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Abstract

In the present paper, we prove the common fixed point theorem for F-contraction by considering one map as an
orbitally continuous map in Q2—FExtended rectangular b-metric space. In addition, we find a fixed point for Banach
and Kannan type contraction inequality without consideration of orbital continuity. Also, the map does not force to
be continuous at a fixed point. An example is also provided for the utility of our results.
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1 Introduction

In 1993, the notion of b-metric space was introduced by Czerwik [I0] as a generalization of a metric space, by
modifying the third condition in the metric space. In recent years Goswami, Mohanta and Kamran derived some fixed
point theorems in that space ([I5],[22],[27]). Recently, Kamran [I7] generalized b-metric space to become extended
b-metric space. In 2000, Branciari [7] introduced rectangular (generalized) metric space (RMS) by replacing triangular
inequality with a rectangular one in the context of fixed point theorem.

In 2015, George [14] introduced the concept of rectangular b-metric space and proved Banach contractions Fixed
point theorem for this space. Then Mitrovic and Radenovic [2]] established a common fixed point in such space.
Recently in 2019, Mustafa [23] introduced the Q—Extended rectangular b-metric space and proved fixed point results.
Also, Pant [25] and Bisht [6] derived some fixed point results at which the map does not force to be continuous at the
fixed point.

Motivated by the idea of Mustafa [23] and Lukacs et al. [20], we derive common fixed point results in complete
)—FExtended rectangular b-metric space. Consequently, we prove Banach and Kannan type F-contraction and find
a unique fixed point. Our results we are deal with the discontinuity of metric space. Also, an example is given to
strengthen our new results.
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2 Preliminaries

In this section, we need to recall some basic definitions and necessary results from existing literature.

Definition 2.1. [, [10] Let X be a non-empty set with the coefficient s > 1, and the mapping d : X x X — [0, 00)
satisfies the following:

(1) d(z,y) =0 if and only if z = y;
(2) d(z,y) =d(y,z) for all 2,y € X;
(3) d(z,y) < sld(z,2) +d(z,y)]; Vo,y, 2 € X.

Then d is called a b-metric on X and (X, d) is called a b-metric space with coefficient s.

Definition 2.2. [14] Let X be a nonempty set with the coefficient s > 1, and the mapping d : X x X — [0,00)
satisfies the following:

(1) d(z,y) =0 if and only if z = y;
(2) d(z,y) =d(y,z) for all z,y € X;
(3) d(z,y) < s[d(z,w) + d(w, ) + d(z,y)] for all x,y € X and for all distinct points w,z € X — {x, y}.

Then (X, d) is called a rectangular b- metric space(in short RbMS).

In 2012, Wardowski [29] introduced a new type of contraction called Wardowski F-contraction and obtained a fixed
point for complete metric space. Then several papers have dealt with the F-contraction mappings and their extensions
(see [I 13} 15} 19]). Cosentino et al. [9] introduced the following condition (F,) and obtained some results in b-metric
spaces. Then Lukacs and Kajanto [20] defined F-Contraction as follows:

Definition 2.3. [20] Let (X, d) be a b-metric space with constant s > land 7' : X — X is said to be a F-contraction
if there exists 7 > 0 such that d(Tz, Ty) > 0 implies

T+ F(s.d(Tx,Ty)) < F(d(z,y)); forall z,ye€X. (2.1)
where, F': (0,00) — R belongs to F; ; satisfying the following conditions:

(Fy) F is strictly increasing.

(Fy) For each sequence {ay, }nen of positive numbers lim a,, = 0 iff li_>m F(a,) = —oc0.
n— oo n o0
(F3) There exists k € (0,1) such that lir{)l+ a*F(a) = 0.
a—r

(F4) Let s > 1 be a real number. For each sequence {ay, }nen of positive numbers such that 7+ F(say,) < F(a,-1),
for all n € N and some 7 > 0, then 7 + F(s"ay,) < F(s" 'a,_1), for all n € N

In our results, (F3) and (F}y) is not required and denote class of all function satisfies (F1) and (Fy) by Fq .. In
1971, Ciric [§] gave the notion of orbital continuity as below:

Definition 2.4. If f is a self-mapping of a metric space (X, d), then the set O(z, f) = {f"x :n = 1,2, ...} is called the
orbit of f at x and f is called orbitally continuous if limy_, o, f™ 2 = x, for some x € X implies limy_, f(f™ ) = fz.

Remark: It is obvious that a continuous function is always orbitally continuous but the converse may not be true.
The following examples illustrate this fact.

Example 2.5. [5] Let X =[0,2] , the map f: X — X defined by
fl@)=1 i z€0,1],f(z)=0 4f =€ (1,2]

It is clear that f is orbitally continuous but not continuous at z = 1.
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Example 2.6. Let X = [0,1) and the map f: X — X defined by

fz) =

8 8

viw = O

Sequence {5} — 0, but f(5) - f(0), So f is not orbitally continuous.

Example 2.7. Let X = AU B , where A = {%,n =2,3,4,...} and B =1{0,1,2,3,...}. The map f: X — Xdefined
by
1 ;z=0,
flx)=4%, ;2€A
1 szeB-{0}.

Here {1} — 0, but f(1) - f(0), hence f is not orbitally continuous.

Definition 2.8. [23] Let X be a nonempty set, 2 : [0,00) — [0,00) be a strictly increasing continuous function with
t < Q(t), forall t > 0 and 0 = 2(0) and let 7 : X x X — [0, 00) be a mapping such that for all z,y € X and all distinct
points u,v € X, each distinct from x and y satisfies the following conditions:

(2) 7(x,y) =7(y,x);

(z,y) < QF(z,u) + 7(u,v) +7(v,y)].

—
w

=
<

Then (X, 7) is called an extended rectangular b- metric space (in short ERbMS).

The concepts of convergence, Cauchy sequence, and completeness in a ERbMS are defined in a standard way. In
[14, Example 1.7], it is seen that sequences in ERbMS may have more than one limit. However, there is a special
situation where this is not possible, and this will be used in some proofs.

Theorem 2.9. [23] Let (X, 7) be an ERbMS and let {x,} be a Cauchy sequence in X such that z,, # x,, whenever
n # m. Then {z,} can converge to at most one point.

While proving our results discontinuity of the Q—ERbMS can be managed by the following lemma.
Lemma 2.10. [23] Let (X, 7) be an ERbMS with the function €2, then we have the following:

(i) Suppose that {z,} and {y,} are sequences in X such that x, — z,y, — y and the elements of {z,y, xn,yn :
n € N} are totally distinct. Then, we have

QL (F(x,y)) < li_>m inf 7(2p, yn) < lUm sup #(2n, yn) < QF(z,y))
n o0

n—oo
(ii) Let {z,} be a Cauchy sequence in X converging to z. If x,, has infinitely many distinct terms, then

Q7 (F(x,y)) < lim infF(2,,y) < lim sup7(z,,y) < QF(x, 7))

n—oo n—oo

for all y € X with x # y.

3 Main results

Theorem 3.1. Let (X,7) be a complete ERbMS with non-trivial function Q(i.e., Q(t) # t). Let f and g be commuting
mappings into itself which satisfies the following;:
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(i) if there exists 7 > 0 such that
T+ F(Q[F(fz, fy)]) < F(7 (92, 9y)); Yo,y e X. (3.1)

(ii) either f or g is orbitally continuous and the range of g contains the range of f.

Then f and g have a unique common fixed point, say z. Moreover, f and g are continuous at common fixed point
z if and only if lim,_,, max{7(z, fz) + 7(x, gx),7(2, fz)} = 0.

Proof . Let xg € X be arbitrary. Then fzo and gxg are well defined. Since fzy € g(X), there exists 1 € X such
that gz1 = fzo. Continuing this process, if x,, is chosen, we choose a point in X such that gz,11 = fx,.

Step I: We will prove that lim,,_, o 7(9Zn+1, 92n) = 0. From our contractive condition (3.1)) one can have

T+F(Q[f(gxn+1vgxn)]) = T+ F(Q[F(fl'n7f$n,1)])
S F(f(gxnagxn—l))
This implies
F(Q[F(g2ni1, 92n)]) < F(F(g2n, gon-1)) — T. (3.2)
Since, t < Q(t), F is strictly increasing, one can observe with the use of (3.2))

F(Q[F(gTnt1, 9Tn)])

F(f(gxn+1,gxn)) <
< F(":(gxnagxn—l)) -7

< F(7(g9z1,9%0)) — nT.

Then
lim SupF(f(g$n+1ygxn)) = lim ian(F(g$n+1ygxn)) = lim F(,F(ganrhgxn)) = -
which together with F2) gives
lim 7(gzny1,9%,) =0. (3.3)
n—roo

Step 2 : We will show that gz,, # ga,, for n # m.
Case (i) If gz, = gan41 for some n, then fz, = ga, = u, for some n. This yields
fu=fgrn = gfrn = gu (3.4)

Now our claim is to prove 7(u, fu) = 0. On the contrary, let 7#(u, fu) > 0. Using contractive condition (3.1]), one comes
across

F(7(fon, fu) < F(Q7(fzn, fu)) < F(F(gen, gu)) — 7

From equation , one has
F( 7 (fzp, fu)) < F(F(fzn, fu))

which is absurd. Hence our assumption is wrong.
fu=u=gu.

Hence, u is the common fixed point of f and g.

Case (ii): If gz, # gxpy1 for alln > 0, then gz, # gxpyp foralln > 0,k > 1. If gz,, = gxy1 g for somen > 0,k > 1,
then

|
)

(QF(9Zn+k+15 9Tn+r)])

(7(9Tn+k: 9Tntk-1)) — T

F(Q[F(9zn+k, gTnin-1)]) — 7
(F(9%nsk—1,9Tnik—2)) — 27

F( f(gwn+17g$n)) < F(Q[f(ganrlvgxn)D =

IN A A
| !

< F('F(gxn-ﬁ-lagxn)) —kr
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F(7(gxns1,92n)) < F( 7(9Zns1,92n)), which is a contradiction. Hence gz, # gxnix for all n > 0,k > 1. Therefore,
we can assume that gz, # gx,, for n # m.

Step 3 : Now it is shown that {gz,} is an 7~Cauchy sequence. Suppose to the contrary that there exists e > 0 for
which we can find two subsequences {gz,,} and {gz,,} of {gz,} such that m; is the smallest index, where

m; >n; >1 and F(gTn,, 9Tm,) = €. (3.5)

It means that
f(gmniagmmifQ)»f(gxniagmmifl) < €. (3'6)

By using the Q-—rectangular inequality and (3.5]), one obtains
é ;(gmni ’ gxmz) S Q[f(gl’nl ) g‘rnﬂrl) + F(gxnﬂrlvgxmifl) + f(gxmlflvgl'ml)]
which together with (3.3]) and taking the upper limit as i — oo, we have

Q1 (e) < limsup #(g2n, 11, 9Tm, 1) (3.7)

i—o0
Again,from the Q-—rectangular inequality, one finds that
F(9Zn, 11, 9Tm,—2) < UF(9Tn, 11, 9%n,) + 7(9Zn, s 9Tm,—1) + 7(9Zm, ~1, 9Tm, —2)]-
Taking the upper limit as ¢ — oo, From and 7 one arrives at

lim sup 7(g@n, +1, 9Tm;—2) < Q(e). (3.8)

1—00

Since F is strictly increasing and with the use of inequalities (3.6) and (3.7)), one gets

F(e) = FQQ ()
< F(Q[hgl_iip F(9Tn;+1, 9Tm,—1)])
< F(hrrl sup 7(9Zn; s 9Tm,—2))
< Fl(e)

a contradiction. Thus, {gx,} is a #—Cauchy sequence in X. Since (X,7) is a complete Q—ERbMS. So, there exists
z € X such that
lim gz, =z (3.9)

n—oo
which yields lim,, o0 gz, = lim,, o0 fTn_1 = 2.

Step4 : In this we will prove that z is the coincidence point of f and g. i.e. fz = gz. With the use of (2—rectangular
inequality, one finds that

7(fz,92) < QF(fz, fgon) + 7(f92n, fgra—1) + F(fgTn-1,92)].
Letting limit supremum, one has

limsup7(fz,gz) < Qimsup7#(fz, fgz,) + Umsup 7(fgz,, fgrn_1) + limsup 7(fgz,—_1, g2)].

n—oo n—oo n— oo n— 00

Without loss of generality, we can assume that f is orbitally continuous. Also, we have, f and g are commutative.

Applying Lemma (2.2]) and equation (3.9), we get

lim 7(fz,gz) = limsup7(fz, gz) < Q(0),

n—o0 n—oo

one conclude that fz = gz.
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Step 5 : At last, we will prove that, z is the unique common fixed point of f and g. At first, we will prove that
gz = Z.

F((F(gzn, 92))] = F[(F(f2n-1, [2))] FIUF(frn-1, f2))]
F(f(gxn-1,92)) — T

FIQ(F(gxn—2,92))] — 27

AN CIN A

< F[f(gzo,g92)] — nt.

Taking limit as n — oo and from definition (2.3)), we have

lim F[r(gxn,gz))] = —o0.

n—o0

This implies
lim 7(gx,,gz) = 0.

n—oo

Since the Cauchy sequence {gz,} converges to both z and gz, it is clear that gz = z. Thus, gz = z = fz. It is
easy to check that z is the unique common fixed point. For the second part, let f and g be continuous at fixed point
z, then for the sequence {gx, } of (3.9)), we have lim,,_,o, fgz, = fz = z and lim,,_, o, g9z, = gz = z. That is

7(9xn, fgrn) =0 and 7(gxn,ggz,) = 0.

So,
lim max{r(gwn, fgan) +7(gan, 992n), 7(2, f2)} = 0.

Conversely, let lim,_,, max{7(z, fx) + 7#(x, gx),7(z, fz)} = 0. Then,
Jim {7 (g, fg2n) + 7(92n, gg2n)} = 0.

Now it is obvious that
lim 7(gzn, fgz,) =0, lim #(g2n, ggzn) = 0.
n— oo n—00

It is clear that f and g are continuous at fixed point z. O

Example 3.2. Let X = AUB, where A = [0, 3] and B = (3,1). Define 7 : X x X — [0, 00) such that #(z,y) = 7(y, z)
for all z,y € X and

0, sz=y
1 . A
Ho,y) =419 Y E . (3.10)
LY
% ; otherwise

Then (X,7) is a Q—ERbMS with Q(¢) = 2¢, which is not a rectangular metric space. The mappings f,g: X — X
defined by f(x) = % ;2 € AU B and
3 ;e A—{0}
glz)=q 43—z ;z€B
0 ;=0

Here we have R(f) C R(g), f and g are commutative and f is orbitally continuous. A sequence {z-} — 0, but
g(37) -+ 9(0), so g is not orbitally continuous map. For all z,y € X, we have 7(fz, fy) = 7(3,3) = 0, which is

trivially hold. We conclude that the equation 1) is satisfied. Thus f and g have unique common fixed point %

If we put ga = I, (the identity map), then equation (3.1]) turns into Banach type contractive condition. To prove
the below theorem, orbital continuity is not required.
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Theorem 3.3. Let f be a self-map of a complete ERbMS with the non-trivial function €2, and if there exists 7 > 0
such that
T+ F(Qr(fz, fy)]) < F(#(z,y)); Yo,y € X. (3.11)

Then f has a unique fixed point. Moreover, f is continuous at fixed point z if and only if

il_>mZ max{7(x, fx),7(z, fz)} = 0.

Proof . Let the sequence {z,} defined by fz, = x,11. It is easy to prove that

lim 7(zp41,2n) =0. (3.12)
n—oo

Next, we will prove x,, # x,, for n # m. Suppose to the contrary, x,, = z,, for some n > m then z,41 = fz, =
fZTm = Tma1. By continuing this process, one have x,1 1 = Ty, for all kE € N. Then from inequality (3.11]),

F(F(2n, tny1)) < FQF(@m, 2mt1)]) < F(F(Tn, Tny1)) — 7
< F(F(zn,Tnt1))

contradiction, hence x,, # x,, for n # m. In a similar way, as the previous theorem, one can easily prove that {z,} is
a Cauchy sequence and hence convergent to z.
lim x, = z. (3.13)

n— oo

Next, one arrives at

FQr(fon, f2)]) < F(H(zp-1,f2)) -7
< F(Q[f(fxn—%fz)]) =T
<

F(f(zp—2, f2z)) — 27

<  F[r(zo, f2)] — n1.

Taking limit as n — oo and from definition (2.3)), we have

nl;rg@ FlF(frn-1,f2))] = —0.

This implies
lim 7(zp, fz) =0.
n— oo
Since the Cauchy sequence {z,} converges to both z and fz, it must be the case fz = z. It is easy to check that
z is the unique fixed point. The second part can be similarly proved as the previous theorem (3.1)). O

Example 3.4. Let X = AUB,where A = [0, 1] and B = (},1). Define 7 : X x X — [0, 00) such that 7(z,y) = 7(y, z)
for all z,y € X and

0, s2=y
1
= T,y €A, 0.
7(z,y) = 116 oy s Tory# (3.14)
1T, Y €
i ; otherwise

Then (X,7) is a Q—ERbMS with Q(¢) = 2¢, which is not a rectangular metric space. The mappings f : X — X
defined by

: szeA-{0}
flz)=41% ;z€B
i ;= 0.

Here f is not orbitally continuous. For F(z) = Inz(x > 0) and 7 = In2, all the conditions required in theorem
1’ are satisfied. Hence {%} is the unique fixed point at which the map is discontinuous.
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In the next theorem, we have taken Kannan type contractive condition.

Theorem 3.5. Let f be a self-map of a complete ERbMS with non-trivial function € (i.e.,2(t) # t). and if their
exists 7 > 0 such that

- 1 - -
T+ FQF(fz, fy)]) < GIF (=, f2)) + F(7(y, fy))}; Va.y € X. (3.15)
Then f has a unique fixed point. Moreover, f is continuous at fixed point z if and only if

lim max{7(x, fz),7(z, fz)} = 0.

T—z

Proof . Let the sequence {x,} defined by fx,, = x,41. It is clear that

lim 7(zp41,2n) =0. (3.16)

n—oo

Now we will show that x,, # x,, for n # m. Suppose to the contrary, x,, = x,, for some n > m then x,, 11 = fx,, =
f®m = Tmy1. By continuing this process, one have &1 = Xy for all k € N. Let u,, = #(@n, Tpt1), Then from

inequality (3.15]),

F(pm) = F(pn) < F(Qun])

N
=
=
3

[
-

|

[N}

\‘

% F(ptm) (3.17)

contradiction, hence z,, # x,, for n # m. From (3.15)),

—_

T+ FQF (2ni1; 2mi)]) < SF((n) + (1m))-

2
In the limit as n — oo we get
F(F(Tp41,Tmg1)) = —00

or
H(Zng1, Tmy1) =0

which means {z,} is a Cauchy sequence and hence convergent to z i.e.

lim z, = z.
n—oo

Next, one arrives at
P (fan1, 72)) < FOUF(fan, £2)]) € 3 (F( (a1, 7)) + PGz, 2)} -

Taking limit as n — oo and from definition (2.3)), we have

lim F[F(fxn_1,fz))] = —oc.

n— oo

This implies
lim 7(z,, fz) =0.
n—oo
Since, the Cauchy sequence {z,} converges to both z and fz, it must be the case fz = z. It is easy to check that

z is the unique common fixed point. As same as Theorem (3.1]), one can easily prove the second part of the theorem.
O
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Example 3.6. Let X = AUB,where A = [0, +] and B = (1,1). Define 7 : X x X — [0, 00) such that 7(z,y) = 7 (y, z)
for all x,y € X and

0, sz=y
1
= A 0.
Aoy =4 2 2 yiB vory7 (3.18)
LY
% ; otherwise

Then (X, 7) is a Q—ERbMS with Q(¢) = 2¢, which is not a rectangular metric space. Let the mapping f: X — X

defined as in previous example (3.4)), then for F(x) = Inz (z > 0) and 7 = 0.20, all the conditions required in theorem
1) are satisfied. Hence {%} is the unique fixed point at which the map is discontinuous.
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