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Abstract

In this paper, we define and investigate the several variables mappings which are quartic in each
component. We show that such mappings can be unified as an equation, say, the multi-quartic
functional equation. We also establish the Hyers-Ulam stability of multi-quartic functional equation
by a fixed point theorem in non-Archimedean normed spaces. Moreover, we generalize some known
stability results.
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1. Introduction and preliminaries

The Ulam stability problem [30] (that was answered by Hyers [17]) has been extended and studied
for the several variables mappings in two last decades. Recall that a functional equation F is said to
be

• stable if any mapping ϕ fulfilling F approximately, then it is near to an exact solution of F;

• hyperstable if any function ϕ fulfilling F approximately (under some conditions), then it is an
exact solution of F.

Here, we indicate some historical notes about some several variables mappings. Suppose that V
is a commutative group, W is a linear space, and n ≥ 2 is an integer. In what follows, consider a
several variables mapping f : V n −→ W . This mapping is called multi-additive if it satisfies Cauchy’s
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functional equation A(x + y) = A(x) + A(y) in each variable. For the convenience of the reader we
refer the relevant facts from [21] and many other sources therein. Ciepliński in [12] showed that f is
multi-additive if and only if it satisfying the equation

f(x1 + x2) =
∑

j1,j2,...,jn∈{1,2}

f(x1j1 , x2j2 , . . . , xnjn),

where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. Moreover, f is called multi-quadratic if it fulfills
the quadratic functional equation Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y) in each variable [24]. In
[33], Zhao et al. proved that a mapping f : V n −→ W is multi-quadratic if and only if the following
relation holds. ∑

t∈{−1,1}n
f(x1 + tx2) = 2n

∑
j1,j2,...,jn∈{1,2}

f(x1j1 , x2j2 , . . . , xnjn).

For the generalized form and Jensen type of multi-quadratic mappings refer to [2], [6] and [29]. Some
stabilities for multi-additive and multi-quadratic mappings in miscellaneous Banach spaces have been
studied for instance in [10], [11], [12], [13], [24], [32] and [33].

The multi-cubic mappings were introduced for the first time in [15]. In other words, a mapping
f : V n −→ W is called multi-cubic (in the special case of [15]) if it is cubic in each variable, i.e., f
satisfies the equation

C(2x+ y) + C(2x− y) = 2C(x+ y) + 2C(x− y) + 12C(x)

in each component [19]. In [8], the second author and Shojaee investigated the structure of multi-
cubic mappings and proved every multi-cubic functional equation can be stable and hyperstable.
For other forms of cubic functional equations and their stabilities we refer to [18] and [28]. Various
versions of multi-cubic mappings, functional equations and their stabilities can be found in [14] and
[25].

The quartic functional equation

Q(x+ 2y) +Q(x− 2y) = 4Q(x+ y) + 4Q(x− y)− 6Q(x) + 24Q(y) (1.1)

was introduced for the first time by Rassias [27]. Motivated by equation (1.1), Bodaghi et al. defined
the multi-quartic mappings for the first time in [5] and provided a characterization of such mappings.
In fact, they showed that every multi-quartic mapping can be shown as a single functional equation
and vice versa. An alternative multi-quartic mapping and its characterization which has been recently
studied is available in [26].

The upcoming quartic functional equation which is an equivalent equation to (1.1), defined by
Lee et al., in [23].

Q(2x+ y) +Q(2x− y) = 4Q(x+ y) + 4Q(x− y) + 24Q(x)− 6Q(y). (1.2)

They also established the Hyers−Ulam stability of (1.2); for the generalized forms of quartic func-
tional equations (1.1) and (1.2) we refer to [3], [4] and [22].

Recall that a non-Archimedean field is a field K equipped with a function (valuation) | · | from
K into [0,∞) such that has the properties as follows: |a| = 0 if and only if a = 0, |ab| = |a||b|, and
|a+ b| ≤ max{|a|, |b|} for all a, b ∈ K. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Suppose that X ia a vector space over a scalar field K with a non-Archimedean non-trivial
valuation | · |. Then, the function ∥ · ∥ : X −→ R is called a non-Archimedean norm (valuation) if it
satisfying the following conditions:
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(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥ax∥ = |a|∥x∥, (x ∈ X , a ∈ K);

(iii) the strong triangle inequality (ultrametric); namely,

∥x+ y∥ ≤ max {∥x∥, ∥y∥} , (x, y ∈ X ) .

The pair (X , ∥ · ∥) is said to be a non-Archimedean normed space. Due to the fact that

∥xn − xm∥ ≤ max {∥xj+1 − xj∥;m ≤ j ≤ n− 1} , (n ≥ m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean normed
space X . A complete non-Archimedean normed space is a non-Archimedean normed space X pro-
vided that every Cauchy sequence is convergent.

Some examples of non-Archimedean normed spaces are the p-adic numbers, which are related
to quantum physics, p-adic strings and superstrings [20]. For more details of p-adic numbers as a
number theoretical analogue of power series in complex analysis, we refer to [16].

It is worth mentioning that an alternative fixed point theorem which was presented in [9] have
been considered as a tool for the stability of several variables mappings such as multi-Cauchy-Jensen
and multi-additive-quadratic mappings; see [1]. In addition, for the stability of multi-Jensen, multi-
additive, multi-quadratic and multi-cubic mappings in non-Archimedean spaces refer to [6], [7], [14],
[31] and [32].

In this article, we introduce the new multi-quartic mappings (taken from (1.2)) which are different
from what defined in [5] and [26]. We also include a characterization of such mappings. In fact, we
prove that every multi-quartic mapping can be shown a single functional equation and vice versa
(under some extra conditions). Moreover, we investigate the Hyers−Ulam stability for multi-quartic
mappings by applying a fixed point method in non-Archimedean normed spaces [9]. As a result, we
show that under some mild conditions this new multi-quartic functional equation can be hyperstable.

2. Characterization of multi-quartic mappings

Throughout this paper, N stands for the set of all positive integers and N0 := N ∪ {0}. For any
l ∈ N0,m ∈ N, t = (t1, . . . , tm) ∈ {−1, 1}m and x = (x1, . . . , xm) ∈ V m, we write lx := (lx1, . . . , lxm)
and tx := (t1x1, . . . , tmxm), where ra stands, as usual, for the rth power of an element a of the
commutative group V .

Let n ∈ N with n ≥ 2 and xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote
xni by xi if there is no risk of ambiguity. For x1, x2 ∈ V n and pi ∈ N0 with 0 ≤ pi ≤ n, put
N = {Nn = (N1, . . . , Nn)| Nj ∈ {x1j ± x2j, x1j, x2j}}, where j ∈ {1, . . . , n} and i ∈ {1, 2}. Consider
the subset N n

(p1,p2)
of N as follows:

N n
(p1,p2)

:= {Nn ∈ N| Card{Nj : Nj = xij} = pi (i ∈ {1, 2})} .

Definition 2.1. Let V and W be vector spaces over the rational numbers Q. A mapping f : V n −→
W is said to be n-multi-quartic or multi-quartic if f satisfies (1.2) in each variable.

From now on, we use the following notations for the multi-quartic mappings in sense of the above
definition.

f
(
N n

(p1,p2)

)
:=

∑
Nn∈Nn

(p1,p2)

f(Nn), (2.1)
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f
(
N n

(p1,p2)
, z
)
:=

∑
Nn∈Nn

(p1,p2)

f(Nn, z) (z ∈ V ).

Proposition 2.2. Let f : V n −→ W be a multi-quartic mapping. Then, it fulfills the functional
equation ∑

t∈{−1,1}n
f(2x1 + tx2) =

n∑
p1=0

n−p1∑
p2=0

4n−p1−p224p1(−6)p2f
(
N n

(p1,p2)

)
, (2.2)

for all x1, x2 ∈ V n.

Proof . We proceed the proof by induction on n. For n = 1, it is obvious that f satisfies equation
(1.2). Let (2.2) be valid for some fixed and positive integer n > 1. Then

∑
t∈{−1,1}n

f(2xn1 + txn2 , z) =
n∑

p1=0

n−p1∑
p2=0

4n−p1−p224p1(−6)p2f
(
N n

(p1,p2)
, z
)
, (2.3)

for all x1, x2 ∈ V n and z ∈ V . Using (2.3) and the fact that (2.2) holds for the case n = 1, we arrive∑
t∈{−1,1}n+1

f
(
2xn+1

1 + txn+1
2

)
= 4

∑
t∈{−1,1}n

∑
s∈{−1,1}

f (2xn1 + txn2 , x1,n+1 + sx2,n+1)

+ 24
∑

t∈{−1,1}n
f (2xn1 + txn2 , x1,n+1)− 6

∑
t∈{−1,1}n

f (2xn1 + txn2 , x2,n+1)

= 4
n∑

p1=0

n−p1∑
p2=0

∑
s∈{−1,1}

4n−p1−p224p1(−6)p2f
(
N n

(p1,p2)
, x1,n+1 + sx2,n+1

)
+ 24

n∑
p1=0

n−p1∑
p2=0

4n−p1−p224p1(−6)p2f
(
N n

(p1,p2)
, x1,n+1

)
− 6

n∑
p1=0

n−p1∑
p2=0

4n−p1−p224p1(−6)p2f
(
N n

(p1,p2)
, x2,n+1

)
=

n+1∑
p1=0

n+1−p1∑
p2=0

4n+1−p1−p224p1(−6)p2f
(
N n+1

(p1,p2)

)
.

This means that (2.2) holds for n+ 1. □
It is easily seen that the mapping f(z1, . . . , zn) = c

∏n
j=1 z

4
j is multi-quartic and so Proposition 2.2

implies that f satisfies (2.2). Therefore, this equation is said to be multi-quartic functional equation.

Remark 2.3. It can be verified that if equation (1.2) is true for a mapping f : V n −→ W , then

f(cx) = c4f(x) (c ∈ Q). (2.4)

Note that the converse is not valid in general. For example, assume that (A, ∥·∥) is a Banach algebra.
Fix the vector x0 in A. Consider the mapping φ : A −→ A defined through φ(x) = ∥x∥4x0 for all
x ∈ A. Clearly, for each x ∈ A, (2.4) is true while relation (1.2) does not hold for φ for non-zero
elements x, y ∈ A. Therefore, condition (2.4) does not imply that f is a quartic mapping.
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Definition 2.4. We say a mapping f : V n −→ W

(i) satisfies (has) the 4-power condition or quartic condition in the jth variable if

f(z1, . . . , zj−1, 2zj, zj+1, . . . , zn) = 24f(z1, . . . , zj−1, zj, zj+1, . . . , zn),

for all z1, · · · , zn ∈ V n.

(ii) is even in the jth variable if

f(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = f(z1, . . . , zj−1, zj, zj+1, . . . , zn),

for all z1, . . . , zn ∈ V n.

(iii) has zero condition if f(x) = 0 for any x ∈ V n with at least one component which is equal to
zero.

Note that it follows from Remark 2.3 that the quartic condition does not imply f is quartic in
the jth variable.

Put n := {1, . . . , n}, n ∈ N. For a subset m = {j1, . . . , ji} of n with 1 ≤ j1 < · · · < ji ≤ n and
x = (x1, . . . , xn) ∈ V n,

mx := (0, . . . , 0, xj1 , 0, . . . , 0, xji , 0, . . . , 0) ∈ V n

denotes the vector which coincides with x in exactly those components, which are indexed by the
elements of m and whose other components are set equal zero. Note that 0x = 0, nx = x.

Here, we recall the binomial coefficient
(
n
k

)
= n!

k!(n−k)!
for all n, k ∈ N0 with n ≥ k. We shall show

that if a mapping f : V n −→ W satisfies equation (2.2), then it is multi-quartic. In order to do this,
we need the next fundamental lemma.

Lemma 2.5. Let a mapping f : V n −→ W fulfills equation (2.2). Under one of the following
assumptions, f has zero condition.

(i) f has the quartic condition in all variables;

(ii) f is even in each variable.

Proof . (i) We firstly note that(
n− k

n− k − p1 − p2

)(
p1 + p2
p1

)
=

(
n− k
p1

)(
n− k − p1

p2

)
(2.5)

for 0 ≤ k ≤ n − 1. We argue by induction on k that for each kx, f(kx) = 0 where 0 ≤ k ≤ n − 1.
Let k = 0. Putting x1 = x2 =0 x in (2.2) and using (2.5) , we have

2nf(0x)

=
n∑

p1=0

n−p1∑
p2=0

(
n

n− p1 − p2

)(
p1 + p2
p1

)
4n−p1−p224p1(−6)p22n−p1−p2f(0x)

=

[
n∑

p1=0

(
n
p1

)
2n−p124p1

n−p1∑
p2=0

(
n− p1
p2

)
4n−p1−p2 (−3)p2

]
f(0x)

=

[
n∑

p1=0

(
n
p1

)
2n−p124p1

]
f(0x)

= 26nf(0x). (2.6)
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It follows from (2.6) that f(0x) = 0. Assume that for each k−1x, f(k−1x) = 0. We prove that
f(kx) = 0. Without loss of generality, it is assumed that kx1 = (x11, . . . , x1k, 0, . . . , 0). By our
assumption, replacing (x1, x2) by (kx1,0 x) in equation (2.2), we get

24k+nf(kx)

=
n−k∑
p1=0

n−k−p1∑
p2=0

(
n− k

n− k − p1 − p2

)(
p1 + p2
p1

)
4n−p1−p224p1(−6)p22n−p1−p2f(kx)

= 23k

[
n−k∑
p1=0

(
n− k
p1

)
2n−k−p124p1

n−k−p1∑
p2=0

(
n− k − p1

p2

)
4n−k−p1−p2 (−3)p2

]
f(kx)

= 23k

[
n−k∑
p1=0

(
n− k
p1

)
2n−k−p124p1

]
f(kx)

= 23k26n−kf(kx).

Comparing the first and last terms of the above relation, we find f(kx) = 0. This shows that f has
zero condition.

(ii) Similar to part (i), we have f(0x) = 0. Furthermore, by assumption one can show that
24k+nf(kx) = 23k26n−kf(kx) for all 0 ≤ k ≤ n− 1. □

Theorem 2.6. Suppose that a mapping f : V n −→ W satisfies equation (2.2). Under one of the
following conditions, f is multi-quartic.

(i) f has the quartic condition in each variable;

(ii) f is even in all variables.

Proof . (i) Fix j ∈ {1, . . . , n}. Set

f ∗(x1j, x2j) : = f (x11, . . . , x1,j−1, x1j + x2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j−1, x1j − x2j, x1,j+1, . . . , x1n) ,

and

f ∗(x1j) := f(x1) = f (x11, . . . , x1n) , f ∗(x2j) := f (x11, . . . , x1,j−1, x2j, x1,j+1, . . . , x1n) .

Putting x2k = 0 for all k ∈ {1, . . . , n}\{j} in (2.2) and using property (2.4) in each variable, we get

2n−1 × 24(n−1)[f (x11, . . . , x1,j−1, 2x1j + x2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j−1, 2x1j − x2j, x1,j+1, . . . , x1n)]

= 2n−1[f (2x11, . . . , 2x1,j−1, 2x1j + x2j, 2x1,j+1, . . . , 2x1n)

+ f (2x11, . . . , 2x1,j−1, 2x1j − x2j, 2x1,j+1, . . . , 2x1n)]

=
n−1∑
p1=0

[(
n− 1
p1

)
4n−p124p12n−1−p1

]
f ∗(x1j, x2j)
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+
n∑

p1=1

[(
n− 1
p1 − 1

)
4n−p124p12n−p1

]
f ∗(x1j)

− 6
n∑

p1=1

[(
n− 1
p1 − 1

)
4n−p124p1−12n−p1

]
f ∗(x2j)

= 22n
n−1∑
p1=0

[(
n− 1
p1

)
6p12n−1−p1

]
f ∗(x1j, x2j)

+ 24
n−1∑
p1=0

[(
n− 1
p1

)
8n−1−p124p1

]
f ∗(x1j)

− 6
n−1∑
p1=0

[(
n− 1
p1

)
8n−1−p124p1

]
f ∗(x2j)

= 22n8n−1f ∗(x1j, x2j) + 24(32)n−1f ∗(x1j)− 6(32)n−1f ∗(x2j)

= 2n+124(n−1)f ∗(x1j, x2j) + 24× 2n−124(n−1)f ∗(x1j)− 6× 2n−124(n−1)f ∗(x2j). (2.7)

Now, (2.7) implies that

f (x11, . . . , x1,j−1, 2x1j + x2j, x1,j+1, . . . , x1n) + f (x11, . . . , x1,j−1, 2x1j − x2j, x1,j+1, . . . , x1n)

= 4f ∗(x1j, x2j) + 24f ∗(x1j)− 6f ∗(x2j).

The above equality means that f is quartic in the jth variable.
(ii) Fix j ∈ {1, . . . , n}. Replacing (x1k, x2k) by (0, x1k) for all k ∈ {1, . . . , n}\{j} in (2.2) and

using assumption, we get

2n−1[f (x11, . . . , x1,j−1, 2x1j + x2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j−1, 2x1j − x2j, x1,j+1, . . . , x1n)]

=
n−1∑
p2=0

[(
n− 1
p2

)
4n−p2(−6)p22n−1−p2

]
f ∗(x1j, x2j)

+ 24
n∑

p2=1

[(
n− 1
p2 − 1

)
4n−p2(−6)p2−12n−p2

]
f ∗(x1j)

+
n∑

p2=1

[(
n− 1
p2 − 1

)
4n−p2(−6)p22n−p2

]
f ∗(x2j)

= 4
n−1∑
p2=0

[(
n− 1
p2

)
(−6)p28n−1−p2

]
f ∗(x1j, x2j)

+ 24
n−1∑
p2=0

[(
n− 1
p2

)
8n−1−p2(−6)p2

]
f ∗(x1j)

− 6
n−1∑
p2=0

[(
n− 1
p2

)
8n−1−p2(−6)p2

]
f ∗(x2j)

= 4× 2n−1f ∗(x1j, x2j) + 24× 2n−1f ∗(x1j)− 6× 2n−1f ∗(x2j). (2.8)

It follows from (2.8) that f is quartic in the jth variable. This completes the proof. □
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3. Stability Results for (2.2)

In this section, we prove the Hyers−Ulam stability of multi-quartic functional equation (2.2) in
non-Archimedean normed by applying a fixed point theorem. We recall that for a field K with multi-

plicative identity 1, the characteristic of K is the smallest positive number n such that

n−times︷ ︸︸ ︷
1 + . . .+ 1 = 0.

Throughout, for two sets X and Y , the set of all mappings from X to Y is denoted by Y X . The
next theorem which is a key tool in obtaining our aim in this paper, is taken from [9, Theorem 1].

Theorem 3.1. Let the following hypotheses hold.

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean
field of the characteristic different from 2, j ∈ N, g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→
R+;

(H2) T : Y E −→ Y E is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤ maxi∈{1,...,j}Li(x) ∥λ(gi(x))− µ(gi(x))∥ ,

for all λ, µ ∈ Y E, x ∈ E;

(H3) Λ : RE
+ −→ RE

+ is an operator defined through

Λδ(x) := maxi∈{1,...,j}Li(x)δ(gi(x)) δ ∈ RE
+, x ∈ E.

Moreover, a function θ : E −→ R+ and a mapping φ : E −→ Y fulfill the next two conditions:

∥T φ(x)− φ(x)∥ ≤ θ(x), lim
l→∞

Λlθ(x) = 0, (x ∈ E) .

Then, for every x ∈ E, the limit liml→∞ T lφ(x) =: ψ(x) exists and the mapping ψ ∈ Y E, defined in
this way, is a fixed point of T with

∥φ(x)− ψ(x)∥ ≤ supl∈N0
Λlθ(x) (x ∈ E) .

For the rest of this section, given the mapping f : V n −→ W , we consider the difference operator
Γf : V n × V n −→ W defined via

Γf(x1, x2) :=
∑

t∈{−1,1}n
f(2x1 + tx2)−

n∑
p1=0

n−p1∑
p2=0

4n−p1−p224p1(−6)p2f
(
N n

(p1,p2)

)
,

for x1, x2 ∈ V n, where f
(
N n

(p1,p2)

)
is defined in (2.1).

In the sequel, it is assumed that all mappings as f : V n −→ W satisfying zero condition. In the
next theorem, we establish the stability of functional equation (2.2) from linear spaces to complete
non-Archimedean normed spaces.

Theorem 3.2. Let β ∈ {−1, 1} be fixed, V be a linear space and W be a complete non-Archimedean
normed space over a non-Archimedean field of the characteristic different from 2. Suppose that
φ : V n × V n −→ R+ is a mapping satisfying the equality

lim
l→∞

(
1

|2|4nβ

)l

φ(2lβx1, 2
lβx2) = 0, (3.1)
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for all x1, x2 ∈ V n. Assume also f : V n −→ W is a mapping satisfying the inequality

∥Γf(x1, x2)∥ ≤ φ (x1, x2) , (3.2)

for all x1, x2 ∈ V n. Then, there exists a unique solution Q : V n −→ W of (2.2) such that

∥f(x)−Q(x)∥ ≤ supl∈N0

1

|2|n|2|4nβ+1
2

(
1

|2|4nβ

)l

φ
(
2lβ+

β−1
2 , 0

)
, (3.3)

for all x ∈ V n.

Proof . Putting x = x1 and x2 = 0 in (3.2) and using our assumptions, we have∥∥∥∥∥2nf(2x)−
n∑

p1=0

(
n
p1

)
4n−p124p12n−p1f(x)

∥∥∥∥∥ ≤ φ(x, 0),

for all x ∈ V n (and for the rest of this proof, all the equations and inequalities are valid for all
x ∈ V n), and so ∥∥2nf(2x)− 25nf(x)

∥∥ ≤ φ(x, 0).

Thus ∥∥f(2x)− 24nf(x)
∥∥ ≤ 1

|2|n
φ(x, 0). (3.4)

Relation (3.4) can be rewritten as

∥f(x)− T f(x)∥ ≤ θ(x), (3.5)

where

θ(x) :=
1

|2|n|2|4nβ+1
2

φ
(
2

β−1
2 x, 0

)
, T ξ(x) := 1

24nβ
ξ
(
2βx

)
,

for all ξ ∈ W V n
. Define Λη(x) := 1

|2|4nβ η
(
2βx

)
for all η ∈ RV n

+ , x ∈ V n. It is easily seen that Λ has

the form described in (H3) with E = V n, g1(x) := 2βx for L1(x) =
1

|2|4nβ . On the other hand, we
have

∥T λ(x)− T µ(x)∥ =

∥∥∥∥ 1

24nβ
λ(2βx)− 1

24nβ
µ(2βx)

∥∥∥∥ ≤ L1(x) ∥λ(g1(x))− µ(g1(x))∥ ,

for all λ, µ ∈ W V n
. It follows from the above relation that the hypothesis (H2) is true. Moreover,

one can check by induction on l that for any l ∈ N, we find

Λlθ(x) :=

(
1

|2|4nβ

)l

θ
(
2lβx

)
=

1

|2|n|2|4nβ+1
2

(
1

|2|4nβ

)l

φ
(
2lβ+

β−1
2 , 0

)
. (3.6)

It concludes from (3.5) and (3.6) that all assumptions of Theorem 3.1 are satisfied and so there exists
a unique mapping Q : V n −→ W such that Q(x) = liml→∞

(
T lf

)
(x), and (3.3) as well. We also can

checked by induction on l that

∥∥Γ (
T lf

)
(x1, x2)

∥∥ ≤
(

1

|2|4nβ

)l

φ
(
2lβx1, 2

lβx2
)
, (3.7)
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for all x1, x2 ∈ V n. Taking l → ∞ in (3.7) and using (3.1), we obtain ΓQ (x1, x2) = 0 for all
x1, x2 ∈ V n and hence equation (2.2) is valid for Q. This finishes the proof. □

Here and subsequently, V is a non-Archimedean normed space andW is a complete non-Archimedean
normed space over a non-Archimedean field of the characteristic different from 2. In addition, we
assume that |2| < 1. The following corollaries are taken Theorem 3.2 regarding the stability of (2.2).

Corollary 3.3. Given δ > 0. Let f : V n −→ W be a mapping satisfying the inequality

∥Γf (x1, x2)∥ ≤ δ,

for all x1, x2 ∈ V n. Then, there exists a unique solution Q : V n −→ W of (2.2) such that

∥f(x)−Q(x)∥ ≤ 1

|2|n
δ,

for all x ∈ V n. In addition, under one of the following hypothese, Q is a multi-quartic mapping.

(i) Q satisfies the quartic condition in each variable;
(ii) Q is even in all variables.

Proof . Note that |2| < 1. Choosing φ (x1, x2) = δ for the case β = −1 of Theorem 3.2, we get
liml→∞ |2|4nlδ = 0, and hence (3.1) is valid in Theorem 3.2. The last result follows from Theorem
2.6. □

Corollary 3.4. Let p ∈ R fulfills p ̸= 4n. If f : V n −→ W is a mapping satisfying the inequality

∥Γf (x1, x2)∥ ≤
2∑

k=1

n∑
j=1

∥xkj∥p,

for all x1, x2 ∈ V n, then there exists a unique solution Q : V n −→ W of (2.2) such that

∥f(x)−Q(x)∥ ≤


1

|2|n|2|4n
∑n

j=1 ∥x1j∥p p > 4n,

1
|2|n|2|p

∑n
j=1 ∥x1j∥p p < 4n,

for all x = x1 ∈ V n. Moreover, if either Q has the quartic condition in each variable or is even in
all variables, then, it is a multi-quartic mapping.

Proof . Set φ (x1, x2) =
∑2

k=1

∑n
j=1 ∥xkj∥p. Then, φ

(
2lx1, 2

lx2
)
= |2|lpφ (x1, x2). Now, Theorem

3.2 and Theorem 2.6 can be applied to arrive the result. □
Under some conditions the functional equation (2.2) can be hyperstable as follows.

Corollary 3.5. Let pkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

k=1

∑n
j=1 pkj ̸= 4n. If

f : V n −→ W is a mapping satisfying the inequality

∥Γf (x1, x2)∥ ≤
2∏

k=1

n∏
j=1

∥xkj∥pkj

for all x1, x2 ∈ V n, then f satisfies (2.2). In particular, under one of the following conditions, f is
multi-quartic.

(i) f has the quartic condition in each variable;
(ii) f is even in all variables.

Proof . Defining φ (x1, x2) =
∏2

k=1

∏n
j=1 ∥xkj∥

pkj in Theorem 3.2, and applying Theorem 2.6, we
reach the desired result. □
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