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Abstract

In the present paper, we prove the common fixed point theorem for F-contraction by considering one map as an
orbitally continuous map in Ω−Extended rectangular b-metric space. In addition, we find a fixed point for Banach
and Kannan type contraction inequality without consideration of orbital continuity. Also, the map does not force to
be continuous at a fixed point. An example is also provided for the utility of our results.
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1 Introduction

In 1993, the notion of b-metric space was introduced by Czerwik [10] as a generalization of a metric space, by
modifying the third condition in the metric space. In recent years Goswami, Mohanta and Kamran derived some fixed
point theorems in that space ([15],[22],[27]). Recently, Kamran [17] generalized b-metric space to become extended
b-metric space. In 2000, Branciari [7] introduced rectangular (generalized) metric space (RMS) by replacing triangular
inequality with a rectangular one in the context of fixed point theorem.

In 2015, George [14] introduced the concept of rectangular b-metric space and proved Banach contractions Fixed
point theorem for this space. Then Mitrovic and Radenovic [21] established a common fixed point in such space.
Recently in 2019, Mustafa [23] introduced the Ω−Extended rectangular b-metric space and proved fixed point results.
Also, Pant [25] and Bisht [6] derived some fixed point results at which the map does not force to be continuous at the
fixed point.

Motivated by the idea of Mustafa [23] and Lukacs et al. [20], we derive common fixed point results in complete
Ω−Extended rectangular b-metric space. Consequently, we prove Banach and Kannan type F-contraction and find
a unique fixed point. Our results we are deal with the discontinuity of metric space. Also, an example is given to
strengthen our new results.
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2 Preliminaries

In this section, we need to recall some basic definitions and necessary results from existing literature.

Definition 2.1. [4, 10] Let X be a non-empty set with the coefficient s ⩾ 1, and the mapping d : X ×X → [0,∞)
satisfies the following:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ s[d(x, z) + d(z, y)]; ∀x, y, z ∈ X.

Then d is called a b-metric on X and (X, d) is called a b-metric space with coefficient s.

Definition 2.2. [14] Let X be a nonempty set with the coefficient s ⩾ 1, and the mapping d : X × X → [0,∞)
satisfies the following:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ s[d(x,w) + d(w, z) + d(z, y)] for all x,y ∈ X and for all distinct points w,z ∈ X − {x, y}.

Then (X, d) is called a rectangular b- metric space(in short RbMS).

In 2012, Wardowski [29] introduced a new type of contraction called Wardowski F-contraction and obtained a fixed
point for complete metric space. Then several papers have dealt with the F-contraction mappings and their extensions
(see [1, 13, 15, 19]). Cosentino et al. [9] introduced the following condition (F4) and obtained some results in b-metric
spaces. Then Lukacs and Kajanto [20] defined F-Contraction as follows:

Definition 2.3. [20] Let (X, d) be a b-metric space with constant s ⩾ 1and T : X → X is said to be a F-contraction
if there exists τ > 0 such that d(Tx, Ty) > 0 implies

τ + F (s.d(Tx, Ty)) ≤ F (d(x, y)); for all x, y ∈ X. (2.1)

where, F : (0,∞) → R belongs to Fs,τ satisfying the following conditions:

(F1) F is strictly increasing.

(F2) For each sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0 iff lim
n→∞

F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

(F4) Let s ⩾ 1 be a real number. For each sequence {αn}n∈N of positive numbers such that τ + F (sαn) ≤ F (αn−1),
for all n ∈ N and some τ > 0, then τ + F (snαn) ≤ F (sn−1αn−1), for all n ∈ N

In our results, (F3) and (F4) is not required and denote class of all function satisfies (F1) and (F2) by FΩ,τ . In
1971, Ciric [8] gave the notion of orbital continuity as below:

Definition 2.4. If f is a self-mapping of a metric space (X, d), then the set O(x, f) = {fnx : n = 1, 2, ...} is called the
orbit of f at x and f is called orbitally continuous if limk→∞ fnkx = x, for some x ∈ X implies limk→∞ f(fnkx) = fx.

Remark: It is obvious that a continuous function is always orbitally continuous but the converse may not be true.
The following examples illustrate this fact.

Example 2.5. [5] Let X = [0, 2] , the map f : X → X defined by

f(x) = 1 if x ∈ [0, 1], f(x) = 0 if x ∈ (1, 2].

It is clear that f is orbitally continuous but not continuous at x = 1.
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Example 2.6. Let X = [0, 1) and the map f : X → X defined by

f(x) =


0 ;x = 0,
1
2 − x, ; 0 < x ≤ 1

2
3
2 − x, ; 1

2 < x < 1.

Sequence { 1
2n } → 0, but f( 1

2n ) ↛ f(0), So f is not orbitally continuous.

Example 2.7. Let X = A ∪ B , where A = { 1
n ;n = 2, 3, 4, ...} and B = {0, 1, 2, 3, ...}. The map f : X → Xdefined

by

f(x) =


1 ;x = 0,
x
2 , ;x ∈ A
1
x , ;x ∈ B − {0}.

Here { 1
n} → 0, but f( 1n ) ↛ f(0), hence f is not orbitally continuous.

Definition 2.8. [23] Let X be a nonempty set, Ω : [0,∞) → [0,∞) be a strictly increasing continuous function with
t ≤ Ω(t), for all t > 0 and 0 = Ω(0) and let r̃ : X×X → [0,∞) be a mapping such that for all x, y ∈ X and all distinct
points u, v ∈ X, each distinct from x and y satisfies the following conditions:

(1) r̃(x, y) = 0 if and only if x = y ;

(2) r̃(x, y) = r̃(y, x);

(3) r̃(x, y) ≤ Ω[r̃(x, u) + r̃(u, v) + r̃(v, y)].

Then (X, r̃) is called an extended rectangular b- metric space (in short ERbMS).

The concepts of convergence, Cauchy sequence, and completeness in a ERbMS are defined in a standard way. In
[14, Example 1.7], it is seen that sequences in ERbMS may have more than one limit. However, there is a special
situation where this is not possible, and this will be used in some proofs.

Theorem 2.9. [23] Let (X, r̃) be an ERbMS and let {xn} be a Cauchy sequence in X such that xn ̸= xm whenever
n ̸= m. Then {xn} can converge to at most one point.

While proving our results discontinuity of the Ω−ERbMS can be managed by the following lemma.

Lemma 2.10. [23] Let (X, r̃) be an ERbMS with the function Ω, then we have the following:

(i) Suppose that {xn} and {yn} are sequences in X such that xn → x, yn → y and the elements of {x, y, xn, yn :
n ∈ N} are totally distinct. Then, we have

Ω−1(r̃(x, y)) ≤ lim
n→∞

inf r̃(xn, yn) ≤ lim
n→∞

sup r̃(xn, yn) ≤ Ω(r̃(x, y))

(ii) Let {xn} be a Cauchy sequence in X converging to x. If xn has infinitely many distinct terms, then

Ω−1(r̃(x, y)) ≤ lim
n→∞

inf r̃(xn, y) ≤ lim
n→∞

sup r̃(xn, y) ≤ Ω(r̃(x, y))

for all y ∈ X with x ̸= y.

3 Main results

Theorem 3.1. Let (X, r̃) be a complete ERbMS with non-trivial function Ω(i.e.,Ω(t) ̸= t). Let f and g be commuting
mappings into itself which satisfies the following:
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(i) if there exists τ > 0 such that

τ + F (Ω[r̃(fx, fy)]) ≤ F (r̃(gx, gy)); ∀x, y ∈ X. (3.1)

(ii) either f or g is orbitally continuous and the range of g contains the range of f .

Then f and g have a unique common fixed point, say z. Moreover, f and g are continuous at common fixed point
z if and only if limx→z max{r̃(x, fx) + r̃(x, gx), r̃(z, fz)} = 0.

Proof . Let x0 ∈ X be arbitrary. Then fx0 and gx0 are well defined. Since fx0 ∈ g(X), there exists x1 ∈ X such
that gx1 = fx0. Continuing this process, if xn is chosen, we choose a point in X such that gxn+1 = fxn.

Step I : We will prove that limn→∞ r̃(gxn+1, gxn) = 0. From our contractive condition (3.1) one can have

τ + F (Ω[r̃(gxn+1, gxn)]) = τ + F (Ω[r̃(fxn, fxn−1)])

≤ F (r̃(gxn, gxn−1)).

This implies
F (Ω[r̃(gxn+1, gxn)]) ≤ F (r̃(gxn, gxn−1))− τ. (3.2)

Since, t ≤ Ω(t), F is strictly increasing, one can observe with the use of (3.2)

F (r̃(gxn+1, gxn)) < F (Ω[r̃(gxn+1, gxn)])

≤ F (r̃(gxn, gxn−1))− τ

...

< F (r̃(gx1, gx0))− nτ.

Then
lim

n→∞
supF (r̃(gxn+1, gxn)) = lim

n→∞
inf F (r̃(gxn+1, gxn)) = lim

n→∞
F (r̃(gxn+1, gxn)) = −∞

which together with (2.3 F2) gives
lim
n→∞

r̃(gxn+1, gxn) = 0. (3.3)

Step 2 : We will show that gxn ̸= gxm for n ̸= m.

Case (i) If gxn = gxn+1 for some n, then fxn = gxn = u, for some n. This yields

fu = fgxn = gfxn = gu (3.4)

Now our claim is to prove r̃(u, fu) = 0. On the contrary, let r̃(u, fu) > 0. Using contractive condition (3.1), one comes
across

F ( r̃(fxn, fu)) < F (Ω r̃(fxn, fu)) ≤ F (r̃(gxn, gu))− τ

From equation (3.4), one has
F ( r̃(fxn, fu)) < F (r̃(fxn, fu))

which is absurd. Hence our assumption is wrong.

fu = u = gu.

Hence, u is the common fixed point of f and g.

Case (ii): If gxn ̸= gxn+1 for all n ⩾ 0, then gxn ̸= gxn+k for all n ⩾ 0, k ⩾ 1. If gxn = gxn+k for some n ⩾ 0, k ⩾ 1,
then

F ( r̃(gxn+1, gxn)) < F (Ω[r̃(gxn+1, gxn)]) = F (Ω[r̃(gxn+k+1, gxn+k)])

≤ F (r̃(gxn+k, gxn+k−1))− τ

< F (Ω[r̃(gxn+k, gxn+k−1)])− τ

≤ F (r̃(gxn+k−1, gxn+k−2))− 2τ

...

< F (r̃(gxn+1, gxn))− kτ
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F (r̃(gxn+1, gxn)) < F ( r̃(gxn+1, gxn)), which is a contradiction. Hence gxn ̸= gxn+k for all n ⩾ 0, k ⩾ 1. Therefore,
we can assume that gxn ̸= gxm for n ̸= m.

Step 3 : Now it is shown that {gxn} is an r̃-Cauchy sequence. Suppose to the contrary that there exists ϵ > 0 for
which we can find two subsequences {gxmi

} and {gxni
} of {gxn} such that mi is the smallest index, where

mi > ni > i and r̃(gxni
, gxmi

) ⩾ ϵ. (3.5)

It means that
r̃(gxni

, gxmi−2), r̃(gxni
, gxmi−1) < ϵ. (3.6)

By using the Ω−rectangular inequality and (3.5), one obtains

ϵ ≤ r̃(gxni
, gxmi

) ≤ Ω[r̃(gxni
, gxni+1) + r̃(gxni+1, gxmi−1) + r̃(gxmi−1, gxmi

)]

which together with (3.3) and taking the upper limit as i → ∞, we have

Ω−1(ϵ) ≤ lim sup
i→∞

r̃(gxni+1, gxmi−1). (3.7)

Again,from the Ω−rectangular inequality, one finds that

r̃(gxni+1, gxmi−2) ≤ Ω[r̃(gxni+1, gxni
) + r̃(gxni

, gxmi−1) + r̃(gxmi−1, gxmi−2)].

Taking the upper limit as i → ∞, From (3.3) and (3.6), one arrives at

lim sup
i→∞

r̃(gxni+1, gxmi−2) ≤ Ω(ϵ). (3.8)

Since F is strictly increasing and with the use of inequalities (3.6) and (3.7), one gets

F (ϵ) = F (Ω[Ω−1(ϵ)])

≤ F (Ω[lim sup
n→∞

r̃(gxni+1, gxmi−1)])

≤ F (lim sup
n→∞

r̃(gxni
, gxmi−2))

< F (ϵ)

a contradiction. Thus, {gxn} is a r̃−Cauchy sequence in X. Since (X, r̃) is a complete Ω−ERbMS. So, there exists
z ∈ X such that

lim
n→∞

gxn = z (3.9)

which yields limn→∞ gxn = limn→∞ fxn−1 = z.

Step4 : In this we will prove that z is the coincidence point of f and g. i.e. fz = gz. With the use of Ω−rectangular
inequality, one finds that

r̃(fz, gz) ≤ Ω[r̃(fz, fgxn) + r̃(fgxn, fgxn−1) + r̃(fgxn−1, gz)].

Letting limit supremum, one has

lim sup
n→∞

r̃(fz, gz) ≤ Ω[lim sup
n→∞

r̃(fz, fgxn) + lim sup
n→∞

r̃(fgxn, fgxn−1) + lim sup
n→∞

r̃(fgxn−1, gz)].

Without loss of generality, we can assume that f is orbitally continuous. Also, we have, f and g are commutative.
Applying Lemma (2.2) and equation (3.9), we get

lim
n→∞

r̃(fz, gz) = lim sup
n→∞

r̃(fz, gz) ≤ Ω(0),

one conclude that fz = gz.
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Step 5 : At last, we will prove that, z is the unique common fixed point of f and g. At first, we will prove that
gz = z.

F [(r̃(gxn, gz))] = F [(r̃(fxn−1, fz))] < F [Ω(r̃(fxn−1, fz))]

≤ F (r̃(gxn−1, gz))− τ

< F [Ω(r̃(gxn−2, gz))]− 2τ

...

< F [r̃(gx0, gz)]− nτ.

Taking limit as n → ∞ and from definition (2.3), we have

lim
n→∞

F [r̃(gxn, gz))] = −∞.

This implies
lim

n→∞
r̃(gxn, gz) = 0.

Since the Cauchy sequence {gxn} converges to both z and gz, it is clear that gz = z. Thus, gz = z = fz. It is
easy to check that z is the unique common fixed point. For the second part, let f and g be continuous at fixed point
z, then for the sequence {gxn} of (3.9), we have limn→∞ fgxn = fz = z and limn→∞ ggxn = gz = z. That is

r̃(gxn, fgxn) = 0 and r̃(gxn, ggxn) = 0.

So,
lim
x→z

max{r̃(gxn, fgxn) + r̃(gxn, ggxn), r̃(z, fz)} = 0.

Conversely, let limx→z max{r̃(x, fx) + r̃(x, gx), r̃(z, fz)} = 0. Then,

lim
n→∞

{r̃(gxn, fgxn) + r̃(gxn, ggxn)} = 0.

Now it is obvious that
lim

n→∞
r̃(gxn, fgxn) = 0, lim

n→∞
r̃(gxn, ggxn) = 0.

It is clear that f and g are continuous at fixed point z. □

Example 3.2. Let X = A∪B, where A = [0, 1
3 ] and B = ( 13 , 1). Define r̃ : X×X → [0,∞) such that r̃(x, y) = r̃(y, x)

for all x, y ∈ X and

r̃(x, y) =


0, ;x = y
1
16 ;x, y ∈ A

1 ;x, y ∈ B
1
4 ; otherwise

(3.10)

Then (X, r̃) is a Ω−ERbMS with Ω(t) = 2t, which is not a rectangular metric space. The mappings f, g : X → X
defined by f(x) = 1

3 ;x ∈ A ∪B and

g(x) =


1
3 ;x ∈ A− {0}
4
3 − x ;x ∈ B

0 ;x = 0

Here we have R(f) ⊂ R(g), f and g are commutative and f is orbitally continuous. A sequence { 1
3n } → 0, but

g( 1
3n ) ↛ g(0), so g is not orbitally continuous map. For all x, y ∈ X, we have r̃(fx, fy) = r̃( 13 ,

1
3 ) = 0, which is

trivially hold. We conclude that the equation (3.1) is satisfied. Thus f and g have unique common fixed point 1
3 .

If we put gx = Ix (the identity map), then equation (3.1) turns into Banach type contractive condition. To prove
the below theorem, orbital continuity is not required.
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Theorem 3.3. Let f be a self-map of a complete ERbMS with the non-trivial function Ω, and if there exists τ > 0
such that

τ + F (Ω[r̃(fx, fy)]) ≤ F (r̃(x, y)); ∀x, y ∈ X. (3.11)

Then f has a unique fixed point. Moreover, f is continuous at fixed point z if and only if

lim
x→z

max{r̃(x, fx), r̃(z, fz)} = 0.

Proof . Let the sequence {xn} defined by fxn = xn+1. It is easy to prove that

lim
n→∞

r̃(xn+1, xn) = 0. (3.12)

Next, we will prove xn ̸= xm for n ̸= m. Suppose to the contrary, xn = xm for some n > m then xn+1 = fxn =
fxm = xm+1. By continuing this process, one have xn+k = xm+k, for all k ∈ N . Then from inequality (3.11),

F (r̃(xn, xn+1)) < F (Ω[r̃(xm, xm+1)]) ≤ F (r̃(xn, xn+1))− τ

< F (r̃(xn, xn+1))

contradiction, hence xn ̸= xm for n ̸= m. In a similar way, as the previous theorem, one can easily prove that {xn} is
a Cauchy sequence and hence convergent to z.

lim
n→∞

xn = z. (3.13)

Next, one arrives at

F (Ω[r̃(fxn−1, fz)]) ≤ F (r̃(xn−1, fz))− τ

< F (Ω[r̃(fxn−2, fz)])− τ

≤ F (r̃(xn−2, fz))− 2τ

...

< F [r̃(x0, fz)]− nτ.

Taking limit as n → ∞ and from definition (2.3), we have

lim
n→∞

F [r̃(fxn−1, fz))] = −∞.

This implies
lim
n→∞

r̃(xn, fz) = 0.

Since the Cauchy sequence {xn} converges to both z and fz, it must be the case fz = z. It is easy to check that
z is the unique fixed point. The second part can be similarly proved as the previous theorem (3.1). □

Example 3.4. Let X = A∪B,where A = [0, 1
3 ] and B = ( 13 , 1). Define r̃ : X×X → [0,∞) such that r̃(x, y) = r̃(y, x)

for all x, y ∈ X and

r̃(x, y) =


0, ;x = y
1
16 ;x, y ∈ A ;x or y ̸= 0.

1 ;x, y ∈ B
1
4 ; otherwise

(3.14)

Then (X, r̃) is a Ω−ERbMS with Ω(t) = 2t, which is not a rectangular metric space. The mappings f : X → X
defined by

f(x) =


1
3 ;x ∈ A− {0}
x
3 ;x ∈ B
1
4 ;x = 0.

Here f is not orbitally continuous. For F (x) = lnx(x > 0) and τ = ln 2, all the conditions required in theorem
(3.3) are satisfied. Hence { 1

3} is the unique fixed point at which the map is discontinuous.
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In the next theorem, we have taken Kannan type contractive condition.

Theorem 3.5. Let f be a self-map of a complete ERbMS with non-trivial function Ω (i.e.,Ω(t) ̸= t). and if their
exists τ > 0 such that

τ + F (Ω[r̃(fx, fy)]) ≤ 1

2
{F (r̃(x, fx)) + F (r̃(y, fy))}; ∀x, y ∈ X. (3.15)

Then f has a unique fixed point. Moreover, f is continuous at fixed point z if and only if

lim
x→z

max{r̃(x, fx), r̃(z, fz)} = 0.

Proof . Let the sequence {xn} defined by fxn = xn+1. It is clear that

lim
n→∞

r̃(xn+1, xn) = 0. (3.16)

Now we will show that xn ̸= xm for n ̸= m. Suppose to the contrary, xn = xm for some n > m then xn+1 = fxn =
fxm = xm+1. By continuing this process, one have xn+k = xm+k for all k ∈ N . Let µn = r̃(xn, xn+1), Then from
inequality (3.15),

F (µm) = F (µn) < F (Ω[µn]) ≤ F (µn−1)− 2τ

< F (µn−2)− 4τ

...

< F (µm) (3.17)

contradiction, hence xn ̸= xm for n ̸= m. From (3.15),

τ + F (Ω[r̃(xn+1, xm+1)]) ≤
1

2
F ((µn) + (µm)).

In the limit as n → ∞ we get
F (r̃(xn+1, xm+1)) = −∞

or
r̃(xn+1, xm+1) = 0

which means {xn} is a Cauchy sequence and hence convergent to z i.e.

lim
n→∞

xn = z.

Next, one arrives at

F (r̃(fxn−1, fz)) < F (Ω[r̃(fxn−1, fz)]) ≤
1

2
{F (r̃(xn−1, xn)) + F (r̃(z, fz))} − τ.

Taking limit as n → ∞ and from definition (2.3), we have

lim
n→∞

F [r̃(fxn−1, fz))] = −∞.

This implies
lim
n→∞

r̃(xn, fz) = 0.

Since, the Cauchy sequence {xn} converges to both z and fz, it must be the case fz = z. It is easy to check that
z is the unique common fixed point. As same as Theorem (3.1), one can easily prove the second part of the theorem.
□
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Example 3.6. Let X = A∪B,where A = [0, 1
3 ] and B = ( 13 , 1). Define r̃ : X×X → [0,∞) such that r̃(x, y) = r̃(y, x)

for all x, y ∈ X and

r̃(x, y) =


0, ;x = y
1
12 ;x, y ∈ A ;x or y ̸= 0.

1 ;x, y ∈ B
1
2 ; otherwise

(3.18)

Then (X, r̃) is a Ω−ERbMS with Ω(t) = 2t, which is not a rectangular metric space. Let the mapping f : X → X
defined as in previous example (3.4), then for F (x) = lnx (x > 0) and τ = 0.20, all the conditions required in theorem
(3.5) are satisfied. Hence { 1

3} is the unique fixed point at which the map is discontinuous.
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