1p13 + p10p11) + p10p12h
∗

2 > p10p14. (3.26)

h∗

1 < h∗

1

′

. (3.27)

These are presents the conditions of existence of A5 = (h∗

1, h
∗

2, h
∗

3, h
∗

4) .

4. The Local Stability Analysis

In this section, by linearization method the stability analysis of all the (EPs) of system (2.2)
has been studied analytically. Note that; λih1

, λih2
, λih3

and λih4
denote the ”eigenvalues of the

Jacobian matrix (JM) Ji = J (Ai) ; i = 0, 1, 2, 3, 4, 5 which describe the dynamics in the direction of
h1, h2, h3 and h4 respectively. We can write” it for each (EPs)

Ji =





− (p1 + p2 + p3 + p4h2 + p6h4) p5 − p4h1 1− 2h3 −p6h1

p2 + p4h2 p4h1 − p7h4 − (p5 + p8) 0 −p7h2

p1 0 − (p9h4 + p10) −p9h3

p11h4 p12h4 p13h4 p11h1 + p12h2 + p13h3 − p14



 (4.1)

4.1. local stability of (EP) A0= (0,0,0,0)

The (JM) at A0 become

J0 = J (A0) =




− (p1 + p2 + p3)
p2

p5
− (p5 + p8)

p1
0

0
0

1
0

0
0

−p10
0

0
−p14


 (4.2)

The characteristic equation of J0 can be given by:

(λ+p14)
(
λ3 + S1λ

2 + S2λ+ S3

)
= 0

where S1 = p1+p2+p3+p5+p8+p10 > 0, S2 = p10 (p2 + p3 + p5 + p8)+(p1 + p3) (p5 + p8)+p1 (p10 − 1)+
p2p8, S3 = p10 (p2p8 + p3 (p5 + p8)) + p1 (p10 − 1) (p5 + p8) .
Now either

λ+p14 = 0, so λ0h4
= −p14 < 0. Or

λ3 + S1λ
2 + S2λ+ S3 = 0

(4.3)

Routh-Hurwitz principle have been used to find the roots of eq. (4.3) . So, all the roots of eq.(4.1a),
have real parts less than zero if and only if Si > 0, i = 1, 3 and ∆ = S1S2 − S3 > 0.
Through direct calculations shows that S3 > 0 by negating condition (3.1).
Also, ∆ = p1(p10 − 1)(p1 + (p5 + p8)(p2 + p3 + p5 + p8 + p10)− p5 − p8)
+ (p5 + p8) [p10(p1 − p3) + p1(p1 + p3)] + p2p10(p1 − p8) + p1(1 + p3p10) + p2p8 + (p2 + p3 + p5 + p8
+p10) [p10(p2p8 + p3(p5 + p8)) + p2p8] > 0, by negating condition (3.1) and the following condition
holds

p1 > max {p3 , p8} (4.4)

p1 + (p5 + p8) (p2 + p3 + p5 + p8 + p10) > p5 + p8 (4.5)

Thus, the (EP) A0 is local asymptotically stable (LAS).
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4.2. Local Stability of (EP) A1=
(
h̃1,0,h̃3,0

)

At A1the (JM) become

J1 = J (A1) = [aij]4×4

=




− (p1 + p2 + p3) p5 − p4h̃1 1− 2h̃3 −p6h̃1

p2 p4h̃1 − (p5 + p8) 0 0

p1 0 −p10 −p9h̃3

0 0 0 p11h̃1 + p13h̃3 − p14


 (4.6)

The characteristic equation of J1 can be given by:

(a44 − λ)
(
λ3 +K1λ

2 +K2λ+K3

)
= 0

where K1 = − [a11 + a22 + a33], K2 = a11 [a22 + a33]− a22a33 − a12a21 − a13a31,

K3 = a13a31a22+a33

(
p4h̃1 −

(p5+p8)(p1+p3)+p2p8
(p1+p3)

)
.

Now either a44 − λ = 0 so λ1h4
= a44 < 0 if the following condition holds

p11h̃1 + p13h̃3 < p14. (4.7)

Or λ3 +K1λ
2 +K2λ+K3 = 0 (4.8)

Routh-Hurwitz principle have been used to find the roots of eq. (4.8). So, all the roots of eq.(4.8),
have real parts less than zero if and only if Ki > 0, i = 1, 3 and ∆ = K1K2 −K3 > 0.
The direct calculations shows that Ki > 0, i = 1, 3 if the following conditions hold:

p4h̃1 < min

{
p5,

(p5 + p8) (p1 + p3) + p2p8

(p1 + p3)

}
, (4.9)

1 < 2h̃3 (4.10)

∆ = (a11 + a22 + a33) (a12a21 + a13a31 + a22a33 − a11 (a22 + a33)) + a33

(
(p5 + p8) (p1 + p3) + p2p8

(p1 + p3)
− p4h̃1

)

− a13a31a22 > 0,

if (4.9) and (4.10) and the following conditions hold

a12a21 + a22a33 < a11 (a22 + a33)− a13a31, (4.11)

(a11 + a22 + a33) (a12a21 + a13a31 + a22a33 − a11 (a22 + a33)) + a13a31a22

> a33

(
p4h̃1 −

(p5 + p8) (p1 + p3) + p2p8

(p1 + p3)

)
, (4.12)

Thus the (EP) A1 becomes (LAS).

4.3. Local Stability of (EP) A2

(
h1,h2,h3,0

)
and A3

(
h′

1,h′
2,h′

3,0
)

The (JM) at A2 is the same for A3 is become:

J2 = J (A2) = [nij]4×4

=




−
(
p1 + p2 + p3 + p4h2

)
p5 − p4h1 1− 2h3 −p6h1

p2 + p4h2 p4h1 − (p5 + p8) 0 −p7h2

p1 0 −p10 −p9h3

0 0 0 p11h1 + p12h2 + p13h3 − p14




(4.13)
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The characteristic equation of J2 can be given by:

(n44 − λ)
(
λ3 +D1λ

2 +D2λ+D3

)
= 0

where D1 = − (n11 + n22 + n33) , D2 = n22n33 + n11 (n22 + n33)− n12n21 − n13n31,

D3 = n13n31n22 − n33

(
p4h1 −

(p5+p8)(p1+p3)+p8(p2+p4h2)
(p1+p3)

)
.

Now either n44 − λ = 0 so λ2h4
= n44 < 0 if the following condition holds

p11h1 + p12h2 + p13h3 < p14 (4.14)

Or λ3 +D1λ
2 +D2λ+D3 = 0 (4.15)

Routh-Hurwitz principle have been used to find the roots of eq. (4.15) . So, all the roots of eq.
(4.15), have real parts less than zero if and only if Di > 0, i = 1, 3 and ∆ = D1D2 −D3 > 0.
The direct calculations shows that Di > 0, i = 1, 3 if the following conditions hold:

p4h1 < min

{
p5,

(p5 + p8) (p1 + p3) + p8(p2 + p4h2)

(p1 + p3)

}
(4.16)

2h3 > 1, (4.17)

∆ = (n11 + n22 + n33) (n12n21 + n13n31−n11 (n22 + n33)) > 0, if (4.14) and (4.15) and the following
condition holds:

n11 (n22 + n33)− n13n31 > n12n21. (4.18)

Thus, the (EP) A2 becomes (LAS) .

4.4. Local Stability of (EP) A4= (ĥ1,0,ĥ3,ĥ4)

At A4 the Jacobian matrix become:

J4 = J (A4) = [mij]4×4

=




(
p1 + p2 + p3 + p6ĥ4

)
p5 − p4ĥ1 1− 2ĥ3, m14 = −p6ĥ1

p2 p4ĥ1 − (p5 + p8)− p7ĥ4 0 0

p1 0 −
(
p10 + p9ĥ4

)
−p9ĥ3

p11ĥ4 p12ĥ4 p13ĥ4 0




(4.19)

Then the characteristic equation of J4 is given by:

λ4 + L1λ
3 + L2λ

2 + L3λ+ L4 = 0, (4.20)

where,

L1 = − (m11 +m22 +m33) ,

L2 = m11 (m22 +m33) +m22m33 −m12m21 −m13m31 −m14m41 −m43m34,

L3 = m43m34 (m11 +m22) +m14 [m41 (m33 +m22)−m21m42 −m31m43]−m33m11m22 +m12m21m33

+m13[p1p4ĥ1 + p9p11ĥ3ĥ4 − p1

(
p5 + p8 + p7ĥ4

)
],

L4 = m14[m33(m21m42 −m22m41) +m22m31m43] +m22m34(
p11 + p13

(
p1 + p2 + p3 + p6ĥ4

)

p11
− 2ĥ3)

+m21m34(m12m43 −m13m42).
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Routh-Hurwitz principle can be used to find the roots of eq.(4.20). So, all the roots of eq.(4.20) ,
have real parts less than zero if and only if Li > 0, i = 1, 3, 4 and ∆ = (L1L2 − L3)L3 −L2

1L4 > 0.
Through direct calculations shows that Li > 0, i = 1, 3, 4 if the following condition hold:

p4ĥ1 < p5 , (4.21)

p1p4ĥ1 + p9p11ĥ3ĥ4 < p1(p5 + p8 + p7ĥ4), (4.22)

m12m21m33 > m11m22m33 +m14 [m21m42 +m31m43 −m41 (m33 +m22)]−m43m34 (m11 +m22)

+m13

(
p1(p5 + p8 + p7ĥ4)− p1p4ĥ1 − p9p11ĥ3ĥ4

)
, (4.23)

1 < 2ĥ3 <
p11 + p13

(
p1 + p2 + p3 + p6ĥ4

)

p11
, (4.24)

m14 [m33 (m21m42 −m22m41) +m22m31m43] +m34m22



p11 + p13

(
p1 + p2 + p3 + p6ĥ4

)

p11
− 2ĥ3


 >

m21m34 (m13m42 −m12m43) (4.25)

∆ = q1 − q2 , where

q1 = (m11 +m22 +m33)(
[(

p1 + p3 + p10 + ĥ4 [p6 + p9]
)(

p4ĥ1 − p5 − p8 − p7ĥ4

)
− p2p8

−ĥ4

(
p2p7 + p6p11ĥ1

)
−
(
p1 + p2 + p3 + p6ĥ4

)(
p10 + p9ĥ4

)
− ĥ3

(
2p1 + p9p13ĥ4

)]
[m43m34(m11 +m22)

−m33(m11m22 −m12m21) +m14[m41 (m33 +m22)−m21m42 −m31m43] +m13(m31m22 −m41m34)]

− (m11 +m22 +m33)(m34

[[
p11 + p13

(
p1 + p2 + p3 + p6ĥ4

)] [
p5 + p8 + p7ĥ4 − p4ĥ1

]
+ p4ĥ1

[
2p11ĥ3

+p2p13]− p2

[
p5p13 + p12

(
2ĥ4 − 1

)]
+ 2p11ĥ4

(
p5 + p8 + p7ĥ4

)]
+m14(m33 [m21m42 −m22m41]

+m22m31m43))),

q2 = [m43m34(m11 +m22) +m14 [m41(m33 +m22)−m21m42 −m31m43]−m33(m11m22 −m12m21)

+m13(m31m22 −m41m34)]
2

∆ > 0 if conditions (4.21)-(4.24) and the following conditions hold
(
p1 + p3 + p10 + ĥ4 [p6 + p9]

)(
p4ĥ1 − p5 − p8 − p7ĥ4

)
< p2p8 + ĥ4

(
p2p7 + p6p11ĥ1

)

+
(
p1 + p2 + p3 + p6ĥ4

)(
p10 + p9ĥ4

)
+ ĥ3

(
2p1 + p9p13ĥ4

)
, (4.26)

[
p11 + p13

(
p1 + p2 + p3 + p6ĥ4

)] [
p5 + p8 + p7ĥ4 − p4ĥ1

]
+ p4ĥ1

[
2p11ĥ3 + p2p13

]
>

p2

[
p5p13 + p12

(
2ĥ4 − 1

)]
+ 2p11ĥ4

(
p5 + p8 + p7ĥ4

)
, (4.27)

m34

[[
p11 + p13

(
p1 + p2 + p3 + p6ĥ4

)] [
p5 + p8 + p7ĥ4 − p4ĥ1

]
+ p4ĥ1

[
2p11ĥ3 + p2p13

]

−p2

[
p5p13 + p12

(
2ĥ4 − 1

)]
+ 2p11ĥ4

(
p5 + p8 + p7ĥ4

)]
> m14 (m33 [m22m41 −m21m42]−m22m31m43)

(4.28)

q1 > q2 (4.29)

Thus, the (EP) A4(ĥ1, 0, ĥ3, ĥ4) becomes (LAS) .
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4.5. local stability of (EPS) A5=(h∗

1
,h∗

2
,h∗

3
,h∗

4
)

The JM at A5, can be written as:

J5 = J (A5) = [rij]4×4

=




− (p1 + p2 + p3 + p4h
∗

2 + p6h
∗

4) p5 − p4h
∗

1 1− 2h∗

3 −p6h
∗

1

p2 + p4h
∗

2 p4h
∗

1 − (p5 + p8)− p7h
∗

4 0 −p7h
∗

2

p1 0 − (p9h
∗

4 + p10) −p9h
∗

3

p11h
∗

4 p12h
∗

4 p13h
∗

4 0




(4.30)

Then the characteristic equation of J4 is given by:

λ4 + E1λ
3 + E2λ

2 + E3λ+ E4 = 0, (4.31)

where

E1 = − (r11 + r22 + r33) ,

E2 = r11 (r22 + r33) + r22r33 − r12r21 − r13r31 − r34r43 − r14r41 − r24r42,

E3 = r34r43(r11 + r22) + r24r42 (r11+r33) + r14r41 (r22 + r33) + r33 [(p2 + p4h
∗

2) (p8 + p7h
∗

4)

− (p1 + p3 + p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4) ] + r31(r13r22 − r14r43)− r14r21r42 − r41(r12r42 + r13r34)

E4 = r34r43 ([(p2 + p4h
∗

2) (p8 + p7h
∗

4)− (p1 + p3 + p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4)) + r42r33 (r14r21 − r11r24)

+ r12r24 (r41r33 − r31r43) + r14r22 (r31r43 − r41r33) + r13r24r42r41 + r13r34 (r22r41 − r21r42) .

Routh-Hurwitz principle can be used to find the roots of eq. (4.31) . So, all the roots of eq.(4.31),
have real parts less than zero if and only if Ei > 0, i = 1, 3, 4 and ∆ = (E1E2 − E3)E3 −E2

1E4 > 0.
Through direct calculations shows that Ei > 0, i = 1, 3, 4 if the following conditions hold:

p5 > p4h
∗

1, (4.32)

1 < 2h∗

3, (4.33)

(p2 + p4h
∗

2)(p8 + p7h
∗

4) > (p1 + p3 + p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4) , (4.34)

r34r43[r11 + r22] + r24r42 (r11+r33) + r14r41 (r22 + r33) + r33 [(p2 + p4h
∗

2) (p8 + p7h
∗

4)− (p1 + p3

+ p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4) ] + r31 (r13r22 − r14r43)− r14r21r42 > r41 (r12r42 + r13r34) , (4.35)

r34r43 ((p2 + p4h
∗

2) (p8 + p7h
∗

4)− (p1 + p3 + p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4)) + r42r33 (r14r21 − r11r24)

+ r12r24 (r41r33 − r31r43) + r14r22 (r31r43 − r41r33) + r13r24r42r41 > r13r34 (r21r42 − r22r41) (4.36)

∆ = u1 − u2, where

u1 = (r11 + r22 + r33) [(r13r31 + r34r43 + r12r21 + r14r41 + r24r42 − r11(r22 + r33)− r22r33)(r34r43)(r11 + r22)

+r42r24(r11 + r33)− r14r21 + r41(r14 (r22 + r33)− r12r42 − r13r34)

+r33 ((p2 + p4h
∗

2)(p8 + p7h
∗

4)− (p1 + p3 + p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4)) ((p2 + p4h
∗

2)

(p8 + p7h
∗

4)− (p1 + p3 + p6h
∗

4 )(p4h
∗

1 − p5 − p8 − p7h
∗

4)) + r31 (r13r22 − r14r43)

+(r11 + r22 + r33)(r34[r43((p2 + p4h
∗

2) (p8 + p7h
∗

4)− (p1 + p3 + p6h
∗

4 )(p4h
∗

1

−p5 − p8 − p7h
∗

4)) + r13 (r21r42 − r22r41)]

+r42 [r33 (r11r24 − r14r21)− r13r24r14] + r12r24 (r31r43 − r41r33) + r14r22[r41r33 − r31r43])]] ,

u2 = [r34r43(r11 + r22) + r42(r24(r11+r33)− r14r21) + r41(r14(r22 + r33)− r12r42 − r13r34)

+r33((p2 + p4h
∗

2)(p8 + p7h
∗

4)− (p1 + p3 + p6h
∗

4)(p4h
∗

1 − p5 − p8 − p7h
∗

4)) + r31(r13r22 − r14r43)]
2
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∆ > 0 if in addition to conditions (4.32)- (4.36), the following condition hold

u1 > u2 (4.37)

Thus, the (EP) A5 (h
∗

1, h
∗

2, h
∗

3, h
∗

4) is (LAS) .

5. Global Stability Analysis (GS)

In this section, by Lyapunov method the (GS) analysis for the (LAS) (EPs) have been considered
analytically as in the next theorems

Theorem 5.1. Assume that A0 = (0, 0, 0, 0) is the (LAS) in the R4
+. Then A0 is global asymptoti-

cally stabile (GAS) if the following condition hold:

h3 ≥ 1 (5.1)

Proof . Suggest the following function

V̂0 (h1, h2, h3, h4) = h1 + h2 + h3 + h4

Clearly V̂0 : R4
+ → R is a C1 ”positive definite function. Then by differentiating V̂0 for time t and

by some algebraic manipulation ” we get:

dV̂0

dt
=

dh1

dt
+

dh2

dt
+

dh3

dt
+

dh4

dt
= h3 (1− h3)− p3h1 − p6h1h4 − p7h2h4 − p8h2−p9h3h4 − p10h3 + p11h1h4 + p12h2h4 + p13h3h4 − p14h4,

dV̂0

dt
< h3 (1− h3)− p3h1 − p8h2 − p10h3 − p14h4 − (p6 − p11)h1h4 − (p7 − p12)h2h4 − (p9 − p13)h3h4,

(5.2)

By the biological facts p6 > p11 , p7 > p12 and p9 > p13 we get

dV̂0

dt
< h3 (1− h3)− p3h1 − p8h2 − p10h3 − p14h4 (5.3)

Now according to the condition (5.1)

dV̂0

dt
< 0. (5.4)

Hence A0 is a (GAS). □

Theorem 5.2. Assume that A1 =
(
h̃1, 0, h̃3, 0

)
is (LAS) in the R4

+. Then A1 is (GAS) if that the
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following conditions hold:




√√√√ h̃3

(
1− h̃3

)

h1h̃1

(
h1 − h̃1

)
−

√
p1h̃1

h3h̃3

(
h3 − h̃3

)



2

+ p8h2 + h4

(
p14 − p9h̃3

)
+

(
p4h1 − p5

h1

)
h2h̃1 >

p2h1 + p6h̃1h4, (5.5)

p4h1 < p5 , (5.6)

p9h̃3 < p14, (5.7)

1 > h̃3, (5.8)

1−
(
h3 + h̃3

)

h1

+
p1

h3

< 2

√√√√p1

(
1− h̃3

)

h1h3

. (5.9)

Proof . Suggest the following function

V̂1 (h1, h2, h3, h4) =

(
h1 − h̃1 − h̃1 ln

h1

h̃1

)
+ h2 +

(
h3 − h̃3 − h̃3 ln

h3

h̃3

)
+ h4

Clearly V̂1 : R4
+ → R is a C1 ”positive definite function. Then by differentiating V̂1 for time t and

by some algebraic manipulation ” we get:

dV̂1

dt
= −

(
h1 − h̃1

)2


h̃3

(
1− h̃3

)

h1h̃1


+

(
h1 − h̃1

)(
h3 − h̃3

)


1−

(
h3 + h̃3

)

h1

+
p1

h3


−

p1h̃1

h3h̃3

(
h3 − h̃3

)2

− h1h4 (p6 − p11)− h2h4 (p7 − p12)− h3h4 (p9 − p13) + p2h1 − p8h2 + h4

(
p9h̃3 − p14

)
+ h̃1h2

[
p4 −

p5

h1

]

+ p6h̃1h4, (5.10)

By the biological facts p6 > p11 , p7 > p12 and p9 > p13 we get

dV̂1

dt
< −

(
h1 − h̃1

)2


h̃3

(
1− h̃3

)

h1h̃1


+

(
h1 − h̃1

)(
h3 − h̃3

)


1−

(
h3 + h̃3

)

h1

+
p1

h3


−

p1h̃1

h3h̃3

(
h3 − h̃3

)2

+ p2h1 − p8h2 + h4

(
p9h̃3 − p14

)
+ h̃1h2

[
p4 −

p5

h1

]
+ p6h̃1h4, (5.11)

Now according to the conditions (5.8) and (5.9)

dV̂1

dt
< −




√√√√ h̃3

(
1− h̃3

)

h1h̃1

(
h1 − h̃1

)
−

√
p1h̃1

h3h̃3

(
h3 − h̃3

)



2

+ p2h1 − p8h2 + h4

(
p9h̃3 − p14

)

+

(
p4h1 − p5

h1

)
h̃1h2 + p6h̃1h4 (5.12)

Now according to the condition (5.5) - (5.7) we have dV̂1

dT
< 0.

Hence A1 is a (GAS). □
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Moreover since there are two (EPs) A2

(
h1, h2, h3, 0

)
and A3

(
h′

1, h
′

2, h′
3, 0
)

in the interior of R+
4

having exactly the same conditions of local stability but with various neighborhood of starting points
then it is impossible to studying the global stability of them using Lyapunove function. So we will
study it numerically instead of analytically as shown in the next section.

Theorem 5.3. Assume that the (LAS) A4 = (ĥ1, 0, ĥ3, ĥ4) in the R4
+. Then A4 is (GAS) if the

following conditions hold :

p8 + p12ĥ4 +
p5ĥ1

h1

> p4ĥ1 (5.13)




√√√√ ĥ3

(
1− ĥ3

)

h1ĥ1

(
h1 − ĥ1

)
−

√
p1ĥ1

h3ĥ3

(
h3 − ĥ3

)



2

+ h2

(
p8 + p12ĥ4 −

ĥ1 (p4h1 − p5)

h1

)
> p2h1,

(5.14)

1 > ĥ3 > 1− h3, (5.15)

1−
(
h3 + ĥ3

)

h1

+
p1

h3

< 2

√√√√p1

(
1− ĥ3

)

h1h3

. (5.16)

Proof . Suggest the following function

V̂2 (h1, h2, h3, h4) =

(
h1 − ĥ1 − ĥ1 ln

h1

ĥ1

)
+ h2 +

(
h3 − ĥ3 − ĥ3 ln

h3

ĥ3

)
+

(
h4 − ĥ4 − ĥ4 ln

h4

ĥ4

)
.

Clearly V̂2 : R4
+ → R is a C1 ”positive definite function. Then by differentiating V̂2 for time t and

by some algebraic manipulation ” we get:

dV̂2

dt
= −

(
h1 − ĥ1

)2


ĥ3

(
1− ĥ3

)

h1ĥ1


+

(
h1 − ĥ1

)(
h3 − ĥ3

)


1−

(
h3 + ĥ3

)

h1

+
p1

h3


−

p1ĥ1

h3ĥ3

(
h3 − ĥ3

)2

− (p7 − p12)h2ĥ4 − (p9 − p13)
(
h3 − ĥ3

)(
h4 − ĥ4

)
− (p6 − p11)

(
h1 − ĥ1

)(
h4 − ĥ4

)

− h2

(
p8 + p12ĥ4

)
+ p2h1 + h2ĥ1

(
p4h1 − p5

h1

)
. (5.17)

By the biological facts p6 > p11 , p7 > p12 and p9 > p13 we get

dV̂2

dt
< −

(
h1 − ĥ1

)2


ĥ3

(
1− ĥ3

)

h1ĥ1


+

(
h1 − ĥ1

)(
h3 − ĥ3

)


1−

(
h3 + ĥ3

)

h1

+
p1

h3


−

p1ĥ1

h3ĥ3

(
h3 − ĥ3

)2

− h2

(
p8 + p12ĥ4

)
+ p2h1 + h2ĥ1

(
p4h1 − p5

h1

)
(5.18)

Now according to the conditions (5.15) and (5.16) we have

dV̂2

dt
≤ −




√√√√ ĥ3

(
1− ĥ3

)

h1ĥ1

(
h1 − ĥ1

)
−

√
p1ĥ1

h3ĥ3

(
h3 − ĥ3

)



2

− h2

(
p8 + p12ĥ4 −

ĥ1 (p4h1 − p5)

h1

)
+ p2h1

(5.19)
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Now according to the conditions (5.13) and (5.14) we have dV̂2

dT
< 0. Hence A4 is a (GAS). □

Theorem 5.4. Assume that the (LAS) A5 = (h∗

1, h
∗

2, h
∗

3, h
∗

4) in the R4
+. Then A5 is (GAS) if the

following conditions hold :

h1 > h∗

1, (5.20)

h3 > h∗

3, (5.21)

h3 (h3 + h∗

3 − 1) > p1h1, (5.22)

1 > h∗

3 > 1− h3, (5.23)

p5h2 + p2h1

h1h2

< 2

√
p2 [h∗

3 (1− h∗

3) + p5h
∗

2]

h1h2h
∗

2

. (5.24)

Proof . Suggest the following function

V̂3 (h1, h2, h3, h4) =

(
h1 − h∗

1 − h∗

1 ln
h1

h∗

1

)
+

(
h2 − h∗

2 − h∗

2 ln
h1

h∗

2

)
+

(
h3 − h∗

3 − h∗

3 ln
h3

h∗

3

)

+

(
h4 − h∗

4 − h∗

4 ln
h4

h∗

4

)
. (5.25)

Clearly V̂3 : R4
+ → R is a C1 ”positive definite function. Then by differentiating V̂3 for time t and

by some algebraic manipulation” we get:

dV̂3

dt
= − (h1 − h∗

1)
2

(
h∗

3 (1− h∗

3) + p5h
∗

2

h1h
∗

1

)
+

p5h2 + p2h1

h1h2

(h1 − h∗

1) (h2 − h∗

2)−
p2h

∗

1

h2h
∗

2

(h2 − h∗

2)
2

+

[
1− (h3 + h∗

3)

h1

+
p1

h3

]
(h1 − h∗

1) (h3 − h∗

3)−
p1h

∗

1

h3h
∗

3

(h3 − h∗

3)
2 − (p6 − p11) (h1 − h∗

1) (h4 − h∗

4)

− (p7 − p12) (h2 − h∗

2) (h4 − h∗

4)− (p9 − p13) (h3 − h∗

3) (h4 − h∗

4) . (5.26)

By the biological facts p6 > p11 , p7 > p12 and p9 > p13 we get

dV̂3

dt
< − (h1 − h∗

1)
2

(
h∗

3 (1− h∗

3) + p5h
∗

2

h1h
∗

1

)
+

p5h2 + p2h1

h1h2

(h1 − h∗

1) (h2 − h∗

2)−
p2h

∗

1

h2h
∗

2

(h2 − h∗

2)
2

+

[
1− (h3 + h∗

3)

h1

+
p1

h3

]
(h1 − h∗

1) (h3 − h∗

3)−
p1h

∗

1

h3h
∗

3

(h3 − h∗

3)
2 (5.27)

Now according to the conditions (5.23) and (5.24), we have

dV̂3

dt
< −

[√
h∗

3 (1− h∗

3) + p5h
∗

2

h1h
∗

1

(h1 − h∗

1)−

√
p2h

∗

1

h2h
∗

2

(h2 − h∗

2)

]2
−

p1h
∗

1

h3h
∗

3

(h3 − h∗

3)
2

+

[
1− (h3 + h∗

3)

h1

+
p1

h3

]
(h1 − h∗

1) (h3 − h∗

3) (5.28)

Now according to the conditions (5.20)- (5.22), we have dV̂3

dT
< 0. Hence A5 is a (GAS). □
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6. Numerical Simulation

In this section, the earlier results are proven ” numerically by Runge-Kutta method with predictor-
corrector method. Note that, we used MATLAB for plotting and turbo C++ for programming and
then the results obtained were discussed. For one set of parameters and different initial points system
(2.2) has been studied numerically. It is observed that, for the set of parameters eq. (6.1) that is
satisfies the conditions of existence of the positive (EP) system (2.2) has a (GAS) positive (EP)”.

p1 = 0.5, p2 = 0.6, p3 = 0.002, p4 = 0.4, p5 = 0.9, p6 = 0.1, p7 = 0.2,
p8 = 0.1, p9 = 0.1, p10 = 0.06, p11 = 0.09, p12 = 0.1, p13 = 0.09, p14 = 0.1

}
(6.1)

The solution of system (2.2) is a (GAS) which converges to A5(0.259, 0.136, 0.720, 1.243). It starts
from four different initial points (0.9, 0.3, 1, 1) , (1.3, 0.5, 0.4, 0.9) , (0.1, 0.7, 0.5, 1) and (0.6, 0.1, 0.3, 4),
this approves our analytical result that was achieved.

To discuss the behaviour of the dynamicl system and the effect of the parameters on it, we change
only one parameter at a time from the given data in (6.1) and Table 2, shows the results for the
affected parameters pi, i = 1, 2, 3, 8, 10, 11, 12, 13 and 14 .

Table 2: The affected parameters

Parameter’s Range Converge to Parameter’s Range Converge to

0.01 ≤ p1 < 0.63 A5 0.63 ≤ p1 < 0.98 A2

0.01 ≤ p2 < 0.25 A2 0.25 ≤ p2 ≤ 1 A5

0.001 ≤ p3 < 0.2 A5 0.2 ≤ p3 < 1 A2

0.01 ≤ p8 < 0.36 A5 0.36 ≤ p8 < 1 A2

0.001 ≤ p10 < 0.55 A5 0.55 ≤ p10 < 0.9 A2

0.9 ≤ p10 < 1 A0

0.01 < p11 ≤ 0.064 A2 0.064 < p11 ≤ 0.09 A5

0.01 ≤ p12 < 0.057 A2 0.057 ≤ p12 ≤ 0.1 A5

0.01 ≤ p13 < 0.085 A2 0.085 ≤ p13 ≤ 0.09 A5

0.01 ≤ p14 < 0.105 A5 0.105 ≤ p14 < 1 A2
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But Table 3 shows that the unaffected parameters pi, i = 4, 5, 6, 7 and 9.

Table 3: The unaffected parameters

Parameter’s Range Converge to Parameter’s Range Converge to

0.01 ≤ p4 ≤ 1 A5 0.2 ≤ p7 ≤ 1.5 A5

0.01 ≤ p5 < 1 A5 0.1 ≤ p9 ≤ 1.5 A5

0.1 ≤ p6 ≤ 1.5 A5

Now Figure 1. shows changing the harvesting rate of the mature of prey p10. As it is noticed in
Table 2.

Figure 1: (a) Time series (TS) of the solution converges to A5 = (0.309, 0.189, 0.592, 0.532), for
typical value p10 = 0.1. (b) (TS) of the solution converges to A2 = (0.283, 0.192, 0.202, 0) , for typical
value p10 = 0.7. (c) (TS) of the solution converges to A0 = (0, 0, 0, 0) , for typical value p10 = 0.99.

Now, changing only the parameters p2, p4, p7, p8, p12 and p14 at the same time with the rest of
parameters as in equation (6.1), it is noticed that for 0.001 ≤ p2 < 0.006 , 0.001 ≤ p4 < 0.14 ,0.85 ≤
p7 < 1, 0.71 ≤ p8 < 1, 0.001 ≤ p12 < 0.7 and 0.01 ≤ p14 < 0.093 ”the solution converges to” A4 as
seen in Figure 2., for typical value p2 = 0.01 , p4 = 0.1, p7 = 0.9, p8 = 0.9 , p12 = 0.01 and p14 =
0.09 .

Figure 2: (TS) of the solution converges to A4 = (0.318, 0, 0.682, 1.729) for typical value p2 =
0.01 , p4 = 0.1, p7 = 0.9, p8 = 0.9, p12 = 0.01 and p14 = 0.09

Now, varying only the parameters p2, p4, p8 , p11and p13 at the same time with the rest of param-
eters as in equation (6.1), it is observed that for 0.001 ≤ p2 < 0.0013, 0.001 ≤ p4 < 0.0013, 0.23 ≤
p8 < 1, 0.001 ≤ p11 < 0.05 and 0.01 ≤ p13 < 0.106 ”the solution converges to” A1 as seen in Figure
3. for typical value p2 = 0.001, p4 = 0.01, p8 = 0.5, p11 = 0.01 and p13 = 0.1 .
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Figure 3: (TS) of the solution converges to A1 = (0.113, 0, 0.940, 0) for typical value p2 = 0.001, p4 =
0.01, p8 = 0.5, p11 = 0.01 and p13 = 0.1.

7. Discussion and Conclusions

In this work, a stage-structured prey-predator model includes harvest and refuge for only prey
has been studied. The disease of type (SIS) is just in the immature of the prey, and the disease is
spread by contact and by external source has been suggested. The transmission of infectious disease
in prey population has been described by the linear type. While Lotka-Volterra functional response
is used to describe the predation process of the whole prey population. System (2.2) has been solved
numerically for one initial point and one set of parameters given by (6.1). This model by a set of
differential nonlinear equations has been represented, and we obtained that:

1. For the set of parameters given that we have proposed in (6.1) the system (2.2) has no periodic
solution.

2. For the set of parameters given in equation (6.1), the most effectiveness parameters on the
stability of system (2.2) are p1, p2, p3, p8 , p10 , p12, p11, p13and p14. Varying only the parameters
p2, p4p7, p8, p12 and p14 at the same time with the rest of parameters as in equation (6.1) it is
noticed that for 0.001 ≤ p2 < 0.006 ,0.001 ≤ p4 < 0.14 ,0.85 ≤ p7 < 1, 0.71 ≤ p8 < 1, 0.001 ≤
p12 < 0.7 and 0.01 ≤ p14 < 0.093 ”the solution converges to” A4 .

3. Changing only the parameters p2, p4, p8, , p11, p13 and p14 at the same time with the rest of
parameters as in equation (6.1), it is observed that for 0.001 ≤ p2 < 0.0013 ,0.001 ≤ p4 <

0.0013, 0.23 ≤ p8 < 1, 0.001 ≤ p11 < 0.05 and 0.01 ≤ p13 < 0.106 ”the solution converges
to” A1.
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