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Abstract

A mathematical model for the control of the banana weevil Cosmopolites Sordidus (Germar) by
predatory ant species is formulated and analyzed. The model incorporates predator switching to a
non-dynamic alternative food source, optimal foraging theory and self regulation in both the banana
weevil and predatory-ant species! Using Lyapunov’s first method, the local stability of the equilibria
is established. Furthermore, conditions for the existence of the interior equilibrium are derived and
its global stability established by the Bendixson–Dulac criterion with periodic orbits ruled out by the
Poincare–Bendixson theorem. It is determined that intrinsic growth rates and carrying capacities
rather than handling time and nutritional value have significant impact on the banana weevils–
predatory ant interaction. Numerical simulations confirm the theoretical results.
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1. Introduction

One of the main challenges of the 21st century is the steady provision of food to the ever increas-
ing global population. Overcoming this challenge partly entails protecting food crops from pests and
diseases now becoming more profound due to increased international travel and trade and changing
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environmental and climatic conditions. Globally, pests are a major cause of plant yield losses. For
example, Oerke and Dehne [19] estimate that about 32% of global crop yield is lost to pests.

Bananas are of particular significance in the fight against global hunger and poverty especially in
least developed, low income, food deficit countries where they contribute not only to food security
as a staple food crop but also to income generation as a cash crop. In Eastern Africa, one of the
largest producers and consumers of bananas, the banana weevil Cosmopolites sordidus (Germar), is
the single most significant pest of bananas. It has been credited with the decline and disappearance
of the popular East African highland cooking bananas from their traditional growing areas of central
Uganda and western Tanzania thereby heralding a shift to the more resistant beer varieties and other
crops such as cassava, maize and potatoes [12]. Furthermore, it has been identified as the principal
vector of banana xanthomonas wilt –the disease that has, in the past decade, ravaged plantations in
the region putting millions of livelihoods at the risk of starvation and economic ruin [27].
The banana weevil is an evasive pest; the adult is free living and nocturnal while the juvenile stages
(i.e. the larva and pupa) reside well inside the corm and are largely inaccessible. This lifestyle is
partly responsible for the futile attempts at its complete eradication. The adult lays eggs in the leaf
sheaths at the plant base and upon hatching, the larvae tunnel into the corm. Tunneling interferes
with root initiation and water and nutrients uptake thereby compromising the plant stability culmi-
nating into snapping and toppling, smaller bunch sizes, delayed maturation and mat die–out.

Presently, a number of management strategies against the banana weevil are practiced namely:
cultural control practices such as use of clean planting materials, trapping and crop sanitation; grow-
ing resistant varieties; use of natural enemies and application of pesticide –which is always the last
advisable option given that pesticides may have adverse effects to the environment, may be unaf-
fordable to poor farmers who form the majority in developing countries in addition to the risk of
pests developing resistance to particular pesticides. Singly, these control measures may not amount
to much but as a complete package in a framework called integrated pest management (IPM), some
degree of success can be registered. IPM is widely employed in pest suppression and involves use of
all suitable measures in combination in ways that complement each other.

Biological control measures against plant pests are highly recommended worldwide especially in
mitigating the effects of pesticide use. When available, biological control is the most desirable as
it is not only environmentally friendly but also requires little or no investment on the part of the
farmer. The banana weevil along with its host–the banana plant, are believed to be originated in the
Indo-Malay region of south east Asia from which it spread to all the world’s major banana producing
regions. While the pest is economically significant in other regions including East Africa, it is not
so significant in it’s reported area of origin. This has been attributed to the presence of co-evolved
natural enemies. Biological control of the banana weevil has registered mixed results. In Cuba,
myrmicine ant species reportedly reduced banana weevil numbers in heavily infested plantations [20]
while in Fiji use of the predatory beetle, Plaesius Javanus imported from Java, Indonesia successfully
controlled banana weevil infestation [26]. This success has however not been reciprocated elsewhere.
Attempts to introduce these agents in other regions including East Africa failed probably due to low
release numbers and failure to establish.

This notwithstanding, a number of studies to identify potential predators of the banana weevil
in East Africa and elsewhere have been undertaken. Abera [2] carried out studies in Uganda to
identify potentially important predators of the banana weevil and found several ant species. Two
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such species, Odontomachus troglodytes Santschi and Pheidole sp.2, demonstrated ability to remove
eggs from naturally infested corms and residues. In a further field trial to experimentally evaluate
the impact of these two species on banana weevil in Uganda, it was discovered that ants were able
to reduce the density of eggs during a full crop cycle lasting up to 30 months [1].

Ants have been proposed as potential bio control agents of the banana weevil in East Africa
[13] and in parts of Asia and the Pacific islands [26]. Ants are best suited as bio control agents of
insect pests of perennial crops in general and the banana weevil in particular. While other generalist
predators appear to have limited ability to find banana weevil eggs, larvae and pupae underneath
the corm and other plant tissue, this is not the case with ants. Ants have been observed digging
through the soil and foraging inside corm tunnels. And although they are generalist predators, they
are regarded as superior foragers because they are abundant, recruit each other to productive food
sources and are not affected by satiation since individual ants do not forage for themselves but rather
for the colony [21]. Ants can also be manipulated and deployed by moving their colony to where the
pest infestation is highest. The use of service crops in enhancing ants predation rate of the banana
weevil was studied by Dassou [8]. It was demonstrated, for example, that adding a service plant
(Branchiaria decumbens) boosted banana weevil predation by generalists predators, notably, the
ants of the species selonopsis geminata and that intercropping banana with tuber crops of the genus
xanthosoma increased the abundance of ants of the genus ondotomachus and significantly reduced
banana weevil damage on banana plants.

Mathematical models for predator–prey interactions are well established in literature and owe
their formulation and prominence to Alfred Lotka and Vito Volterra who, in 1925, independently
formulated the first predator–prey models. As well, mathematical models in which the predator
feasts on multiple preys switching among them are plentiful in literature in addition to models in-
corporating optimal foraging theory. Krivan [14] considered a system consisting of one predator–two
prey types with optimal foraging and discussed the effect of optimal diet choice on the stability of the
system. It was shown that if the unprofitable prey species is close to its carrying capacity (and there-
fore not strongly regulated by the predator), switching may lead to reduced fluctuations in the three
species system. Similarly, using numerical simulations of one predator– two prey system, Fryxell and
Lundberg [9, 10] demonstrated that predators switch to the low quality prey only when they have re-
duced the more profitable prey to low densities and that such a switch diminishes predation pressure
on the more profitable prey while at the same time buffering predator density. In Krivan and Sikder
[15], it was shown that switching increases the range of parameters for which one predator–two prey
systems are persistent and that while populations may fluctuate, in the long run, neither population
goes extinct. Tansky [23] investigated a two-prey one predator system with a switching property and
proved using Routh–Hurwitz criteria that the system generally has a stable three species co-existing
equilibrium while van Leeuwen [25] developed a theory for the food intake of a predator that switches
between multiple prey species. The theory is based on the behavioral assumption that a predator
tends to continue feeding on the prey it consumed last in terms of morphology, defense, location,
habitat, choice or behavior. From the predator’s dietary history, they derived a general closed–form
multi species functional response for predicting predators switching between multiple prey species.
Ma [17] investigated the dynamics of a series of two–prey-one-predator models in which the predator
exhibits adaptive diet choice based on different energy content and/or handling times. They showed
that if the predator is efficient at exploiting its preys and has a saturating functional response, then
sustained population cycles over a wide range of parameter values will be produced. In Boukal and
Krivan [6], a prey-predator model with alternative food and optimal foraging is designed. Using
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suitable Lyapunov functions, the authors showed that optimal foraging behavior changes the neutral
stability intrinsic to Lotka–Volterra systems to the existence of a bounded global attractor.

The role of alternative prey or food species in predator–prey dynamics has been considered by
many authors. For example, Banshidhar [5] studied the global stability of a predator–prey system
with alternative prey incorporating logistic growth in the prey population and Holling type II re-
sponse function. The existence and local stability conditions were derived and bifurcation analysis
carried out with respect to the predator’s search rate and handling time. Relatedly, in van Baalen et
al [24], a predator–prey model with switching and a non–dynamics alternative prey was investigated
to study the interaction between the predator and the more profitable prey. The authors showed that
inclusion of a non–dynamic alternative food reduces the dimensions of the model from three to two
and allows use of phase plane analysis but draw similar conclusions as in a two prey–one predator
system.

In this study, a banana weevil (prey)– ants (predator) system with a non–dynamics alternative
food which is also the most profitable prey is formulated with focus on the interaction between the
predator and the less profitable prey. Ants largely depend on the abundant flora and fauna found
in a banana ecosystem but supplement it by foraging on the banana weevil. This model differs
significantly from the van Baalen et al [24] model in two ways: it considers the alternative food
as both non–dynamic and the most profitable and, in addition, includes self regulation in both the
predator and prey populations.

The rest of the paper is organized as follows: in Section 2, the model is formulated and analyzed
for its equilibrium points and their stability; in Section 3, numerical simulations are presented while
in Section 4, the results are discussed and some conclusions drawn.

2. Model Formulation and Analysis

2.1. The Model

Consider a habitat in which predatory ants of density, P (t), feast on two food items or sources: the
banana weevils of density N(t) and the numerous flora and fauna abundant in a banana agroecosys-
tem, collectively referred to as the alternative food and of fixed density A. The following assumptions
are made:

1. The two food sources differ in profitability, that is, nutritional value divided by handling time.

2. Both food items are randomly distributed in the habitat.

3. The two food items are complimentary rather than substitutable.

4. The predatory ants switch between the food items on the basis of availability and encounter–
which is typical of ants.;

5. The alternative food items have no dynamics of their own; they are always available in large
amounts and unlimited by consumption. This simplification reduces the dimension of the
system.

6. In addition, the alternative food items are regarded the most profitable on the basis of their
constant availability in large amounts and lesser handling time.

7. The banana weevil is regarded as the less preferred or less profitable prey based on the inac-
cessibility of the edible stage (i.e. the juvenile stages which reside well inside the corm) and
the larger handling time. The banana weevil is assumed to have a higher nutritional value and
therefore sought after.
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8. By the optimal foraging theory, at any particular time, the predatory ants’ diet may contain
all or one of the food items. The most profitable prey (i.e. the alternative food) is always
included in the diet while the less profitable (i.e. the banana weevil), may either be included or
completely ignored depending on the relative density of the most profitable prey [14, 15, 16].

9. Let p : 0 ≤ p ≤ 1 be the probability that the predatory ants encounter the banana weevil, then
by the optimal foraging theory, the predatory ant will maximize its food intake by completely
ignoring the alternative prey if p = 0, otherwise it will consume all available prey if p = 1. This
classical result in optimal foraging theory is called the ’zero–one rule’ [22, 18].

10. Let Ta and Tn time units be, respectively, the handling times for the alternative prey and
the banana weevil, then the functional response (i.e. the predator’s per capita consumption
rate) with respect to the alternative prey and the banana weevil are respectively, fa(N,A) =

A
1+TaA+pTnN

and fn(N,A) = pN
1+TaA+pTnN

.

11. Let Ca and Cn be the respective nutritional values of the alternative prey and the banana weevil,
then the predator’s average food intake is given by g(N,A) = Cafa(N,A) + Cnfn(N,A) =
CaA+CnpN

1+TaA+pTnN
.

Assuming logistic growth of both banana weevil and the predatory ants, then the following non–linear
ODE system is used to simulate the interaction between the two food sources and their predation
by the ants:

dN

dt
= r1N

(
1− N

K1

)
− pNP

1 + TaA+ pTnN
,

(2.1)

dP

dt
= r2P

(
1− P

K2

)
+

(CaA+ pCnN)P

1 + TaA+ pTnN
,

together with N(0) > 0 and P (0) > 0.

All parameters are positive constants: r1 and r2 respectively represent the intrinsic growth rates
of the banana weevil and predatory ants with K1 and K2, their respective carrying capacities.
It should be noted that when A = 0, system (2.1) becomes a modified Holling–Tanner model applied
in enzyme–substrate kinetics with a Michaelis–Menten functional response term (see Aziz–Alaoui
and Okiye [3]).

2.2. Positivity and boundedness of the solution

Denote by R2
+ and Int(R2

+), the nonnegative quadrant and its interior respectively. Then the
following results apply:

Lemma 2.1. The positive quadrant is invariant for system (2.1).

Proof . It can be observed from the system (2.1) that the boundaries of the nonnegative quadrant
R2

+ are invariant. Therefore the pest and predator densities N(t) and P (t) are positive for all t ≥ 0
whenever N(0) > 0 and P (0) > 0. The basic existence and uniqueness theorem for differential
equations ensures that the positive solutions and the axes can not intersect. �

It can be shown that under some assumptions that the solutions of system (2.1) which start in
R2

+ are ultimately bounded. First the following classical Lemma whose proof is found in Aziz-Alaoui
[4] is presented.
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Lemma 2.2. Let φ be an absolutely continuous function satisfying the differential inequality

dφ(t)

dt
+ α1φ(t) ≤ α2,

where (α1, α2) ∈ R2, α1 6= 0, then ∀ t ≥ T̃ ≥ 0,

φ(t) ≤ α2

α1

−
(
α2

α1

− φ(T̃ )

)
exp−(t−T̃ ).

Definition 2.3. A solution φ(t, t0, x0, y0) of system (2.1) is said to be ultimately bounded w.r.t R2
+

if there exists a compact region A ∈ R2
+ and a finite set T (T = T (t0, x0, y0)) such that, for any

(t0, x0, y0) ∈ R×R2
+, φ(t, t0, x0, y0) ∈ A for all t > T .

The following theorem establishes the invariance and boundedness of system (2.1).

Theorem 2.4. Let A be a set defined by

A = {(N,P ) ∈ R2
+ : 0 ≤ N ≤ K1; 0 ≤ N + P < L1},

where

L1 =
K1(r1 + 4)

4
+
K2[(1 + r2)(1 + TaA+ pTnK1) + CaA+ pCnK1]

4r2(1 + TaA+ pTnK1

,

then

1. A is positively invariant, and

2. all solutions of system (2.1) starting in R2
+ are ultimately bounded with respect to R2

+ and
eventually enter the attracting set A.

Proof . From Lemma 2.1, as N(0), P (0) ∈ A, it suffices to show that (N(t), P (t)) ∈ A for all t ≥ 0.
Since N(t) > 0 and P (t) > 0 in Int(R2

+), every solution φ(t) = (N(t), P (t)) of system (2.1) which
starts in Int(R2

+) satisfies the differential inequalitydN
dt
≤ r1

K1
N(K1−N) if the first equation of system

(2.1) is considered.

Analogously, N(t) may be compared with the solution of the equation du(t)
dt

= r1
K1
u(t)(K1 − u(t))

namely: u(t) = K1u0
(K1−u0)e−r1t+u0

with u(0) = u0. Thus, it follows that every nonnegative solution φ(t)

of system (2.1) satisfies N(t) ≤ K1 for t ≥ 0.
Now, to prove that (N(t) + P (t)) = L1 for all t ≥ 0, define the function: σ(t) = N(t) + P (t). Then
its derivative is:

dσ(t)

dt
=
dN(t)

dt
+
dP (t)

dt

= r1N

(
1− N

K1

)
− pNP

1 + TaA+ pTnN
+ r2P

(
1− P

K2

)
+

(CaA+ pCnN)P

1 + TaA+ pTnN
.
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Since all parameters are positive and all solutions starting in R2
+ remain in the quadrant, then

dσ(t)

dt
≤ r1N

(
1− N

K1

)
+ r2P

(
1− P

K2

)
+

(CaA+ pCnN)P

1 + TaA+ pTnN
,

holds for all N,P nonnegative.

Again, since maxR2
+

(r1N
(

1− N
K1

)
) = r1K1

4
, then

dσ(t)

dt
≤ r1K1

4
− σ(t) +N(t) + P (t) + r2P

(
1− P

K2

)
+

(CaA+ pCnN)P

1 + TaA+ pTnN
,

dσ(t)

dt
+ σ(t) ≤ r1K1

4
+K1 + P (t)[1 + r2

(
1− P

K2

)
+

(CaA+ pCnK1)

1 + TaA+ pTnK1

],

dσ(t)

dt
+ σ(t) ≤ K1(r1 + 4)

4
+ P (t)[1 + r2

(
1− P

K2

)
+

(CaA+ pCnK1)

1 + TaA+ pTnK1

]. (2.2)

Let f(P ) = P (t)[1 + r2

(
1− P

K2

)
+ (CaA+pCnK1)

1+TaA+pTnK1
], then f ′(P ) = 1 + r2 − 2r2

K2
P + CaA+pCnK1

1+TaA+pTnK1
.

Now the maximum value of f(P ) occurs when P ∗ = K2

r2

(
(1+r2)(1+TaA+pTnK1)+CaA+pCnK1

1+TaA+pTnK1

)
and

therefore

fmax(P ) =
K2

4r2

(
(1 + r2)(1 + TaA+ pTnK1) + CaA+ pCNK1

1 + TaA+ pTnK1

)2

(2.3)

Using (2.3) in (2.2) yields:

dσ(t)

dt
+ σ(t) ≤ K1(r1 + 4)

4
+
K2

4r2

(
(1 + r2)(1 + TaA+ pTnK1) + CaA+ pCnK1

1 + TaA+ pTnK1

)2

≤ L1

where

L1 =
r2K1(r1 + 4)(1 + TaA+ pTnK1)

2 +K2 [(1 + r2)(1 + TaA+ pTnK1) + CaA+ pCnK1]
2

4r2(1 + TaA+ pTnK1)2

Using Lemma 2.2, for all t ≥T̃≥ 0 with α1 = 1 and α2 = L1, then

σ(t) ≤ L1 − (L1 − φ(T̃ ))e−(t−T̃ ) (2.4)

and if T̃= 0, then

σ(t) ≤ L1 − (L1 − φ(T̃ ))e−t. (2.5)

Hence, since (N(0), P (0)) ∈ A, then σ(t) ≤ L1 for all t ≥ 0. It is also shown that as t → +∞,
σ(t) ≤ L1. �

The proof for part (b) proceeds as follows: Since solutions of the initial value problem dN(t)
dt

=
r1
K1
N(t) (K1 −N(t)) satisfy N(t) ≤ K1 for all t ≥ 0, then clearly, limt→∞N(t)→ K1.
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Now, to prove that limt→∞(N(t) + P (t)) ≤ L1, let ε > 0, then there exists a T1 > 0 such that
N(t) < 1 + ε

2
for all t ≥ T1. From equation (2.4) with T̃ = T1, for all t ≥ T1 ≥ 0,

σ(t) = N(t) + P (t) ≤ L1 − (L1 − σ(T1))e
−(t−T1)

≤ L1 − [L1 − σ(T1)e
T1 ]e−t

≤ L1 − [L1e
T1 − (N(t) + P (t))eT1 ]eT1

≤ L1 − [L1 − (N(t) + P (t))eT1 ]e−t

σ(t) = N(t) + P (t) ≤ L1 +
ε

2
− [(L1 +

ε

2
)− (N(t) + P (t))eT1 ]e−t. (2.6)

Let T2 ≥ T1 be such that |(L1 + ε
2
)− (N(t) + P (t))eT1|e−t ≤ ε

2
for all t ≥ T2, then

N(t) + P (t) ≤ L1 +
ε

e
− ε

2
≤ L1.

Hence limt→∞(N(t) + P (t)) ≤ L1. This completes the proof and by extension the conclusion that
system (2.1) is dissipative in R2

+.

2.3. Equilibrium points

Equilibrium points are obtained by setting the right-hand side of system (2.1) to zero. This gives

four equilibria namely: E0(0, 0), E1(K1, 0), E2

(
0, K2(r2(1+TaA)+CaA)

r2(1+TaA

)
and E4(N

∗, P ∗), where

P ∗ =
K2 (r2(1 + Taa) + CaA+ pN(r2Tn + Cn))

r2(1 + TaA+ pTnN)2
(2.7)

and N∗ satisfies the equation

r1r2p
2T 2

nN
3 + r1r2pTn (2(1 + TaA)−K1pTn)N2

+
(
r1r2(1 + TaA)((1 + TaA)− 2K1pTn) +K1K2p

2(r2T2 + Cn)
)
N

+K1K2p (r2(1 + TaA) + CaA)− r1r2K1(1 + TaA)2 = 0. (2.8)

E0 represents the trivial equilibrium or the absence of both the banana weevil and its predator while
E1 represents the banana weevil-only equilibrium in absence of the pest. On the other hand, E1 is
the pest–free equilibrium at which the predatory ants survives only on the alternative non-dynamic
food item abundant in the banana ecosystem while E4 represents the equilibrium at which both the
banana weevil and the predatory ants co-exist.
It should be noted that the equation (2.8) has at least one positive real root if:

K1K2p[r2(1 + TaA) + CaA]− r1r2K1(1 + TaA)2

r1r2p2T 2
n

< 0

or

r2 >
K2p (r2(1 + TaA) + CaA)

r1(1 + TaA)2
(2.9)

(see [11]).
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2.4. Local Stability of the Equilibria

The Jacobian matrix for system (2.1) is given by

J =

(
r1(1− 2N

K1
)− (1+TaA)pP

(1+TaA+pTnN)2
− pN

1+TaA+pTnN
pP (1+TaA)Cn−CaATn

(1+TaA+pTnN)2
r2(1− 2P

K2
) + CaA+pCnN

1+TaA+pTnN

)
. (2.10)

At the trivial equilibrium, the variational matrix is given by

JE0 =

(
r1 0
0 r2 + CaA

1+TaA

)
,

whose eigenvalues are r1 and r2 + CaA
1+TaA

. Since all parameters are positive constants, then clearly
E0 is unstable.

Similarly, the Jacobian matrix at the equilibrium, E1, is

JE1 =

(
−r1 − pK1

1+TaA+pTnK1

0 r2 + CaA+pCnK1

1+TaA+pTnK1

)
,

with,

trace(JE1) = −r1 + r2 +
CaA+ pCnK1

1 + TaA+ pTnK1

and

det(JE1) = −r1
(
r2 +

CaA+ pCnK1

1 + TaA+ pTnK1

)
.

Clearly, the equilibrium is locally asymptotically stable for some combination of parameters and
unstable otherwise. In particular, E2 is locally asymptotically stable when

r1 >
r2(1 + TaA) + CaA+ pK1(r2Tn + Cn)

1 + TaA+ pTnK1

At E2, the Jacobian matrix is

JE1 =

(
r1r2(1+TaA)2−pK2[r2(1+TaA)+CaA]

r2(1+TaA)2
0

pK2[r2(1+TaA)+CaA][(1+TaA)Cn−CaATn]
r2(1+TaA)3

−r2(1+TaA)−CaA
(1+TaA)

)
,

with,

trace(JE2) =
r1r2(1 + TaA)2 − pK2 (r2(1 + TaA) + CaA)

r2(1 + TaA)2
− − (r2(1 + TaA) + CaA)

(1 + TaA)

=
r1r2(1 + TaA)2 − ((r2(1 + TaA) + CaA) (pK2 + r2(1 + TaA))

r2(1 + TaA)2
.
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Clearly, trace(JE1) < 0 if

r1r2(1 + TaA)2 < (r2(1 + TaA) + CaA) (pK2 + r2(1 + TaA))

r1r2 <
(r2(1 + TaA) + CaA) (pK2 + r2(1 + TaA))

(1 + TaA)2
. (2.11)

Similarly,

det(JE2) =
− (r1r2(1 + TaA)2 − pK2 (r2(1 + TaA) + CaA)) (r2(1 + TaA) + CaA)

r2(1 + TaA)3

such that det(E2) > 0 if

r1r2(1 + TaA)2 < pK2 (r2(1 + TaA) + CaA)

r1r2 <
pK2 (r2(1 + TaA) + CaA)

(1 + TaA)2
. (2.12)

From the inequalities (2.11) and (2.12), it is clear that the pest–free equilibrium point, E2, is
locally asymptotically stable if

r1r2 < min

{
pK2 (r2(1 + TaA) + CaA)

(1 + TaA)2
,
(r2(1 + TaA) + CaA) (pK2 + r2(1 + TaA))

(1 + TaA)2

}
The Jacobian matrix at the co-existence equilibrium point,E3, is given by

JE3 =

(
r1(1− 2N∗

K1
)− (1+TaA)pP ∗

(1+TaA+pTnN∗)2
− pN∗

1+TaA+pTnN∗

pP ∗(1+TaA)Cn−CaATn
(1+TaA+pTnN∗)2

r2(1− 2P ∗

K2
) + CaA+pCnN∗

1+TaA+pTnN∗

)
,

whose

trace(JE3) = r1

(
1− 2N∗

K1

)
− (1 + TaA)pP ∗

(1 + TaA+ pTnN∗)2
+ r2

(
1− 2P ∗

K2

)
+

CaA+ pCnN
∗

1 + TaA+ pTnN∗

such that trace < 0 if

r1

(
1− 2N∗

K1

)
<

(1 + TaA)pP ∗

(1 + TaA+ pTnN∗)2
− r2(K2 − 2P ∗)

K2

− (CaA+ pCnN
∗)

1 + TaA+ pTnN∗

< Z1 (2.13)

where

Z1 =
K2pP

∗(1 + TaA)− [r2(K2 − 2P ∗)(1 + TaA+ pTnN
∗) +K2(CaA+ pCnN

∗)](1 + TaA+ pTnN
∗)

K2(1 + TaA+ pTnN∗)2
.

Likewise,

det(JE3) =

(
r1(1−

2N∗

K1

)− (1 + TaA)pP ∗

(1 + TaA+ pTnN∗)2

)(
r2(1−

2P ∗

K2

) +
CaA+ pCnN

∗

1 + TaA+ pTnN∗

)
+
p2N∗P ∗(1 + TaA)Cn − CaATn

(1 + TaA+ pTnN∗)3
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or

det = r1

(
1− 2N∗

K1

)(
r2(K2 − 2P ∗)

K2

+
CaA+ pCnN

1 + TaA+ pTnN∗

)
−pP ∗

(
K2 (r2(1 + TaA) + CaA)− 2r2P

∗(1 + TaA)

K2(1 + TaA+ pTnN∗)2

)
Now, det(JE3) > 0 if

r1(1−
2N∗

K1

) > Z2, (2.14)

where

Z2 =
K2(1 + TaA)pP ∗ − [K2(CaA+ pCnN

∗) + r2(K2 − 2P ∗)(1 + TaA+ pTnN
∗)](1 + TaA+ pTnN

∗)

K2(1 + TaA+ pTnN∗)2
.

From equations (2.13) and (2.14), it is deduced that the co-existence equilibrium E3 is locally asymp-
totically stable if Z1 < r1(1− 2N∗

K1
) < Z2 or generally, r1(1− 2N∗

K1
) < min{Z1, Z2}.

2.5. Global Stability of the Co–existence Equilibrium

The global stability of the co-existence equilibrium is proved using the classical Poincarẽ- Bendix-
son theorem and periodic orbits are ruled out using the Bendixson–Dulac criteria (see [7]). To prove
that E3 is globally asymptotically stable, it must be shown that system (2.1) has no non–constant
solutions using the Poincarẽ- Bendixson theorem. In this case, if E3 is the only equilibrium in the
interior of R2

+, all solutions with N(0), P (0) > 0 must have an omega limit point and thus can get
arbitrarily close to E3. If E3 is locally asymptotically stable, then any solution that gets sufficiently
close to E3 must converge to E3 and therefore E3 must be globally asymptotically stable.

With this background, the global stability of E3 is established as follows: Define H(N,P ) = 1
NP

,
the Dulac multiplier. Then clearly, H(N,P ) > 0 whenever N,P > 0.
Let

f1(N,P ) = r1N(1− N

K1

)− pNP

1 + TaA+ pTnN

f1(N,P ) = r2P (1− P

K2

)− (CaA+ pCnN)P

1 + TaA+ pTnN

and

∆(N,P ) =
∂(f1H)

∂N
+
∂(f2H)

∂P

= − r1
K1P

+
pPTn

(1 + TaA+ pTnN)2
− r2
K2N

such that ∆(N,P ) < 0 if in particular, pPTn
(1+TaA+pTnN)2

< r2
K2N

, then

r2p
2T 2

nN
2 + pTn (2r2(1 + TaA)−K2P (N + r2(1 + TaA)2 > 0.

Now, for

r2p
2T 2

nN
2 + pTn[2r2(1 + TaA)−K2P ]N + r2(1 + TaA)2 = 0,
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then for equal roots,

(pTn(2r2(1 + TaA)−K2P ))2 > 4r2p
2T 2

n(1 + TaA)2

r2 <
PK2

4(1 + TaA)
. (2.15)

It has already been shown that the equilibrium E3 exists if the inequality (2.9) holds. From
both inequalities (2.9) and (2.15), K2pCaA

r1(1+TaA)
< r2 <

pK2

4(1+TaA)
such that ∆(N,P ) < 0 whenever r2 <

max{ pK2

4(1+TaA)
, K2pCaA
r1(1+TaA)

}. Thus, the Bendixson-Dulac criterion holds in the interior of R2
+, and non–

constant solutions exist in the interior of R2
+ and so the equilibrium, E3, is globally asymptotically

stable whenever it exists.

3. Numerical Simulations

Numerical simulations, including phase portraits, were carried out using MATLAB soft ware for
different combinations of parameter values estimated from literature and the different plots are shown
in the Figures 1–7.
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Figure 1: Directional fields for the state equilibria E0, E1 and E2 for r1 = 1, r2 = 5, k1 = 1, K2 = 10, Ta = 1, Tn = 5,
p = 1 and ca = cn = 1.
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Figure 2: Illustrating the effect of optimal foraging on the banana weevil–ants interaction for p = 0.3, 0.6, 1 and r1 = 2,
r2 = 5, k1 = 5, K2 = 10, Ta = 1, Tn = 5,ca = 2,cn = 3. As the probability of ants encounter with the banana weevils
increases, the banana weevil population size progressively reduces to zero.

4. Discussion

A modified predator–prey model has been formulated to study the interaction between the banana
weevil and its predator, the ant species, in the presence of alternative food. The model incorporates
optimal foraging theory. In the absence of the predatory ants, the banana weevils grow logistically
and likewise, in absence of the banana weevil, the predatory ants also grow logistically by feasting
on the non-dynamic alternative food which is abundant, easily accessible and unlimited by consump-
tion. The boundedness and invariance characters of the model are established. As well, the steady
states are obtained and their stability determined. Phase plane analysis is carried out to establish
the stability of the equilibria. And as well, numerical simulations are carried out to study the ef-
fect on the dynamics of the interaction between the banana weevil and its predator, for individual
parameters namely: the intrinsic growth rates r1 and r2, the carrying capacities K1 and K2, the
handling times Ta and Tn, the nutritional values ca and cn and the probability, p, that the predatory
ant encounters the banana weevil. The model exhibits four equilibria: the trivial equilibrium, E0,
which represents the absence of both the banana weevil and its predator; the pest–only equilibrium,
E1, which marks the absence of the predator, the pest–free equilibrium, E2 and the co-existence equi-
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Figure 3: Demonstrating the effect of varying weevil and ants’ carrying capacities on the dynamics of the model for
k1 = k2, k1 < k2 and k1 > k2. When the weevil carrying capacity exceeds that of ants, both species will persist.
Otherwise, the weevil population numbers will always fall to zero in finite time as a result of ants predation.

librium, E3, at which both predatory ants and the banana weevil co-exist under certain conditions.
The trivial equilibrium is always unstable as depicted in Figure 1, which is not surprising as, at this
equilibrium, there are no interacting species to consider. Again from Figure 1, it can be observed
that the trajectories about E1 can be attracting in one direction and repelling in the other indicating
that under particlar combinations of parameters, the equilibrium can be either stable or unstable.
Figure 1 also clearly indicates that the banana weevil–free equilibrium, E2, is always stable. This
may be explained by the fact that the predatory ants always have sufficient alternative food to feed
on in the absence of the banana weevils. As shown in Figures (2–7), ants’ predation on the banana
weevils results in suppression of the weevil numbers and for some particular combinations of param-
eters, may actually drive the banana weevil numbers to zero. The effect of optimal foraging on the
banana weevil–ants interaction is depicted in Figure 2, where it is shown that as the probability of
ants’ encounter with the banana weevils increases progressively from zero to the maximum value, the
weevil population size correspondingly reduces and eventually falls to zero. Relatedly, it is shown
in Figure 3 that when the ants carrying capacity exceeds that of the banana weevils, predation will
drive the banana weevil population size to zero and possible extinction in finite time, otherwise the
two species will persist with the banana weevil at very low density compared to the ants. This
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Figure 4: Simulating the weevil–ants’ interaction for relative values of the intrinsic growth rates: r1 < r2, r1 = r2 and
r1 > r2 for k1 = 5, Ta = 2, Tn = 5, p = 1, k2 = 10, ca = 2 and cn = 5. Keeping other factors constant, predation will
always reduce the pest population density.
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Figure 5: Illustrating the effect of weevil and alternative food’s nutritional values on the long term dynamics of the
model for different scenarios: ca < cn and ca > cn with r1 = 1, r2 = 5, k1 = 5,Ta = 2,Tn = 5, p = 1 and k2 = 10. It is
shown that differences in nutritional values of the weevil and the alternative food have no demonstrable effect on the
interaction between the pest and it’s predator.
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Figure 6: Simulating the effect of handling time on the dynamics of the model for different scenarios: Ta < Tn, Ta = Tn

and Ta > Tn with r1 = 2, r2 = 5, k1 = 5,ca = 2,5n = 5, p = 1 and k2 = 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time in years

0

0.1

0.2

0.3

0.4

0.5

0.6

W
e

e
v
il 

d
e

n
s
it
y
, 

N
(t

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time in years

0

2

4

6

8

10

12

A
n

ts
' d

e
n

s
it
y
, 

P
(t

)

Figure 7: Variation of weevil and ant densities for r1 = 1, r2 = 5, k1 = 1, k2 = 10, Ta = 1, Tn = 5, p = 1 and
ca = cn = 1. At appropriate parameter values, the ants population grows logistically to its carrying capacity at the
expense of the banana weevil population whose size declines to zero as a result of predation.
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co-existence is possible since the banana weevils have an alternative food source which is always
abundant, easily accessible and unlimited by consumption. It is plausible to assume that the ants
turn to feeding on the banana weevils when the weevil population size is high and upon significantly
reducing it, the ants then revert to the ever abundant alternative food thereby leaving the weevil
population size to build up again. In Figure 5, it is shown that differences in the nutritional values
of the two food items have no demonstrable effect on the interaction between the banana weevil and
its predator. This indicates that the ants predation on the banana weevil may be largely driven by
abundance and/or availability rather than nutritional value–as the weevils become more abundant,
their predation rate will increase until their numbers have been significantly reduced. The effect of
handling time on the banana weevil–ants’ interaction is depicted in Figure 6, where it is shown to
have only marginal effect on the predation rate. Lastly, Figure 7 shows that at certain combination
of parameters, the interaction between the banana weevil and the predatory ant species will ensure
that the ant population size grows logistically to its carrying capacity at the expense of the weevil
population which declines logistically to extinction in finite time.

Therefore the key parameters in the banana weevils–ants interaction are the their respective
intrinsic growth rates and carrying capacities. The model predicts that encounters between the
ants and weevils seem to be largely influenced by availability. One of the advantages of using ants as
biological control agents of many plant pests is that their population sizes are manipulatable through
such practices as colony transfer and as in the case of the banana weevils, use of service crops which
increase ants density thereby increasing their predation rates [8]. These and similar practices increase
the ants intrinsic growth rate and carrying capacity and so have a direct influence on the control of
the banana weevils by ants. The other advantage of using ants as biological control agents is that
they do not experience satiation at high prey densities and so their predation is continuous. Since the
model predicts that and ants predation significants reduces banana weevil population size and given
that ants have demonstrated significant ability to dig through the soil and corm in search of banana
weevil eggs and larva [1, 2], it is imperative that farmers in heavily infested areas employ tactics to
boost ants densities which will ultimately translate into high predation rate and eventual control of
the pest through a means that is cheaper, effective and does little damage to the environment.
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