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Abstract

In this work, a general implicit block method (GIBM) with two points for solving general fifth-order
initial value problems (IVPs) has been derived. GIBM is proposed by adopting the basis functions of
Hermite interpolating polynomials. GIBM is presented to be suitable with the numerical solutions of
fifth-order IVPs. Hence, the derivation of GIBM has been introduced. Numerical implementations
compared with the existing numerical GRKM method are used to prove the accuracy and efficiency
of the proposed GIBM method. The impressive numerical results of the test problems using the
proposed GIBM method agree well with the approximated solutions of them using the existing
GRKM method.

Keywords: Implicit numerical method, ODEs, IVPs, Block method, Order, RKM, GRKM,
Fifth-order, Ordinary differential equations.

1. Introduction

Differential equations (DEs) have powerful rule in the different fields of applied-mathematics
such as physics, engineering, biology, economic, medicine and chemistry. The mathematical models
of truth problems in engineering and applied science are modeled by using the tools of DEs. However,
computing the solutions of different types of DEs, analytically or numerically, have been challenged
the minds and intelligence of mathematicians. At present, the powerful modern or classical, analytical
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or numerical methods be available to use by mathematicians, engineers and scientists. The litera-
ture review(LR) of different classical or modern methods for finding the analytical or approximated
solutions of mathematical models that contain fifth-order IVPs or boundary value-problems(BVPs)
are listed as follows: [1] developed second-, fourth-, sixth- and eighth-orders finite-difference meth-
ods for solving IVPs while [2, 3, 4] derived numerical method of second-order for solving IVPs,
[5] solved BVPs using the technique of spline which is non-polynomial and [6] developed new in-
tegrator for solving ODEs of fifth-order. Accordingly, the numerical methods are sometimes not
able to approximate the solutions of some types of DEs directly or indirectly. However, the pro-
pose of this study is to introduce the derivation of direct GIBM method. Many researchers like:
[7, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] have derived one-step numerical inte-
grators for solving IVPs of orders less than order ten while other authors derived multistep numerical
methods for solving these problem [24, 25, 26, 27, 28, 29, 30]. In this work, a new implicit block
method with two points second derivative has been proposed. GIBM is derived by adopting Hermite
polynomials to enhance the accuracy of approximated solutions of IVPs by incorporating the first
derivative of ψ(ξ, η(ξ), η′(ξ), η′′(ξ), η′′′(ξ), η(4)(ξ)). The purpose of including more derivatives in the
formula of IVP is that, more generalized and accurate numerical results can be obtained. Some test
examples have been solved to show the effectiveness of GIBM method. As well as the numerical
results compared with similar numerical results which obtained by existing GRKM method. Numer-
ical results are carried out to verify the efficiency and accuracy of the constructed method compared
with general existing GRKM method. Applications of IVPs are also, introduced to yield impressive
numerical results for the new two-points block-method. The numerical solutions of test problems
using proposed GIBM method are agree well with the numerical solutions using GRKM method.

The new method is derived using Hermite polynomials P2(ξ), which can be defined by the fol-
lowing:

P2(ξ) =
n∑

i=0

mi−1∑
k=0

ψ
(k)
i Li,k(ξ), (1.1)

where ψi = ψ(ξi), ξj = a+ jh, i = 0, 1, . . . ; j = 0, 1, . . . ,m and h = b−a
n

, n is a positive integer.
Li,k(ξ) can be defined by

Li,mi
(ξ) = ℓi,mi

(ξ), i = 0, 1, . . . , n,

ℓi,k(ξ) =
(ξ − ξi)

k

k!

n∏
j=0,j ̸=i

(
ξ − ξj
ξi − ξj

)mj , i = 0, 1, . . . , n, k = 0, 1, . . . ,mi.

And recursively for k = mi − 2,mi − 3, . . . , 0.

Li,k(ξ) = ℓi,k(ξ)−
mi−1∑
v=k+1

ℓ
(v)
i,k (ξi)Li,v(ξ).

In this paper, block method with some derivatives is derived for directly solving the IVPs for following
class of general quasi-linear fifth order ODEs

η(5)(ξ) = ψ(ξ, η(ξ), η′(ξ), η′′(ξ), η′′′(ξ), η(4)(ξ)), ξ0 ≤ ξ ≤ ξ1 (1.2)

with the initial conditions(ICs),

η(j)(ξ0) = αj = [η1(ξ), η2(ξ), . . . , ηN(ξ)], j = 0, 1, 2, 3, 4; (1.3)
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2. Preliminary

In this section, we have introduced some concepts and background which related with the problem
of study.

2.1. Quasi-Linear Fifth-Order ODEs

In this subsection, we will study the quasi-linear fifth-order ODEs

2.1.1. Class One of General Quasi-Linear Fifth-Order ODEs

The class one of general quasi-linear fifth-order ODEs can be written in the Equation (1.2) with
the ICs in Equation (1.3).

2.1.2. Class Two of General Quasi-Linear Fifth-Order ODEs

The class two of general quasi-linear fifth-order ODE with no appearance of η(3)(ξ) and η(4)(ξ)
which has following form:

η(5)(ξ) = ψ(ξ, η(ξ), η′(ξ), η′′(ξ)), ξ0 ≤ ξ ≤ ξ1, (2.1)

with the ICs in Equation (1.3)

2.1.3. Class Three of Quasi-Linear Fifth-Order ODEs

The third class of general quasi-linear fifth-order ODE with no appearance of η
′′
(ξ), η(3)(ξ) and

η(4)(ξ) which has the following form:

η(5)(ξ) = ψ(ξ, η(ξ), η′(ξ)), ξ0 ≤ ξ ≤ ξ1, (2.2)

with the ICs in Equation (1.3).

2.1.4. Special Class Quasi-Linear Fifth-Order ODEs

The special quasi-linear fifth-order ODE has written as follows form:

η(5)(ζ) = ψ(ξ, η(ξ)), ξ0 ≤ ξ ≤ ξ1, (2.3)

with the ICs in Equation (1.3), for j = 0, 1, . . . , 5.
These ODEs in equations (1.2) and (2.1)-(2.3) are found in several of engineering and physical

models. Some of researchers used to solve the ODEs in equations (1.2) and (2.1)-(2.3) using multistep
methods or by converting these ODEs to system of 1st-order ODEs. Hence, it would be more
significate if ODEs of fifth-order in equations (1.2) and (2.1)-(2.3) can be solved directly using the
GIBM method which be more importunate since it has less functions of computational time and
evaluations in the running of implementation. In this study, we are consider the multi-step block
method for finding the solutions of fifth-order ODEs. However, we developed the derivation of GIBM
method and the proposed-method has been derived using the intepolation of Hermite polynomials.

2.2. RKM and GRKM Methods

In this subsection, RKM and GRKM methods with s-stages which introduced by [6] and [31]
and proposed for solving special and general classes of quasi-linear fifth-order ODEs in equations
(2.1)-(2.3) which have the following forms:
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2.2.1. RKM Method for Solving Class Three

The RKM method has the following form:

zn+1 = zn + hz
′

n +
h2

2!
z
′′

n +
h3

3!
z
′′′

n +
h4

4!
z(4)n + h5

s∑
i=1

biki (2.4)

z
′

n+1 = z
′

n + hz
′′

n +
h2

2!
z
′′′

n +
h3

3!
z(4)n + h4

s∑
i=1

b
′

iki (2.5)

z
′′

n+1 = z
′′

n + hz
′′′

n +
h2

2!
z(4)n + h3

s∑
i=1

b
′′

i ki (2.6)

z
′′′

n+1 = z
′′′

n + hz(4)n + h2
s∑

i=1

b
′′′

i ki (2.7)

z
(4)
n+1 = z(4)n + h

s∑
i=1

b
′′′′

i ki (2.8)

where, the s-stages RKM method for approximating the solutions of special quasi-linear ODEs of
fifth-order in Equation (2.3) with ICs (1.3),

and,

k1 = ψ(ζn, zn) (2.9)

and

ki = ψ(ζn + cih, zn + hciz
′

n +
h2

2
c2i z

′′

n +
h3

6
c3i z

′′′

n +
h4

24
c4i z

′′′′

n + h5
i−1∑
j=1

aijkj) (2.10)

for i = 2, 3, . . . , s. where h is the step-size of the interval of definition.

2.2.2. GRKM method for Solving Class Two

The GRKM integrator with s-stages for solving class two quasi-linear fifth-order ODEs in equa-
tions (2.1)-(2.2) with ICs in Equation (1.3) are the equations formulas in equations (2.4)-(2.9) and
the following forms:

ki = ψ(ζn + cih, zn + cihz
′

n + c2i
h2

2!
z
′′

n + c3i
h3

3!
z
′′′

n + c4i
h4

4!
z(4)n + c5i

h5

5!
z(5)n + h6

i−1∑
m=1

a1imkm, z
′
n

+ cnhz
′′

n + c2n
h2

2!
z
′′′

n + c3i
h3

3!
z
′′′′

n + h4
i−1∑
l=1

a2imkm, z
′′
n + cnhz

′′′

n + c2n
h2

2!
z
′′′′

n + h3
i−1∑
l=1

a3imkm),

(2.11)

for i = 2, 3, 4, · · · , s.
While, GRKM integrator with s-stages for solving class three of general quasi-linear fifth-order

ODEs in Equation (2.2) with ICs in Equation (1.3) are the equations formulas in equations (2.4)-(2.9)
and the following form:

ki = ψ(ζn + cih, zn + cihz
′

n + c2i
h2

2!
z
′′

n + c3i
h3

3!
z
′′′

n + c4i
h4

4!
z(4)n + c5i

h5

5!
z(5)n

+h6
i−1∑
m=1

a1imkm, z
′
n + cnhz

′′

n + c2n
h2

2!
z
′′′

n + c3i
h3

3!
z
′′′′

n + h4
i−1∑
l=1

a2imkm) (2.12)
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for i = 2, 3, . . . , s. where h. is the step-size of the interval of definition.
[10] and [32] have derived the RKD and RKT methods for solving special-quasi linear ODEs of

third-order while [33] have derived RKFD method for solving special-quasi linear ODEs of fourth-

order. The parameters of RKM method are ci, aij, b
(k)
i for i, j = 1, 2, . . . , s and k = 0, 1, 2, 3 are

obtained by solving the system of OCs. Butcher tableaus of Three-stages RKM and GRKM integra-
tors have shown in the Tables 1 and 2, resp.

Table 1: Butcher Tableau(BT) of RKM Integrator

0 0
3
5 −

√
6

10
1
2 0

3
5 +

√
6

10
1
2

1
2 0

1 0 − 119
120

− 1
40 −

√
6

360
1
60 +

√
6

360 0
1
18

1
18 −

√
6

48
1
18 +

√
6

48
1
9

7
36 −

√
6

48
7
18 −

√
6

18
1
9

7
36 −

√
6

48
7
18 −

√
6

18

Table 2: Butcher Tableau(BT) of GRKM Integrator

0 0
3
5
− 1

10

√
6 1

18
0

3
5
+ 1

10

√
6 1

18
−1

2
0

0
12
625

− 3
2500

√
6 0

1
2

−1
2

0

0
27
500

− 19
100

√
6 0

33
2500

+ 51
5000

√
6 51

1250
+ 11

1250

√
6 0

− 37
360

1
18

1
18

17
360

− 7
360

√
6 1

18
− 11

180
+ 7

360

√
6

1
18

1
18

+ 1
48

√
6 1

18
− 1

48

√
6

1
9

7
36

+ 1
18

√
6 7

36
− 1

18

√
6

1
9

4
9
+ 1

36

√
6 4

9
− 1

36

√
6
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3. Proposed GIBM Method

In this section, we have introduced the proposed method.

3.1. Analysis of Proposed GIBM Method

In this section, the proposed-method has been derived and introduced. The derivation of the
proposed-method based on interpolating of Hermite polynomial named by P2(ξ) which interpolates
at two-points. This Hermite polynomial has the following form:

P2(ξ) =
m∑
i=0

mi−1∑
k=0

ψ
(k)
i Lik(ξ)

where, ψi(ξ) = ψ(ξ, ηi(ξ), η
′
i(ξ), η

′′
i (ξ), η

′′′
i (ξ), η

(4)
i (ξ)), ξj = a + jh; i, j = 0, 1, 2, . . . ,m and h = b−a

m
,

Lik(ξ) = the generalized Lagrange-polynomial; i = 0, 1, 2, . . . ,m; k = 0, 1, 2, . . . ,mi and m is positive
integer. We use

P2(ξ) = ψ0L00(ξ) + ψ1L10(ξ) + ψ2L20(ξ) + ψ
′

0L01(ξ) + ψ
′

1L11(ξ) + ψ
′

2L21(ξ),

where ψ
′
is the first-derivative of the function ψ with respect to ξ. The approximation computes

the approximated solutions, ηm+1 and ηm+2 at two-points ξm+1 and ξm+2 respectively where ξm =the
starting point and ξm+2 =the end point in the block-interval [ξm, ξm+2] with step-size 2h. The
approximated solution of ηn+2 at the end-point ξm+2 should be given as initial value in the new
iteration.

Figure 1: Two Points Block Method
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3.1.1. Hermite Polynomials

In this paper, we have used Hermite polynomials which defined as follows:

L00(ξ) =

(
ξ − ξn+1

ξn − ξn+1

)2(
ξ − ξn+2

ξn − ξn+2

)2(
1 +

(
2

ξn − ξn+2

+
2

ξn − ξn+1

)
(ξ − ξn)

)
, (3.1)

L10(ξ) =

(
ξ − ξn

ξn+1 − ξn

)2(
ξ − ξn+2

ξn+1 − ξn+2

)2(
1 +

(
2

ξn+1 − ξn+2

+
2

ξn+1 − ξn

)
(ξ − ξn+1)

)
,(3.2)

L20(ξ) =

(
ξ − ξn

ξn+2 − ξn

)2(
ξ − ξn+1

ξn+2 − ξn+1

)2(
1 +

(
2

ξn+2 − ξn+1

+
2

ξn+2 − ξn+1

)
(ξ − ξn+2)

)
,

(3.3)

L01(ξ) = (ξ − ξn)

(
ξ − ξn+1

ξn − ξn+1

)2(
ξ − ξn+2

ξn − ξn+2

)2

, (3.4)

L11(ξ) = (ξ − ξn+1)

(
ξ − ξn

ξn+1 − ξn

)2(
ξ − ξn+2

ξn+1 − ξn+2

)2

, (3.5)

L21(ξ) = (ξ − ξn+2)

(
ξ − ξn

ξn+2 − ξn

)2(
ξ − ξn+1

ξn+2 − ξn+1

)2

. (3.6)

Using the assumption ζ = ξ−ξn+2

h
,, then, Hermite polynomials can written in the independent variable

ζ as follows:

L00(ζ) =
7 + 3ζ

4
(ζ(ζ + 1))2 (3.7)

L10(ζ) = (ζ(2 + ζ))2 (3.8)

L20(ζ) =
1− 3ζ

4
(2 + ζ)2(ζ + 1)2 (3.9)

L01(ζ) =
h(1 + ζ)

4
(ζ(ζ + 2))2 (3.10)

L11(ζ) = h(1 + ζ)(ζ(ζ + 1))2 (3.11)

L21(ζ) =
hζ

4
((2 + ζ)(ζ + 1))2 (3.12)

3.2. Derivation of Proposed Two Points Implicit Block Method

In this section, we presented the construction of two-points implicit block-method with second
derivatives for solving general quasi linear fifth order ODEs. In this proposed method, the domain
of definition [a, b] contains only two points for each block. The approximated-solution z

(j)
n+1, for

j = 0, 1, 2, 3, 4 at the first point ξn+1 of Equation (ch4/1) can be obtained by multiple integrating of
Equation (1.2) up to fifth-times with respect to the independent-variable ξ resp. over the interval
[ξm, ξm+1]. The integral formulas can be written as follows:
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∫ ξ+1

ξn

z(5)(ζ)dζ =

∫ ξ+1

ξn

ψ(ζ, ϕ(ζ))dζ, (3.13)∫ ξ+1

ξn

∫ ξ

ξn

z(5)(ζ)dζdζ =

∫ ξ+1

ξn

∫ ξ

ξn

ψ(ζ, ϕ(ζ))dζdζ, (3.14)∫ ξ+1

ξn

∫ ξ

ξn

∫ ξ

ξn

z(5)(ζ)dζdζdζ =

∫ ξ+1

ξn

∫ ξ

ξn

∫ ξ

ξn

ψ(ζ, ϕ(ζ))dζdζdζ, (3.15)∫ ξ+1

ξn

∫ ξ

ξn

∫ ξ

ξn

∫ ξ

ξn

z(5)(ζ)dζdζdζdζdζ =

∫ ξ+1

ξn

∫ ξ

ξn

∫ ξ

ξn

∫ ξ

ξn

ψ(ζ, ϕ(ζ))dζdζdζdζ, (3.16)∫ ξ+1

ξn

∫ ξ

ξn

∫ ξ

ξn

∫ ξ

ξn

∫ ξ

ξn

z(5)(ζ)dζdζdζdζdζ =

∫ ξ+1

ξn

∫ ξ

ξn

∫ ξ

ξn

∫ ξ

ξn

∫ ξ

ξn

ψ(ζ, ϕ(ζ))dζdζdζdζdζ,

(3.17)

where ϕ(ζ) ≡ ϕ(z(ζ), z
′
(ζ), z

′′
(ζ), z

′′′
(ζ), z

′′′′
(ζ)). and ξn+1 = ξn+h By integrate the equations (3.13)-

(3.17) to get the following equations:

z
(4)
n+1 = z(4)n +

∫ ξn+1

ξn

ϕ(z(ζ), z
′
(ζ), z

′′
(ζ), z

′′′
(ζ), z

′′′′
(ζ))dζ (3.18)

z
(3)
n+1 = z(3)n + hz(4)n +

∫ ξn+1

ξn

ϕ(z(ζ), z
′
(ζ), z

′′
(ζ), z

′′′
(ζ), z

′′′′
(ζ))dζ (3.19)

z
′′

n+1 = z
′′

n + hz
′′′

n +
h2

2!
z(4)n +

∫ ξn+1

ξn

ϕ(z(ζ), z
′
(ζ), z

′′
(ζ), z

′′′
(ζ), z

′′′′
(ζ))dζ (3.20)

z
′

n+1 = z
′

n + hz
′′

n +
h2

2!
z
′′′

n +
h3

3!
z(4)n +

∫ ξn+1

ξn

ϕ(z(ζ), z
′
(ζ), z

′′
(ζ), z

′′′
(ζ), z

′′′′
(ζ))dζ (3.21)

zn+1 = zn + hzn +
h2

2!
z
′

n +
h3

3!
z
′′

n +
h4

4!
z
′′′

n +

∫ ξn+1

ξn

ϕ(z(ζ), z
′
(ζ), z

′′
(ζ), z

′′′
(ζ), z

′′′′
(ζ))dζ

(3.22)

Let ζn+1 = ζn+h and the change of coordinate s = ζ−ζn+2

h
, dt = hds where, ψ in (1.2) will be replaced

by the following Hermite interpolating polynomial Θ(s) = ψ0L00(s)+ψ1L10(s)+ψ2L20(s)+g0L01(s)+
g1L11(s) + g2L21(s). where ψ = ψ(ζ, z(ζ), z

′
(ζ), z

′′
(ζ), z

′′′
(ζ), z(4)(ζ)) Using the the approximation

which gives the following formulas:

z
(4)
n+1 = z(4)n +

∫ −1

−2

Θ(s)hds (3.23)

z
(3)
n+1 = z(3)n + hz(4)n −

∫ −1

−2

h(s+ 1)Θ(s)hds (3.24)

z
′′

n+1 = z
′′

n + hz
′′′

n +
h2

2!
z(4)n +

∫ −1

−2

(h(s+ 1))2

2!
Θ(s)hds (3.25)

z
′

n+1 = z
′

n + hz
′′

n +
h2

2!
z(3)n +

h3

3!
z(4)n −

∫ −1

−2

(h(s+ 1))3

3!
Θ(s)hds (3.26)

zn+1 = zn + hz
′

n +
h2

2!
z
′′

n +
h3

3!
z(3)n +

h4

4!
z(4)n +

∫ −1

−2

(h(s+ 1))4

4!
Θ(s)hds (3.27)
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By integration the equations (3.23)-(3.27), we obtained the following new formulas:

z
(4)
n+1 = ∆1 +

h

240
(101ψn + 128ψn+1 + 11ψn+2 + h(13gn − 40gn+1 − 3gn+2)), (3.28)

z
(3)
n+1 = ∆2 +

h2

1680
(520ψn + 7ψn+1 + ψn+2 + h(59gn − 128gn+1 − 11gn+2)), (3.29)

z
′′

n+1 = ∆3 +
h3

6720
(817ψn + 256ψn+1 + 47ψn+2 + h(83gn − 140gn+1 − 13gn+2)), (3.30)

z
′

n+1 = ∆4 +
h4

2016
(67ψn + 14ψn+1 + 3ψn+2) +

h5

60480
(185gn − 256gn+1 − 25gn+2), (3.31)

zn+1 = ∆5 +
h5

241920
(1699ψn + 256ψn+1 + 61ψn+2 + h(143gn − 168gn+1 − 17gn+2)), (3.32)

where

∆1 = z(4)n , (3.33)

∆2 = z(3)n + hz(4)n , (3.34)

∆3 = z
′′

n + hz(3)n +
h2

2!
z(4)n , (3.35)

∆4 = z
′

n + hz
′′

n +
h2

2!
z(3)n +

h3

3!
z(4)n , (3.36)

∆5 = zn + hz
′

n +
h2

2!
z
′′

n +
h3

3!
z(3)n +

h4

4!
z(4)n . (3.37)

Evaluating the P2(ζ) at the point zn+2 over [ζn+1, ζn+2] to have a two points implicit method. Using
the same steps as in the previous formula zn+1, we have the second formula at ζn+2 :

z
(4)
n+2 = △6 +

h

240
(11ψn + 128ψn+1 + 101ψn+2 + h(3gn + 40gn+1 − 13gn+2)). (3.38)

z′′′n+2 = △7 +
h2

1680
(37ψn + 616ψn+1 + 187ψn+2 + 2h(5gn + 76gn+1 − 16gn+2)). (3.39)

z′′n+2 = △8 +
h3

6720
(41ψn + 928ψn+1 + 151ψn+2 + h(11gn + 188gn+1 − 29gn+2)). (3.40)

z′n+2 = △9 +
h4

30240
(350ψn + 148ψn+1 + 15ψn+2 + h(10gn + 190gn+1 − 23gn+2)). (3.41)

zn+2 = △10 +
h5

241920
(49ψn + 1840ψn+1 + 127ψn+2 + h(13gn + 272gn+1 − 27gn+2)). (3.42)

where

∆6 = z(4)(ζn+1) (3.43)

∆7 = z
′′′
(ζn+1) + hz(4)(ζn+1) (3.44)

∆8 = z
′′
(ζn+1) + hz

′′′
(ζn+1) +

h2

2
z(4)(ζn+1) (3.45)

∆9 = z
′
(ζn+1) + hz

′′
(ζn+1) +

h2

2
z
′′′
(ζn+1) +

h3

6
z(4)(ζn+1) (3.46)

∆10 = z(ζn+1) + hz
′
(ζn+1) +

h2

2
z
′′
(ζn+1) +

h3

6
z
′′′
(ζn+1) +

h4

24
z(4)(ζn+1) (3.47)
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3.3. The Order and Error Constant of the Proposed Method

The formulae of two points implicit block method is given in the equations (3.28)-(3.32) have
been written in matrix form as follows:

αZm = hβZ
′

m + h2γZ
′′

m + h3ψZ
′′′

m + h4δZ(4)
m + φh5Fm + h6λGm (3.48)

where,

αij =


1 (i, j) ∈ (5, 9), (10, 10),
−1 (i, j) ∈ (5, 8), (10, 9),
0 o.w.

; βij =


1 (i, j) ∈ (4, 8), (5, 8), (9, 9), (10, 9),
−1 (i, j) ∈ (4, 9), (9, 10),
0 o.w.

γij =


1 (i, j) ∈ (3, 8), (4, 8), (8, 9), (9, 9),
−1 (i, j) ∈ (3, 9), (8, 10),
1
2

(i, j) ∈ (5, 8), (10, 9),
0 o.w.

; ψij =


1 (i, j) ∈ (2, 8), (3, 8), (7, 9), (8, 9),
−1 (i, j) ∈ (2, 9), (7, 10),
1
2

(i, j) ∈ (4, 8), (9, 9),
1
6

(i, j) ∈ (5, 8), (10, 9),
0 o.w.

δij =



1 (i, j) ∈ (1, 8), (2, 8), (6, 9), (7, 9),
−1 (i, j) ∈ (1, 8), (6, 10),
1
2

(i, j) ∈ (3, 8), (8, 9),
1
6

(i, j) ∈ (4, 8), (9, 9),
1
24

(i, j) ∈ (5, 8), (10, 9),
0 o.w.

φe8 = [
101

240
,
13

42
,
817

6720
,

67

2016
,

1699

241920
,
11

240
,

37

1680
,

41

6720
,

5

4032
,

49

241920
]T ,

φe9 = [
128

240
,
7

42
,
256

6720
,

14

2016
,

256

241920
,
128

240
,
616

1680
,
928

6720
,
128

4032
,

1840

241920
]T ,

φe10 = [
11

240
,
1

42
,

47

6720
,

3

2016
,

61

241920
,
101

240
,
187

1680
,
151

6720
,

15

4032
,

127

241920
]T ,

λe8 = [
13

240
,

59

1680
,

83

6720
,

185

60480
,

143

241920
,

3

240
,

5

840
,

11

6720
,

10

30240
,

13

241920
]T ,

λe9 = [
−40

240
,
−128

1680
,
−140

6720
,
−256

60480
,
−168

241920
,
40

240
,
76

840
,
188

6720
,

190

30240
,

272

241920
]T ,

and,

λe10 = [
−3

240
,
−11

1680
,
−13

6720
,
−25

60480
,

−17

241920
,
−13

240
,
−16

840
,
−29

6720
,
−23

30240
,

−27

241920
]T .

where φ =
(
φej

)
and λ =

(
λej

)
for j=1,2,. . . ,10 and φej ≡ λej ≡ 0 for j=1,2,. . . ,7.

Z(i)
m = (z

(i)
n−7, z

(i)
n−6, z

(i)
n−5, z

(i)
n−4, z

(i)
n−3, z

(i)
n−2, z

(i)
n−1, z

(i)
n , z

(i)
n+1, z

(i)
n+2)

T ,

F (i)
m = (ψ

(i)
n−7, ψ

(i)
n−6, ψ

(i)
n−5, ψ

(i)
n−4, ψ

(i)
n−3, ψ

(i)
n−2, ψ

(i)
n−1, ψ

(i)
n , ψ

(i)
n+1, ψ

(i)
n+2)

T .

for i = 0, 1. It can be define the linear operator in equation (3.48) as

L[Z(ζ);h] = αZm − hβZ
′

m − h2γZ
′′

m − h3ψZ
′′′

m − h4δZ(4)
m − φh5Fm − h6λGm. (3.49)
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where Z(ζ) is an arbitrary function that is continuous and differentiable, expanding equation (3.49)
in the Taylor series at point ζ yields

L[Z(ζ;h] = C0Z(ζ) + C1hZ
′(ζ) + Cph

pZp(ζ) + · · ·+ Cp+1h
p+1Zp+1(ζ) + . . . (3.50)

The proposed GIBM method has order= P if the linear operator in Equation (3.50) satisfy that
Cj = 0; j = 0, 1, . . . , P + 4 and CP+5 ̸= 0 where CP+5 =the error constant of the method. In GIBM
method, we have Cj = 0; j = 0, 1, . . . , 10 and

C11 = [
1

9450
,

1

17280
,

1

56700
,

1

259200
,

1

1496880
,

1

9450
,

29

604800
,

23

1814400
,

1

403200
,

47

119750400
]T .

So, it can be concluded that the order of the two points implicit method is 6.

3.4. Zero-Stability of GIBM Method

In this subsection, the zero-stability of the GIBM method is discussed. The formulas of the new
method in equations (3.28)-(3.32) and (3.38)-(3.42) are considered as a zero stable in case the roots
ri = 1, 2, . . . , N of the first characteristic polynomial ρ(R) = det [RA(0)−A(1)] = 0 is found to satisfy
| R |≤ 1.

Hence, we will use the following technique to find the matrix form of the first characteristic
polynomial. Substituting Equation (3.28) into Equation (3.38), we have

y
(4)
n+2 = y(4) +

h

15
[7fn + 16fn+1 + 7fn+2] +

h2

15
[gn − gn+2]. (3.51)

By replacing equations (3.28)-(3.29) into (3.39) , we have

z′′′n+2 = z′′′n + 2hz(4)n +
h2

105
[79ψn + 112ψn+1 + 19ψn+2] +

h3

105
[10gn − 16gn+1 − 4gn+2]. (3.52)

Also, by substituting equations (3.28)-(3.30) into (3.40) , we get

z′′n+2 = z′′n + 2hz′′′n + 2h2z(4)n +
h3

105
[68ψn + 64ψn+1 + 8ψn+2] +

h4

105
(8gn − 16gn+1 − 2gn+2). (3.53)

Substituting equations (3.28)-(3.31) into (3.41) , we have

z′n+2 = z′n + 2hz′′n + 2h2z′′′n +
4h3

3
z(4)n +

h4

63
(24ψn + 16ψn+1 + 2ψn+2) +

h5

945
(40gn − 80gn+1 − 8gn+2).

(3.54)

By substituting equations (3.28)-(3.32) into (3.42), we get

zn+2 =zn + 2hz′n + 2h2z′′n +
4h3

3
z′′′n +

2h4

3
z(4)n +

h5

945
[161ψn + 80ψn+1 (3.55)

+ 11ψn+2 + h(17gn − 32gn+1 − 3gn+2)). (3.56)

Using the equations (3.28)-(3.32) and the equations (3.51)-(3.55)).
The general form of the matrices A(i) for i=0,1 can be written as

A
(0)
ij = δij and A

(1)
ij =


1 j = i+ 5; i < 5,

i = j; i > 5
0 o.w.

where δ is Kroneker delta and A(i); i = 0, 1 are 10x10 matrices. Then, ρ(R) = |RA(0) − A(1)| = 0
implies that ρ(R) = R5(R− 1)5, R = 0, 1 5-times.

Hence, it can conclude that the new method is zero stable.
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3.5. Implementation

In this subsection, we are going to explain the implementation of the two points implicit block
method. The values of z

(4)
n+1, z

′′′
n+1, z

′′
n+1, z

′
n+1, zn+1, z

(4)
n+2, z

′′′
n+2, z

′′
n+2, z

′
n+2 and zn+2 in the equations

(3.28)-(3.32) and the equations (3.38)-(3.42) have been approximated using the predictor-corrector
equations.

The predictor equations using Taylor method have the following forms:

z
(4)p
n+m = z

(4)p
n+(m−1) + hψc

n+(m−1),

z
′′′p
n+m = z

′′′p
n+(m−1) + hz

(4)p
n+(m−1) +

h2

2!
ψc
n+(m−1),

z
′′p
n+m = z

′′p
n+(m−1) + hz

′p
n+(m−1) +

h2

2!
z
(4)p
n+(m−1) +

h3

3!
ψc
n+(m−1),

z
′p
n+m = z

′p
n+(m−1) + hz

′′p
n+(m−1) +

h2

2!
z
′′′p
n+(m−1) +

h3

3!
z
(4)p
n+(m−1) +

h4

4!
ψc
n+(m−1),

zpn+m = zpn+(m−1) + hz
′p
n+(m−1) +

h2

2!
z
′′p
n+(m−1) +

h3

3!
z
′′′p
n+(m−1) +

h4

4!
z
(4)p
n+(m−1)

+
h5

5!
ψc
n+(m−1); m = 1, 2,

ψp
n+m = ψ(ζn+m, z

p
n+m, z

′p
n+m, z

′′p
n+m, z

′′′p
n+m, z

(4)p
n+m),

gpn+m = ψ′(ζn+m, z
p
n+m, z

′p
n+m, z

′′p
n+m, z

′′′p
n+m, z

(4)p
n+m).

The corrector equations are

z
(4)c
n+1 = △11 +

h

240
(101ψc

n + 128ψp
n+1 + 11ψp

n+2 + h(13gcn − 40gpn+1 − 3gpn+2)).

z
′′′c
n+1 = △12 +

h2

1680
(520ψc

n + 7ψp
n+1 + ψp

n+2 + h(59gcn − 128gpn+1 − 11gpn+2)).

z
′′c
n+1 = △13 +

h3

6720
(817ψc

n + 256ψp
n+1 + 47ψp

n+2 + h(83gcn − 140gpn+1 − 13gpn+2)).

z
′c
n+1 = △14 +

h4

60480
(30(67ψc

n + 14ψp
n+1 + 3ψp

n+2) + h(185gcn − 256gpn+1 − 25gpn+2)).

zcn+1 = △15 +
h5

241920
(1699ψc

n + 256ψp
n+1 + 61ψp

n+2 + h(143gcn − 168gpn+1 − 17gpn+2)).

z
(4)
n+2 = △16 +

h

240
(11ψc

n + 128ψp
n+1 + 101ψp

n+2 + h(3gcn + 40gpn+1 − 13gpn+2)).

z′′′n+2 = △17 +
h2

1680
(37ψc

n + 616ψp
n+1 + 187ψp

n+2 + 2h(5gcn + 76gpn+1 − 16gpn+2)).

z′′n+2 = △18 +
h3

6720
(41ψc

n + 928ψp
n+1 + 151ψp

n+2 + h(11gcn + 188gpn+1 − 29gpn+2)).

z′n+2 = △19 +
h4

30240
(350ψc

n + 148ψp
n+1 + 15ψp

n+2 + h(10gcn + 190gpn+1 − 23gpn+2)).

yn+2 = △20 +
h5

241920
(49ψc

n + 1840ψp
n+1 + 127ψp

n+2 + h(13gcn + 272gpn+1 − 27gpn+2)).
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where

△11 = z(4)c(ζn)

△12 = z
′′′c(ζn) + hz(4)c(ζn)

△13 = z
′′c(ζn) + hz

′′′c(ζn) +
h2

2
z(4)c(ζn)

△14 = z
′c(ζn) + hz

′′c(ζn) +
h2

2
z
′′′c(ζn) +

h3

6
z(4)c(ζn)

△15 = zc(ζn) + hz
′c(ζn) +

h2

2
z
′′c(ζn) +

h3

6
z
′′′c(ζn) +

h4

24
z(4)c(ζn)

△16 = z(4)c(ζn+1)

△17 = z
′′′c(ζn+1) + hz(4)c(ζn+1)

△18 = z
′′c(ζn+1) + hz

′′′c(ζn+1) +
h2

2
z(4)c(ζn+1)

△19 = z
′c(ζn+1) + hz

′′c(ζn+1) +
h2

2
z
′′′c(ζn+1) +

h3

6
z(4)c(ζn+1)

△20 = zc(ζn+1) + hz
′c(ζn+1) +

h2

2
z
′′c(ζn+1) +

h3

6
z
′′′c(ζn+1) +

h4

24
z(4)c(ζn+1).

And the next corrector equations will be taken as follows:

z
(4)c
n+1 = △11 +

h

240
(101ψc

n + 128ψc
n+1 + 11ψc

n+2 + h(13gcn − 40gcn+1 − 3gcn+2)).

z
′′′c
n+1 = △12 +

h2

1680
(40(13ψc

n + 7ψc
n+1 + ψc

n+2) +
h3

1680
(59gcn − 128gcn+1 − 11gcn+2)).

z
′′c
n+1 = △13 +

h3

6720
(817ψc

n + 256ψc
n+1 + 47ψc

n+2 + h(83gcn − 140gcn+1 − 13gcn+2)).

z
′c
n+1 = △14 +

h4

60480
(30(67ψc

n + 14ψc
n+1 + 3ψc

n+2) + h(185gcn − 256gcn+1 − 25gcn+2).

zcn+1 = △15 +
h5

241920
(1699ψc

n + 256ψc
n+1 + 61ψc

n+2 + h(143gcn − 168gcn+1 − 17gcn+2)).

z
(4)
n+2 = △16 +

h

240
(11ψc

n + 128ψc
n+1 + 101ψc

n+2) + h(3gcn + 40gcn+1 − 13gcn+2)).

z
′′′

n+2 = △17 +
h2

1680
(37ψc

n + 616ψc
n+1 + 187ψc

n+2 + 2h(5gcn + 76gcn+1 − 16gcn+2)).

z
′′

n+2 = △18 +
h3

6720
(41ψc

n + 928ψc
n+1 + 151ψc

n+2) + h(11gcn + 188gcn+1 − 29gcn+2)).

z
′

n+2 = △19 +
h4

30240
(70(5ψc

n + 148ψc
n+1 + 15ψc

n+2) + h(10gcn + 190gcn+1 − 23gcn+2)).

zn+2 = △20 +
h5

241920
(49ψc

n + 1840ψc
n+1 + 127ψc

n+2 + h(13gcn + 272gcn+1 − 27gcn+2)).

ψc
n+m = ψ(ζn+m, z

c
n+m, z

′c
n+m, z

′′c
n+m, z

′′′c
n+m, z

(4)c
n+m),

gcn+m = ψ′(ζn+m, z
c
n+m, z

′c
n+m, z

′′c
n+m, z

′′′c
n+m, z

(4)c
n+m), m = 1, 2.
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4. Numerical Results

In this section, a set of quasi linear ODEs of fifth-order is solved by using the proposed
GIBM and GRKM methods respectively. The numerical results of them are compared in Figure 1
to indicate the identical of two numerical solutions. Some notations are used as follows:

� Step: Step-size used.

� GIBM: Direct proposed method.

� GRKM: General RKM method.

4.1. Problems Tested of ODEs

Example 4.1. (Linear)

z(5)(ζ) = cos(ζ); , 0 < ζ ≤ b.

with ICs,
z(j)(0) = 0, z

′
(0) = −z′′′

(0) = 1; j = 0, 2, 4; .

Exact solution: z(ζ) = sin(ζ), b = π.

Example 4.2. (Non constant coefficients)

z(5)(ζ) = (−32ζ5 + 16ζ4 − 8ζ3 + 4ζ2 − 2ζ)y(ζ), 0 < ζ ≤ b.

with ICs,
z(0) = 1, z(j)(0) = 0; j = 1, 2, 3, 4.

Exact solution: z(ζ) = e−ζ2 , b = 1.

Example 4.3. (Non linear)

z(5)(ζ) = −120z6(ζ), 0 < ζ ≤ b.

with ICs
z
′
(0) = (−1)jj!; j = 0, 1, 2, 3, 4.

Exact solution: z(ζ) = 1
1+ζ

, b = 1.

Example 4.4. (Linear System)

z
(5)
1 (ζ) = −212z1(ζ)− 180z2(ζ)− 211z3(ζ),

z
(5)
2 (ζ) = ∗211z1(ζ) + 179z2(ζ) + 211z3(ζ), (4.1)

z
(5)
3 (ζ) = −242z1(ζ)− 242z2(ζ)− 243z3(ζ).

with ICs

z1(0) = 1, z
′

1(0) = −2, z
′′

1 (0) = ∗6, z
′′′

1 (0) = −20, z
(4)
1 (0) = 66;

z2(0) = 0, z
′

2(0) = ∗1, z
′′

2 (0) = −5, z
′′′

2 (0) = ∗19, z
(4)
2 (0) = ∗65;

z3(0) = 0, z
′

3(0) = −2, z
′′

3 (0) = ∗8, z
′′′

3 (0) = −26, z
(4)
3 (0) = 80.
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The system is integrated over the interval [0, 2]
Exact solution:

z1(ζ) = e−ζ − e−2ζ + e−3ζ ,

z2(ζ) = e−2ζ − e−3ζ ,

z3(ζ) = e−3ζ − e−ζ

Example 4.5. (Homogenous ODE)

z(5)(ζ) = z(ζ) + z′(ζ) + z′′(ζ); , 0 < ζ ≤ b.

with ICs,
z
′
(0) = −z′′′

(0) = 1, z(j)(0) = 0; j = 0, 2, 4.

Exact solution: z(ζ) = sin(ζ), b = 0.1

Example 4.6. (Nonlinear ODE)

z(5)(ζ) = z6(ζ) + z′3(ζ)− 30z′′2(ζ), 0 < ζ ≤ b.

with ICs,
y

′
(0) = (−1)jj!; j = 0, 1, 2, 3, 4.

Exact solution: z(ζ) = 1
1+ζ

, b = 10

5. Conclusion and Discussion

In this paper, general implicit block method (GIBM) for solving general class of ODEs of fifth-
order has been derived using the approach of Hermite approximation. It named as GIBM method.
The aim of this article, is to derive direct-implicit block method for solving general class of ODEs
of fifth-order. Numerical results of proposed GIBM method have compared with the results which
obtained using GRKM method of the same order. From this comparison, we can conclude that the
new GIBM method is more efficient than existing GRKM method in term of number of evaluation.
In view the results in the implementation, we can conclude that, the proposed method is powerful
method in computation and meanwhile require less function-evaluations and more cost-effective, in
terms of time of computation.
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Figure 2: Numerical Solutions of Proposed GIBM Method Versus Numerical Solutions of GRKM Method in Examples
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