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Abstract

The purpose of this article, is to establish the existence of solution of infinite systems of fractional
differential equations in space of tempered sequence mβ(φ) by using techniques associated with
Hausdorff measures of noncompactness. Finally, we provide an example to highlight and establish
the importance of our main result.
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1. Introduction and Preliminaries

The degree of noncompactness of a set is measured by means of functions called measures of
noncompactness. The first measure of noncompactness, the function α, was defined and studied by
Kuratowski [16] for purely topological considerations. In 1955, Darbo [9] used a measure of non-
compactness to investigate the operators whose properties can be characterized as an intermediate
between those of contraction and compact mappings. Darbo,s fixed point theorem is useful in es-
tablishing the existence of solutions of various classes of differential equations, especially for implicit
differential equations, integral equations and integro-differential equations, (see [5, 7, 14] ).

The fractional calculus, an active branch of mathematics analysis, is as old as the classical calculus
which we know today. The original ideas of fractional calculus can be traced back to the end of
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the seventeenth century when the classical differential and integral calculus theories were created
and developed by Newton and Leibniz; see [11]. Fractional integral and differential equation have
applications in different topics such as control theory [24] , image processing [8] etc. Certain types
modeling of real life problems leads to the fractional differential equation found in Deng [10] and
such types of equations have been studied by many authors [3, 23] and reference there in.

The Hausdorff measure of noncompactness χ was introduced by Goldenstein et al. [12] in the year
1957, and it was further studied by Goldenstein and Markus [13]. Recently, measures of noncom-
pactness have also been used in defining geometric properties of Banach spaces and in characterizing
compact operators between sequence spaces. The study of sequence spaces has been of great inter-
est recently. A number of books have been published in this area over the last few years (see, for
example, [7]). Sequence spaces have various applications in several branches of functional analysis,
in particular, the theory of locally convex spaces, matrix transformations, as well as the theory of
summability invariably depends upon the study of sequences and series.

In recent years, a lot of scholars (see e.g. [1, 6, 17]) studied the existence of solutions of integral
equations in one or two variables on some spaces. The sequence space m(φ), introduced and studied
by W.L.C. Sargent in 1960, is closely related to the space lp. Mursaleen obtained an explicit formula
for the Hausdorff measure of noncompactness of any bounded subset in m(φ) [20]. Also, Mursaleen
et al. [23] established the solvability of an infinite systems of fractional differential equations in the
spaces c0 and lp then M. Rabbani et al. [26] discuss the existence of solutions of an infinite system

of fractional differential equations in tempered sequence spaces cβ0 and lβp .
The aim of this paper is to investigate the solvability of the following infinite systems of nonlinear

fractional integral equation 
Dαui(t) = fi(t, u(t)), t ∈ (0, T )

ui(0) = u0i = 0, ui(T ) = aui(ξ); i = 1, 2, . . .

1 < α < 2, aξα−1 < Tα−1,

(1.1)

where each ui(t) is a differentiable function of class C [α]+1. Also, we will denote the sequence
{ui(t)}∞i=1 = u(t), {ui(0)}∞i=1 = u0, {ui(ξ)}∞i=1 = u(ξ) and {fi(t, u(t))}∞i=1 = f(t, u(t)) which is an
element of some Banach sequence space mβ, for each i ∈ N.

Also, we construct the Hausdorff measures of noncompactness in space of tempered sequence
mβ(φ) and we give an example to verify the effectiveness and applicability of our results.

In the following, we give a few auxiliary facts, which will be used in our further considerations.
By the symbol R we will denote the set of real numbers, and by N the set of natural numbers

(positive integers). We write R+ to denote the interval [0,+∞). Assume that E is a Banach space
with the zero element θ. Denote by B(x, r) the closed ball in E centered at x and with radius r and
Br = B(θ, r).
Suppose ME is the family of all nonempty bounded subsets of the space E and let NE be its subfamily
consisting of all relatively compact sets. If A is a nonempty subset of E then by A and Conv(A) we
denote the closure and convex closure of A, respectively.
In what follows we will accept the following axiomatic definition of the concept of a measure of
noncompactness.

Definition 1.1. [5] A mapping µ : ME → R+ is called a measure of noncompactness (MNC for
short) if

(i) kerµ is nonempty and a subset of NE.

(ii) µ(X) ≤ µ(Y ) for X ⊂ Y .
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(iii) µ(X) = µ(X).

(iv) µ(CovX) = µ(X).

(v) For all λ ∈ [0, 1], µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ).

(vi) If (Xn)n∈N is a sequence of closed sets from ME satisfying Xn+1 ⊂ Xn for all n ∈ N and
µ(Xn)→ 0 as n→∞, then

X∞ =
∞⋂
n=1

Xn 6= ∅.

Definition 1.2. [5] Let (X, d) be a metric space and let Q ∈ MX . Then the Kuratowski measure
of noncompactness of Q, denoted by α(Q), is the infimum of the set of all numbers ε > 0 such that
Q can be covered by a finite number of sets with diameters ε, that is,

α(Q) = inf
{
ε > 0 : Q ⊂

n⋃
i=1

Si, Si ⊂ X, diam(Si) < ε (i = 1, 2, . . . , n); n ∈ N
}
,

where diam(Si) = sup{d(x, y) : x, y ∈ Si}.

The Hausdorff measure of noncompactness for a bounded set Q is defined by

χ(Q) = inf
{
ε > 0 : Q ⊂

n⋃
i=1

B(xi, ri), xi ∈ X, ri < ε (i = 1, 2, . . . , n); n ∈ N
}
.

The Hausdorff measure of noncompactness is often called the ball measure of noncompactness.

Lemma 1.3. [4] Let Q, Q1 and Q2 be bounded subsets of a metric space (X; d). Then

1◦ X (Q) = 0 if and if Q is totally bounded,

2◦ Q1 ⊂ Q2 implies that X (Q1) ≤ X (Q2),

3◦ X (Q) = X (Q),

4◦ X (Q1) ∪ X (Q2) = max{X (Q1),X (Q2)}.

In the case of a normed space (X, ‖.‖), the function XX : M → R+ has some additional properties
connected with the linear structure for example, we have

(i) X (Q1 +Q2) ≤ X (Q1) + X (Q2),

(ii) X (Q+ x) = X (Q) for all x ∈ X,

(iii) X (λQ) = |λ|X (Q) for all λ ∈ C,

(iv) X (Q) = X (ConvQ).

In 1969, Meir and Keeler [18] introduced the concept of Meir–Keeler contractive mapping and
proved some fixed point theorems for this kind of mappings. Thereafter, Aghajani, Mursaleen,
and Haghighi [2] generalized some fixed point and coupled fixed point theorems for Meir–Keeler
condensing operators via measures of noncompactness.
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Definition 1.4. [2] Let C be a nonempty subset of a Banach space E and let µ be an arbitrary
measure of noncompactness on E. An operator T : C → C is called a Meir–Keeler condensing
operator if for any ε > 0, there exists δ > 0 such that

ε ≤ µ(X) < ε+ δ implies µ(T (X)) < ε,

for any bounded subset X of C.

Theorem 1.5. [2] Let C be a nonempty, bounded, closed, and convex subset of Banach space E
and let µ be an arbitrary measure of noncompactness on E. If T : C → C is a continuous and
Meir–Keeler condensing operator, then T has at least one fixed point and the set of all fixed points
of T in C is compact.

Let I = [0, S] and let C(I, E) be the Banach space of all continuous functions defined on I with
values in the space E. The space C(I, E) is furnished with the standard norm

‖x‖c := sup{‖x(t)‖ : t ∈ I}, x ∈ C(I, E).

Proposition 1.6. [5] If W ⊆ C(I, E) is bounded and equicontinuous, then the function χ(W (.)) is
continuous on I and

χ(W ) = sup
t∈I

χ(W (t)), χ
( ∫ t

0

W (s)ds) ≤
∫ t

0

χ(W (s))ds. (1.2)

In the sequel, we shortly recall some basic facts about fractional calculus (for more details see [15, 25]).

Definition 1.7. ([25]) The fractional integral of order α is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, α > 0,

where Γ(.) is the gamma function, provided that the integral exists.

Definition 1.8. ([25]) For at least n-times continuously differentiable function f : [0,∞)→ R, the
Caputo fractional derivative of order α > 0 is defined as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the real number α.

Proposition 1.9. [23] Let f ∈ C[0, T ] be a given function and 1 < α < 2. Then the unique solution
of

cDαu(t) = f(t), u(0) = 0, u(T ) = au(ξ),

is given by

u(t) =

∫ T

0

K(t, s)f(s)ds,
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where K(t, s) is the Green’s function, given by

K(t, s) =
1

Γ(α)(Tα−1 − aξα−1)

{
K1(t, s), 0 ≤ t ≤ ξ,

K2(t, s), ξ ≤ t ≤ T.

K1(t, s) =


(t− s)α−1(Tα−1 − aξα−1)− tα−1[(T − s)α−1 − a(ξ − s)α−1]; 0 ≤ s ≤ ξ,

−tα−1[(T − s)α−1 − a(ξ − s)α−1]; t ≤ s ≤ ξ,

−(t(T − s)α−1); ξ ≤ s ≤ T.

K2(t, s) =


(t− s)α−1(Tα−1 − aξα−1)− tα−1[(T − s)α−1 − a(ξ − s)α−1]; 0 ≤ s ≤ ξ,

(t− s)α−1(Tα−1 − aξα−1)− (t(T − s))α−1; ξ < s ≤ t,

−(t(T − s))α−1; t < s ≤ T.

Remark 1.10. [23] It can be verified that the Green’s function K(t, s) defined on rectangle [0, T ]×
[0, T ] as K1(t, s) : [0, ξ]× [0, T ]→ R and K2(t, s) : [ξ, T ]× [0, T ]→ R is continuous w.r.t to t and s.

2. Hausdorff Measure of noncompactness of tempered sequence space mβ(φ)

In this section, we introduce and formulate the Hausdorff measure of noncompactness in the
tempered sequence space mβ(φ).
The theory of FK spaces is the most powerful and widely used tool in the characterization of matrix
mappings between sequence spaces, and the most important result was that matrix mappings between
FK spaces are continuous.

A sequence space X is called an FK space if it is a locally convex Frechet space with continuous
coordinates pn : X → C (n ∈ N), where C denotes the complex field and pn(x) = xn for all
x = (xk) ∈ X and every n ∈ N. A normed space FK is called a BK space, that is, a BK space is a
Banach sequence space with continuous coordinates.
On the other hand, the classical sequence spaces are BK spaces with their natural norms. More
precisely, the spaces l∞, c and c0 are BK spaces with the sup-norm given by ‖x‖l∞ = supk |xk|. Also,

the space lp(1 ≤ p <∞) is a BK space with the usual lp-norm defined by ‖x‖lp = (
∑

k |xk|p)
1
p . (see

[19, 21, 22] and the references therein).
Let l0 be the set of all real sequences and let C denote the space whose elements are finite sets of

distinct positive integers. Given any element σ of C, we denote by c(σ) the sequence cn(σ) for which
cn(σ) = 1 if n ∈ σ, and cn(σ) = 0 otherwise. Further, let

Cr =
{
σ ∈ C :

∞∑
n=1

cn(σ) ≤ r
}
,

the set of those σ whose support has cardinality at most s, and let

Φ =
{
φ = (φn) ∈ l0 : 0 < φ1 ≤ φn ≤ φn+1 and (n+ 1)φn ≥ nφn+1

}
,

(see [20]). For φ ∈ Φ, we define the following sequence space which were further studied in [27].

m(φ) =
{
x = (xn) ∈ l0 : ‖x‖m(φ) = sup

r≥1
sup
σ∈Cr

( 1

φr

∑
n∈σ

|xn|
)
<∞

}
.
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Remark 2.1. (1) The space m(φ) is a BK space with its respective norm.
(2) If φn = 1(n = 1, 2, . . . , ), then m(φ) = l1 and if φn = n(n = 1, 2, . . . , ), then m(φ) = l∞.
(3) l1 ⊆ m(φ) ⊆ l∞ for all φ ∈ Φ.

Theorem 2.2. [20] Let Q be a bounded subset of m(φ). Then

Xm(φ)(Q) = lim
k→∞

sup
x∈Q

(
sup
r>k

sup
τ∈Cr

1

φr

∑
n∈τ

|xn|
)
.

Assume that β = (βi)
∞
i=1 is a sequence with positive terms which is nonincreasing. The space cβ0

consists of all sequences (xi) such that the sequence (βixi) converges to zero. The norm in the space
cβ0 is defined by the formula

‖x‖cβ0 = ‖(xi)‖cβ0 = sup{βi|xi| : i = 1, 2, . . . , }.

It is trivial that cβ0 forms a linear space over the field of real (or complex) numbers.
Based on the similar approach we introduce a new tempered sequence space mβ(φ). The set <
consists of all real sequences x = (xn)∞i=1 such that

sup
r≥1

sup
σ∈Cr

( 1

φr

∑
n∈σ

βn|xn|
)
< ∞. Clearly < forms a linear space over the field of real numbers and it

becomes a Banach space if we normed it by norm

‖x‖mβ(φ) = sup
r≥1

sup
σ∈Cr

( 1

φr

∑
n∈σ

βn|xn|
)
. (2.1)

Proposition 2.3. The spaces mβ(φ) and m(φ) are isometric.
Proof . We consider the mapping F : mβ(φ)→ m(φ) defined by

F (x) = F
(
(xn)∞n=1

)
= (βnxn)∞n=1 = βx,

where x = (xn)∞n=1 and (βnxn)∞n=1 = βx belong to m(φ).
Let us fix y = (yn)∞n=1, z = (zn)∞n=1 ∈ mβ(φ) so we have

‖F (y)− F (z)‖m(φ) = ‖(βnyn)∞n=1 − (βnzn)∞n=1‖m(φ)

= ‖βy − βz‖m(φ)

= sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

|βiyi − βizi|
)

= sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi|(yi − zi)|
)
.

This means that ‖F (y)− F (z)‖m(φ) = ‖y − z‖mβ(φ) and F is an isometry between mβ(φ) and m(φ).
�

Now, we determine the Hausdorff measure of noncompactness on mβ(φ).
In view of Theorem 2.2 and Proposition 2.3 we have

Xmβ(φ)(Bβ) = lim
k→∞

sup
x∈Bβ

(
sup
r>k

sup
τ∈Cr

1

φr

∑
n∈τ

βn|xn|
)
, (2.2)

where Bβ ∈Mmβ(φ).
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3. Existence of solution of infinite system of fractional differential equations in mβ(φ)

In this section, we investigate the solvability of the infinite systems of nonlinear fractional integral
equations (1.1). We provide an illustrative example to show the effectiveness and applicability of our
results.

Consider the following conditions:

(i) ui(0) = 0 and {ui(ξ)}∞i=1 ∈ mβ(φ).

(ii) f = (f1, f2, . . .) continuously transforms the set I × mβ(φ) to mβ(φ) . Also, the family of
functions {(fu)(t)}t∈I is equicontinuous at each point of mβ(φ).

(iii) For each t ∈ I and u ∈ mβ(φ) there exist non-negative real valued functions pi(t) and qi(t) on
I satisfying the following inequality

|fi(t, u(t))| ≤ pi(t) + qi(t)|ui(t)| for i = 1, 2, . . .

such that pi(t) are continuous, 1
φr

∑
i∈σ

βipi(t) is uniformly converges on I and qi(t) is equibounded

in I.

Theorem 3.1. Let the system (1.1) satisfies the above conditions (i) − (iii), then if MTH < 1 it
has at least one solution u(t) such that u(t) = {un(t)}∞i=1 ∈ mβ(φ) for all t ∈ I = [0, T ], where
M = sup

t,s∈I
|K(t, s)|, sup

t,∈I,i∈N
qi(t) ≤ H.

Proof . Suppose that u(t) = {un(t)}∞i=1 is a function which satisfies the boundary conditions of the
problem (1.1), and each ui(t) continuous for all t ∈ I.
Define an operator F : C(I,mβ(φ))→ C(I,mβ(φ)) as follows

(Fu)(t) =

∫ T

0

K(t, s)f(s, u(s)). (3.1)

By condition (ii), F is well defined on C(I,mβ(φ)). Now we claim that F is bounded in the classical
supremum norm ‖u‖ = sup

t∈I
‖u(t)‖mβ(φ).

‖(Fu)(t)‖mβ(φ) = ‖
∫ T

o

K(t, s)f(s, u(s))ds‖mβ(φ)

= sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi|
∫ T

o

K(t, s)fi(s, u(s))ds)|
)

≤ sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi

[ ∫ T

o

|K(t, s)||fi(s, u(s))|ds
])

≤ sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi

[ ∫ T

o

[
|K(t, s)|

(
pi(s) + sup

s∈I,i∈σ
qi(s)|ui(s)|

)]
ds
])

≤M

∫ T

o

[
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βipi(s)
)]
ds+MH

(∫ T

o

[
sup
r≥1

sup
σ∈Cr

1

φr

(∑
i∈σ

βi|ui(s)|
)]
ds
)
.

≤M

∫ T

o

[
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βipi(s)
)]
ds+MTH‖u‖C(I,mβ(φ)).
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Above inequality can be written as

sup
t∈I
‖(Fu)(t)‖mβ(φ) ≤MTP +MTH‖u‖C(I,mβ(φ)),

where sup
t∈I

(
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βipi(t)
))

= P for each t ∈ I.

Hence
‖(F(u)‖C(I,mβ(φ)) ≤MTP +MTH‖u‖C(I,mβ(φ)).

Let d0 be the optimal solution of the following inequality

d ≤MT
(
P +Hd

)
.

Consider the set Bβ = Bβ(u0, r0) = {u(t) ∈ C(I,mβ(φ)) : ‖u‖C(I,mβ(φ)) ≤ d, u(0) = 0 ; u(T ) =
au(ξ)} which is convex, closed and bounded. Now, we show that F is continuous. To prove this fact,
let ν be an arbitrary fixed point in Bβ and let ε > 0 be given. By using condition (ii), there exists
δ > 0 such that if u ∈ Bβ and ‖u− ν‖C(I,mβ(φ)) ≤ δ, then ‖(fu)− (fν)‖C(I,mβ(φ)) ≤ ε

MT
. Hence, for

each t in [0, T ], we have

‖(Fu)(t)− (Fν)(t)‖mβ(φ) = sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi|
∫ T

0

K(t, s)fn(s, u(s))ds−
∫ T

0

K(t, s)fi(s, ν(s))ds|
)

≤ sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi

[ ∫ T

0

[
|K(t, s)||fi(s, u(s))− fi(s, ν(s))|

]
ds
])

≤MT sup
t∈I

[
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi|fi(t, u(t))− fi(t, ν(t))|
)]

≤MT
[
‖(fu)− (fν)‖C(I,mβ(φ))

]
≤ ε.

Taking the supremum on the left side over all t ∈ [0, T ], we deduce

‖(Fu)− (Fν)‖C(I,mβ(φ)) ≤ ε.

Therefore, we infer that F is continuous.
Next, we prove the continuity of (Fu) in I. Let t0 ∈ (0, T ) and ε > 0 be arbitrary. By using the
continuity of K(t, s) w.r.t t, we have δ > 0 such that for |t− t0| < δ,

|K(t, s)−K(t0, s)| <
ε

T
(
P +H‖u‖C(I,mβ(φ))

) .
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In view of condition (iii) we observe that

‖(Fu)(t)− (Fu)(t0)‖mβ(φ) = sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi|
∫ T

0

K(t, s)fi(s, u(s))ds−
∫ T

0

K(t0, s)fi(s, u(s))ds
)
|

≤ sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi

[ ∫ T

0

[
|K(t, s)−K(t0, s)||fi(s, u)s))|

]
ds
])

≤ sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi

[ ∫ T

o

[
|K(t, s)−K(t0, s)|

(
pi(s) + sup

s∈I,i∈σ
qi(s)|ui(s)|

)]
ds
])

≤ ε

T
(
P +H‖u‖C(I,mβ(φ))

)T sup
t∈I

[
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βipi(t)
)]

+
ε

T
(
P +H‖u‖C(I,mβ(φ))

)HT sup
t∈I

([
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
i∈σ

βi|u(t)|
)])

≤ ε

T
(
P +H‖u‖C(I,mβ(φ))

)T(P +H‖u‖C(I,mβ(φ))

)
< ε.

Then (Fu) is continuous for each t ∈ I.
In order to finish the proof, we show that F is a Meir–Keeler condensing operator with respect to
the Hausdorff measure of noncompactness χ on the space C(I,mβ(φ)), In view of formula (2.1) and
Proposition 1.6, we conclude that the Hausdorff measure of noncompactness for Bβ ⊂ C(I,mβ(φ))
is defined as

XC(I,mβ(φ))(B
β) = sup

t∈I
Xmβ(φ)(Bβ(t)). (3.2)

Taking into account condition (ii) and (iii), we get

Xmβ(φ)[(FBβ)(t)] = lim
k→∞

sup
u∈Bβ

(
sup
r>k

sup
τ∈Cr

( 1

φr

∑
i∈τ

βi|Fui(t)|
))

≤ lim
k→∞

sup
u∈Bβ

(
sup
r>k

sup
τ∈Cr

( 1

φr

∑
i∈τ

βi|
∫ T

o

K(t, s)fi(s, u(s))ds|
))

≤ lim
k→∞

sup
u∈Bβ

(
sup
r>k

sup
τ∈Cr

( 1

φr

∑
i∈τ

βi

[ ∫ T

o

|K(t, s)|
[
pi(s) + sup

s∈I,i∈σ
qi(s)|ui(s)|

]
ds
]))

≤MH lim
k→∞

sup
u∈Bβ

(∫ T

o

[
sup
r>k

sup
τ∈Cr

( 1

φr

∑
i∈τ

βi|ui|
)]
ds
)

≤MTHXC(I,mβ(φ))(B
β).

By (3.2) we can write

XC(I,mβ(φ))(FBβ) ≤MTHXC(I,mβ(φ))(B
β).

This implies that

XC(I,mβ(φ))(FBβ) ≤MTHXC(I,mβ(φ))(B
β) < ε.
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Then

XC(I,mβ(φ))(B
β) <

1

MTH
ε.

Let us choose δ = ε( 1
MTH

− 1). It is easy to see that F is a Meir–Keeler condensing operator on
Bβ ⊂ mβ(φ). Now, by applying Theorem 1.5, we find that F has a fixed point in Bβ, and thus the
infinite system of integral equations (1.1) has at least one solution in C(I,mβ(φ)). �

Example 3.2. Consider the following system of fractional differential equationsD
5
4un(t) = n

√
t+

∞∑
m=n

sin(t)um(t)

(1 +m2)(n2)
; n = 1, 2, . . . and t ∈ [0, T ],

un(0) = 0, un(T ) = 4
√

5un(T
4
),

u(T
4
) = {un(T

4
)}∞n=1 ∈ mβ(φ).

Taking βn = 1
n2 , ξ = T

4
, a = 4

√
5, fn(t, u(t)) = n

√
t +

∞∑
m=n

sin(t)um(t)

(1 +m2)(n2)
, pn(t) = n

√
t and qn(t) =

1
n2

∞∑
m=n

1

1 +m2
.

Above Eq. is a special case of Eq. (1.1). Here kernel K1(t, s) and K2(t, s) are given as

K(t, s) =
1

Γ(5
4
)( 4
√
T − 4

√
5T
2

)

{
K1(t, s); 0 ≤ t ≤ ξ,

K2(t, s); ξ ≤ t ≤ T.

K1(t, s) =


(t− s) 1

4 ( 4
√
T − 4

√
5T
2

)− t 14 [(T − s) 1
4 − 4

√
5
2
(T − 2s)

1
4 ]; 0 ≤ s ≤ t,

−t 14 [(T − s) 1
4 − 4

√
5
2
(T − 2s)

1
4 ]; t ≤ s ≤ ξ,

−(t(T − s) 1
4 ); ξ ≤ s ≤ T.

K2(t, s) =


(t− s) 1

4 ( 4
√
T − 4

√
5T
2

)− t 14 [(T − s) 1
4 − 4

√
5
2
(T − 2s)

1
4 ]; 0 ≤ s ≤ ξ,

(t− s) 1
4 )(T

1
4 − 4

√
5T
2

)− (t(T − s)) 1
4 ; ξ ≤ s ≤ t,

−(t(T − s)) 1
4 ; t ≤ s ≤ T.

Clearly, the functions pn(t) , fn(t, u(t)) and qn(t) are continuous and equibounded in I respectively.

Also, It is easy to prove that 1
φs

∑
κ∈σ

βipi(t) =
1

φs

∑
κ∈σ

κ
√
t

κ2
converges uniformly to Tπ2

6
in I for any

sequence φ ∈ Φ and qn(t) is equibounded by π2

6
= H.

On the other hand, we have

|fn(t, u(t))| = | n
√
t+

∞∑
m=n

sin(t)um(t)

(1 +m2)(n2)
| ≤ n
√
t+

1

n2

∞∑
m=n

1

(1 +m2)
|um(t)| = pn(t) + qn(t)|um(t)|,

for n = 1, 2, . . ..
Now, we show that f(t, u(t)) ∈ mβ(φ). For this aim assume that t ∈ [0, T ] is arbitrary and u ∈ mβ(φ)
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then for any sequence φ ∈ Φ we have

sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ|fi(s, u(t))|
)

= sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ| κ
√
t+

∞∑
κ≥m

sin(t)um(t)

(1 +m2)(κ2)
|
)

≤ sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ
(
κ
√
t+

∞∑
m=n

|um(t)|
(1 +m2)(n2)

))
≤ Tπ2

6
+H sup

r≥1
sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ|uκ(t)|
)

=
Tπ2

6
+H‖u(t)‖mβ(φ).

Next, we show that the family of functions {(f(u)(t)}t∈I is equicontinuous at each point of mβ(φ).
Let t ∈ I, ν ∈ mβ(φ) be arbitrarily fixed, take any ε > 0,

‖(fu)(t)− (fν)(t)‖mβ(φ) = sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ| n
√
t+

∞∑
κ≥m

sin(t)um(t)

(1 +m2)(κ2)
− n
√
t−

∞∑
κ≥m

sin(t)νm(t)

(1 +m2)(κ2)
|
)

= sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ|
∞∑
κ≥m

sin(t)um(t)

(1 +m2)(κ2)
−

∞∑
κ≥m

sin(t)νm(t)

(1 +m2)(κ2)
|
)

= sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ
( ∞∑
κ≥m

sin(t)

(1 +m2)(κ2)
)|uκ(t)− νκ(t)|

)
≤ sup

r≥1
sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ
( ∞∑
m=n

1

(1 +m2)(n2)

)
|uκ(t)− νκ(t)|

)
≤ π2

6
sup
r≥1

sup
σ∈Cr

( 1

φr

∑
κ∈σ

βκ|uκ(t)− νκ(t)|
)

=
π2

6
‖u(t)− ν(t)‖mβ(φ) < ε,

where ‖u(t)− ν(t)‖mβ(φ) < δ = ε 6
π2 . Therefore, by Theorem (3.1), the system (1.1) has at least one

solution in C(I,mβ(φ))
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[7] J. Banaś M. and Mursaleen, Sequence spaces and measures of noncompactness with applications to differential
and integral equations, New Delhi: Springer, (2014).



1034 H. Mehravaran, H. Amiri Kayvanloo, R. Allahyari

[8] E. Cuesta and J.F Codes, Image processing by means of a linear integro-differential equation Visualization imaging
and image processing (2003), paper 91, Clagary, (2003). Hamza MH, editor. Acta Press.

[9] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend Sem Mat Univ Padova., 24 (1955)
84–92.

[10] W. Deng, Short memory principal and a predictor corrector approach for fractional differential equations, J.
Comput. Appl. Math., 206 (2007) 174–188.

[11] K. Diethelm, The analysis of fractional differential equations An application-oriented exposition using differential
operators of Caputo type, Springer Science Business Media (2010).
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