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Abstract

This paper delves into some significant performance measures (PMs) of a bulk arrival queueing system
with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The
bulk arrival queuing system deals with observation arrival into the queuing system as a constant
group size before allowing individual customers entering to the service. This leads to obtaining a
new tool with the aid of generating function methods. The corresponding traditional bulk queueing
system model is more convenient under an uncertain environment. The α-cut approach is applied
with the conventional Zadeh’s extension principle (ZEP) to transform the triangular membership
functions (Mem. Fs) fuzzy queues into a family of conventional bulk queues. This new model focus
on mixed-integer non-linear programming (MINLP) tenders a mathematical computational approach
is known as (0 -1) variables. To measures the efficiency of the method, the efficient solution strategy
plays a crucial role in the adequate application of these techniques. Furthermore, different stages of
the α-cut intervals were analyzed and the final part of the article gives a numerical solution of the
proposed model to achieve practical issues.

Keywords: Constant batch size, Uncertainty data, Mixed-integer, Non-linear programming (0 - 1)
variables

1. Introduction

A lot of previous literature has gone into presenting controllable queuing models in varying areas
of real-life scenarios, such as wireless networks, inventory/ production, and manufacturing systems,
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as seen in the works of [11, 2, 1, 4, 13]. In all these queuing systems, arrivals can be singly or in bulk.
This paper concentrates on the latter, that is bulk arrivals, with a constant batch policy considering
a queuing system like the manufacturing systems, the customers arrive randomly according to the
Poisson process, form a queue, and then, in some queuing systems, the customers were transformed
into batches, called batch queues. This implies that after a cumulated number of customers are
allowed as a constant batch to enter the server, they depart in batch denoted by b. This type of
queue, called a b-constant-batch queue, is implemented to prevent system peak congestion. Numerous
researchers have dealt with bulk arrival queuing models like the works of [9, 10] who attempt batch
queuing system with a vacation period comprising an idle period and as random setup period, [16]
adopted bi-level control policy under batch arrival of hobs to the production line, [24] classified a
single-server, two-stages queuing system with a constant-size batch policy and [18] who considered
extending batch arrival controlling queuing system with Bernoulli schedule server vacations and
random system breakdowns.

In practical terms, it is generally preferable to describe the arrival rates and service rates using
linguistic terms. That is, using statements like the mean arrival rate is approximately 6 customers
per hour or the mean service rate is around 15 customers per hour. Expressing these parameters i.e.,
customers and services as linguistic expressions for fuzzy queues is more realistic than the commonly
crisp queues [21]. The basic concept of fuzzy sets was first introduced by [28], with its possibility
concept investigated by [3], who dealt with the relationship between uncertainty data and queuing
systems. Other researchers have also discussed fuzzy queuing systems, including [14] proposing a
general procedure to construct (Mem. Fs) of (PMs) in Four types of single fuzzy queues F and the
fuzzy exponential time denoted by FM, respectively). Besides, Wang [25] adopted a fuzzy multiple
channel queuing system and likewise [5] investigated the fuzzy model with single bulk service rates
(FMK). Other notable works include [20] investigating optimal operating policy for a controllable
queuing model in the production line, [17] choose the Markov properties to control arrivals rates with
optional service, [27] discussed the F-policy queues using uncertain parameters. Mueen et al., [23]
adopting the arrival rates with single or multiple channels queuing systems represented as Hexagonal
(Mem. Fs).

Other studies have an emphasis on controllable systems by using varying mathematical compu-
tation approaches to transform arrival rates and service rates. One such mathematical approach is
the (MINLP) technique adopted in the works of Chen [6, 7] using the fuzzy queues with batch ar-
rival as variety as Geometric distribution with multiple channel queues, [19] investigating the Erlang
distribution model, and [22] adopting single queues batch fuzzy arrival (FMX) with multiple working
vacations. The technique is also suitable for application in bulk arrival queuing models, bearing
in mind that the constant batch is an important factor for balanced control in the manufacturing
systems. This constant batch policy follows the assumptions of customers being cumulated as a con-
stant group size before entering to start the service and then consecutively obtaining the PMs. There
exists a dearth of research for adopting this concept under uncertain data, hence the motivation to
investigate the fuzzy queues with a constant batch in real-life applications.

This document has developed a new step that may support fuzzy (PMs) for bulk arrival queues
with constant group size. The (Mem. Fs) of (PMs) can be derived completely by applying α-cut and
(ZEP). Two couple of constraints of (MINLP) models are formulated, which can be summarized as
(0 - 1) constraints to calculate the bottom-bound and top-bound. Furthermore, the (Mem. Fs) of
the system performance are derived analytically.

The outline of this paper is organized as follows; the model was described in Section 2, the
(MINLP) approach constructed (Mem. Fs) with (0 - 1) constraints in section 3. While section
4 presents a numerical example to demonstrate the validity of the newly proposed method under
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uncertainty data. Finally, sections 5 and 6 support the finding and discussion of results and conclude
the paper.

2. Fuzzy Arrival Queues with Constant Batch Size

Consider a queuing system in which customers arrive as a Poisson process at a single server
facility in a constant batch of size b with fuzzy arrival rates λ̃, and fuzzy service rates µ̃ following
an exponential distribution (note that the conventional symbols are not used for these parameters
in queuing systems). The arrival of customers into the system via a first-come-first-service (F-
C-F-S) pattern, and the size of the system and population is infinite. Hence, this model will be
indicated as (FMb/FM/1-FCFS). In this model, the arrival rates and service rates are quasi known

and represented by convex fuzzy sets. Note that a fuzzy set Ã, in the universal set V. The convex of
µ̃A (φv1 + (1− φ) v2) ≥ min {µ̃A (v1) , µ̃A (v2)} , where µ̃A is its (Mem. Fs) φ ∈ [0, 1], and v1, v2 ∈ V .
Let µλ̃ (x), and µµ̃ (y) denote the (Mem. Fs) of the arrival rates and service rates set, respectively,
defined as.

λ̃ = {
(
x, µλ̃ (x)

)
/x ∈ R

(
λ̃
)
} (2.1)

µ̃ = {(y, µµ̃ (y))/y ∈ R (µ̃)} (2.2)

Where, R
(
λ̃
)
, R (µ̃) provides of λ̃ and µ̃, which denote the universal sets of arrival and service

rates. Let f (x, y) indicate the system of (PMs) of interest: when the arrival and service rates are

fuzzy parameters, it is clear that f(λ̃, µ̃) will be fuzzy as well. Recalling into (ZEP) [26]. The (Mem.

Fs) off (λ̃, µ̃) are formulated as.

µf(λ̃,µ̃)(v) = sup{minµλ̃(x), µµ̃(y)/v = f(x, y)} (2.3)

If the α-cut off (λ̃, µ̃) at all alpha values degenerate to the same point, then the values of the
system (PMs) are crisp, and if otherwise, they are fuzzy values.

From the literary knowledge of the conventional queuing model under the utilization of the server
ρ = bx

y
being less than 1, and from the results of the generation function method [23], the four

different mathematical expressions of this model are termed as the (PMs) of the system and can be
defined as follows. The first measure is the expected mean waiting time of customers in the queue
Wq is defined.

Wq =
(b+ 2ρ− 1)

2y(1− ρ)
(2.4)

The following Equation (2.3), the (Mem. Fs) for W̃q is

µW̃q
(v) = sup

{
minµλ̃(x), µµ̃/v =

(b+ 2ρ− 1)

2y(1− ρ)

}
(2.5)

Other (PMs) can be obtained according to little’s formula in the same manner. These measures
include the expected number of customers in the queue, Lq, expected mean waiting time of customers
in system Ws, and the number of customers in the system Ls. The (Mem. Fs) for L̃q, W̃S, and L̃s
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are given in the following Equations.

µL̃q
(v) = sup

{
minµλ̃(x), µµ̃/z =

ρ(b− 1 + 2ρ)

2(1− ρ)

}
(2.6)

µW̃s
(v) = sup

{
minµλ̃(x), µµ̃/v =

(1 + b)

2y(1− ρ)

}
(2.7)

µL̃s
(v) = sup

{
minµλ̃(x), µµ̃/v =

ρ(1 + b)

2(1− ρ)

}
(2.8)

Theoretically, Equations (2.5)-(2.8) are expressed in a complex pattern. The challenges to inferring
the side of the (Mem. Fs) ;µW̃q

(v) , µL̃q
(v) , µW̃s

(v) , and µL̃s
(v) . Hence, the development of a

mathematical programming technique is based on (0-1) constraints, which indicate the maximum
value and minimum value of the alpha interval.

2.1. Mixed-Integer Nonlinear Programming Approach

This subsection begins by relaxing the requirements for integrality of variables (0 - 1), leading
to a continuous and non-linear problem of programming optimization [12]. To construct the (Mem.

Fs) of µp(λ̃,µ̃) is based on deriving the alpha levels of µp(λ̃,µ̃) , where λ̃ and µ̃are accomplished with.

λα =
[
xBB
α , xTB

α

]
=

[
min
x∈X

{
x
∣∣µλ̃ (x) ≥ α

}
,max
x∈X

{
x
∣∣µλ̃ (x) ≥ α

}]
(2.9)

µα =
[
yBB
α , yTB

α

]
=

[
min
y∈Y

{y|µµ̃ (y) ≥ α} ,max
y∈Y

{y|µµ̃ (y) ≥ α}
]

(2.10)

These intervals denote where the group arrival rates and service rates lie at possibility level α with
λα and µαbeing conventional sets rather than fuzzy sets. According to the concept of α-cuts, the
embedded fuzzy Markov chain in the (FMb/FM/1) can be decomposed into a family of ordinary
Markov chains with different transition probability matrices, which are also parameterized by α.
The arrival rate and service rate can also be viewed by different stages of the confidence interval.
Consequently, the (FMb/FM/1) model can be reduced to a family of traditional (Mb/M/1) models
with different alpha level sets {λα|0 < α ≤ 1} and {µα|0 < α ≤ 1}. These two sets cause nested
structures for expressing the rapport between ordinary sets and fuzzy sets and they represent sets of
movable boundaries [15, 14, 20, 11, 27, 9, 10, 29]. Without loss of generality, the fuzzy arrival rates λ̃,
and fuzzy service rates µ̃ as crisp values can be represented by degenerated (Mem. Fs) that only
have one value in their domain. By the convexity of a fuzzy number, the bounds of these intervals
are functions of alpha. Thus, it can be obtained from xBB

α = minµ−1

λ̃
(α), xTB

α = maxµ−1

λ̃
(α), yBB

α =

minµ−1
µ̃ (α), yTB

α = maxµ−1
µ̃ (α). Therefore, as defined in Equation (2.3) above, the (Mem. Fs) of

p
(
λ̃, µ̃

)
is also parameterized by alpha. Thus, the parameter alpha cut can be used to constructing

the (Mem. Fs).

Consider the (Mem. Fs) of the expected waiting time of customers in the queue W̃q, through
Equation (2.4) µ W̃q

(f) is the minimum of µλ̃ (x) and µµ̃ (y) . Hence, it’s mandatory µλ̃ (x) = α, and

µµ̃ (y) ≥ α such that v = (b+2ρ−1)
2y(1−ρ)

to satisfy µ w̃q (f) = α.

To calculate the membership function of µ W̃q
(v), it suffices to find the left side and the right

side function ofµ W̃q
(v), which is equivalent to finding the bottom-bound V BB

α and the top-bound

V TB
α of the α-cut of µ W̃q

(v). Since requiring of µλ̃ (x) = α, represented by x = xBB
α , thus can be
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formulated as the constraint of x = β1x
BB
α + (1− β1)x

BB
α , where β1 = 0 or 1. Similarly, µµ̃ (y) = α

Hence, to formulate the constraint of y = β2y
TB
α + (1− β2) y

TB
α , where β2 = 0. Moreover, from

the definition of λα, and µα in Equations (9-10), x ∈ λαand y ∈ µα can be replaced into x ∈[
xBB
α , yTB

α

]
, and y ∈

[
yBB
α , yTB

α

]
. Moreover, under these two stages, the (Mem. Fs) of µW̃q

can be

constructed by bottom-bound and top-bound as (Wq)
BB
α = min

{
(Wq)

BB1
α , (Wq)

BB2
α

}
, and (Wq)

TB
α =

max
{
(Wq)

TB1
α , (Wq)

TB2
α

}
respectively, where.

(Wq)
BB1
α = min

x∈X
y∈Y

{
(b+ 2ρ− 1)

2y(1− ρ)

}
, subject to

x = d1x
BB1
α + (1− d1)x

TB
α ,

yBB
α ≤ y ≤ yTB

α ,

d1 = 0 Or 1,

(2.11)

(Wq)
BB2
α = min

x∈X
y∈Y

{
(b+ 2ρ− 1)

2y(1− ρ)

}
, subject to

Subj.To : y = d2y
BB
α + (1− d2) y

TB
α ,

xBB
α ≤ x ≤ xTB

α ,

d2 = 0 Or 1,

(2.12)

(Wq)
TB1
α = min

x∈X
y∈Y

{
(b+ 2ρ− 1)

2y(1− ρ)

}
, subject to

x = d3x
BB
α + (1− d3)x

TB
α ,

yBB
α ≤ y ≤ yTB

α ,

d3 = 0 Or 1,

(2.13)

(Wq)
TB2
α = max

x∈X
y∈Y

{
(b+ 2ρ− 1)

2y(1− ρ)

}
, subject to

y = d4y
BB
α + (1− d4) y

TB
α

xBB
α ≤ x ≤ xTB

α ,

d4 = 0 Or 1,

(2.14)

The crisp interval
[
(Wq)

BB
α , (Wq)

TB
α

]
obtained by solving Equations (2.11) and (2.14) represents

the α-cut of W̃q. An attractive feature of the alpha cut approach is that all alpha sections form a

structure embedded in α. From (ZEP), W̃q defined in Equation (2.5) is a fuzzy number that possesses

convexity. Therefore, the values α1 and α2 such as that 0 < α2 < α1 ≤ 1; (Wq)
BB
α1

≥ (Wq)
BB
α2

and

(Wq)
TB
α1

≤ (Wq)
TB
α2

.

The other notations, (Wq)
BB
α is non-decreasing to α and (Wq)

TB
α is non-increasing to α. This

property is based on the convexity of W̃q and the (Mem. Fs) µW̃q(v) can be calculated from the

solutions of Equations (2.11)-(2.14). If both (Wq)
BB
α and (Wq)

TB
α are invertible to α, then the left side

shape function LS (v) =
[
(Wq)

BB
α

]−1

and the right side shape function RS(v) =
[
(Wq)

TB
α

]−1

with the



1118 Mueen

(Mem. Fs) µW̃q as:

µW̃q
(v) =


LS (v) , v1 ≤ v ≤ v2

1 v = v2

RS (v) v2 ≤ v ≤ v3

(2.15)

such that;

LS(v1) = RS(v3) = 0

LS(v2) = RS(v2) = 1.

In the same path, the other measures of (PMs) derived into new (Mem. Fs). A numerical partition
is given in the following section for better clarification.

2.2. Numerical Illustration

Pay attention to a load manufacturing system in which trucks using single queues with single-
channel loading trucks arrived in the facility by a discrete process and service rates follow as continu-
ous distribution. No appointments are allowed in this system and customers follow as F-C-F-S. The
arrival and service rates approximately are known and it’s more convenient described as Triangular
fuzzy numbers, represented by λ̃ = [4, 5, 6] and µ̃ = [11, 12, 13] per hour, respectively, with
constant batch size b equals two. The manager of the facility endeavors to determine the influence
and concerns for the expected waiting time in the queue for any truck. The system can be described
as a single queue system integrated with one server. The mathematical process stated in the previous
sections will be followed to compute the required (PMs). To start building the model in the system
can be characterized by the FM/FM/1-FCFS model.[
xBB
α , xTB

α

]
&

[
yBB
α , y TB

α

]
are obtained easily to be

[
xBB
α , xTB

α

]
=

[
minµ−1

λ̃
(α) , maxµ−1

λ̃
(α)

]
=

[4 + α, 3− α] ;
[
yBB
α , yTB

α

]
=

[
minµ−1

µ̃ (α) , maxµ−1
µ̃ (α)

]
= [11 + α, 13− α] .

Thus, the following Equations (2.11) and (2.14). The parametric integer nonlinear programming

approach is compound with the model to deriving the membership function of W̃q as.

(Wq)
BB
α = min

x∈X
y∈Y

{
(2 + 2ρ− 1)

2y(1− ρ)

}
, subject to

x = d1(4 + α) + (1− d1) (6− α),

(1 + α) ≤ y ≤ (13− α),

d1 = 0 Or 1,

(2.16)

(Wq)
TB
α = min

x∈X
y∈Y

{
(2 + 2ρ− 1)

2y(1− ρ)

}
, subject to

y = d3(11 + α) + (1− d3) (13− α),

(4 + α) ≤ x ≤ (6− α),

d3 = 0 Or 1,

(2.17)

(Wq)
BB
α = max

x∈X
y∈Y

{
(2 + 2ρ− 1)

2y(1− ρ)

}
, subject to

x = d2(4 + α) + (1− d2) (6− α),

(11 + α) ≤ y ≤ (13− α),

d2 = 0 Or 1,

(2.18)



Developing bulk arrival queuing ... 1119

(Wq)
TB
α = max

x∈X
y∈Y

{
(2 + 2ρ− 1)

2y(1− ρ)

}
, subject to

y = d4(11 + α) + (1− d4) (13− α),

(4 + α) ≤ x ≤ (6− α),

d4 = 0 Or 1,

(2.19)

Where, ρ = 2x
y
.

Each objective function from Equations (16-19) has a positive derivative to ρ, that is a positive
partial derivative to x, for 4 ≤ x ≤ 6, and negative partial derivatives to y, for 11 ≤ y ≤ 13.
Recalling to the knowledge of calculus operations, the objective functions of these Equations attain
their extreme at the bounds and consequently, the smallest number of customers in the system is.

(Wq)
BB
α =

α + 21

4α2 − 70α + 234
(2.20)

(Wq)
TB
α =

23− α

4α2 + 54α + 110
(2.21)

The next calculation is corresponding with the (Mem. Fs) is defined as.

µ W̃q
(v) =


(70v+1)−(156v2+476v+1)

1
2

8v
, 0.089 ≤ v ≤ 0.130

1, v = 0.130

−(54v+1)+(156v2+476v+1)
1
2

8v
, 0.130 ≤ v ≤ 0.209

(2.22)

Similarly, the (Mem. Fs) of the other tools can be constructed to estimate the whole system, as
shown in µ L̃q

(v) , µ W̃S
(v) , and µ L̃S

(v). Figure 1 depicts the rough side of all values.

Figure 1: The Membership Functions of (a) µ( W̃q)
, (b) µ( L̃q)

, (c) µ (W̃S)
, and (d) µ

(̃LS)

Table 1 displays the value of α-cut possibilities at eleven location distinct values [0: 0.1: 1] for
the possibilities of conventional values at each value of the (PMs).
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Table 1: The α-cut intervals of (PMs) for the system.

α-cut (Wq)
BB
α (Wq)

TB
α (Lq)

BB
α (Lq)

TB
α (Ws)

BB
α (Ws)

TB
α (Ls)

BB
α (Ls)

TB
α

0.0 0.089 0.209 0.358 1.254 0.166 0.300 0.666 1.800
0.1 0.092 0.198 0.381 1.170 0.170 0.288 0.698 1.730
0.2 0.096 0.188 0.404 1.093 0.174 0.277 0.732 1.666
0.3 0.099 0.179 0.429 1.022 0.178 0.267 0.767 1.607
0.4 0.103 0.170 0.455 0.957 0.182 0.258 0.804 1.551
0.5 0.107 0.163 0.483 0.896 0.187 0.250 0.843 1.500
0.6 0.111 0.155 0.513 0.840 0.192 0.241 0.884 1.451
0.7 0.116 0.148 0.545 0.789 0.197 0.234 0.927 1.406
0.8 0.120 0.142 0.579 0.741 0.202 0.227 0.972 1.363
0.9 0.125 0.136 0.615 0.696 0.208 0.220 1.020 1.323
1.0 0.130 0.130 0.654 0.654 0.214 0.214 1.071 1.071

3. Findings and Discussions

There are some benefits of using the new MINLP mathematical approach, like being able to
obtain the interval of (PMs) at various possibilities levels from the α-cuts of the (Mem. Fs) for

W̃q, L̃q, W̃S, and L̃S. This range indicates that the expected waiting time will never exceed 0.209
approximately is equal to 13 Minutes or fall below 0.089 like 5 Minutes (mentioned in Table 1), while
the number of customers in the system will never exceed two customers or fall below one customer.
Furthermore, the measures of waiting for customers in the system will not exceed 0.300 is equal
to 18 Minutes or fall less than 0.166 approximately 10 Minutes. This information obtained from
analyzing the system will be very compulsory for designing a queuing system, which includes one or
a combination of several decisions, such as the efficiency of the servers, the size of the constant bulk
of customers, and the system capacity. The major objective shown in this paper is that the recent
approach advances in (MINLP) are a suitable approach for adoption to rigorous queuing models, and
also it possesses the novel advantage for obtaining the optimal crisp points inside closed intervals.

4. Conclusions

Bulk arrival queue systems have a wide variety of applications in real-world scenarios, such as pro-
duction lines and service mechanism systems. In this paper, a non-linear integer-integer parametric
programming approach was introduced to new triangular (Mem. Fs) of (PMs) when arrival rates and
service rates are fuzzy parameters with constant batch sizes. The mathematical concept is grounded
into basic constraints, including two variables (arrival rates and service rates) under minimum pos-
sibilities and maximum possibilities accessing into the best optimum point inside this interval. The
numerical results gained to show the adequacy and ingenuity of this method for estimating the sys-
tem as the equivalent the maximum value of the customer in the system is approximately equal with
constant batch is chosen. In the future, it would be interesting to find other areas of the queuing
system with an extension of multi-channel scanning across a constant batch.

References

[1] L. Abolnikov and J.H. Dshalalow, On a multilevel controlled bulk queuing system MX/Gr, R/11, J. Appl. Math.
Stoch. Anal. 3 (1992) 237–260.

[2] K.R. Balachandran, Control policies for a single server system, Manag. Sci. 9 (1973) 1013–1018.



Developing bulk arrival queuing ... 1121

[3] J.J. Buckley, Elementary queuing theory based on possibility theory, Fuzzy Set Syst. 37 (1990) 43–52.
[4] M.L. Chaudhry and J.G.C. Templeton, A First Course in Bulk Queues, John Wiley & Sons, New York, 1983.
[5] S.P. Chen, Parametric Nonlinear Programming Approach to Fuzzy Queues with Bulk Service, European J. Operat.

Res. 163 (2005) 434–444.
[6] S. Chen, A bulk arrival queuing model with fuzzy parameters and varying batch sizes, Appl. Math. Model. 9 (2006)

920–929.
[7] S.P Chen, Measuring performances of multiple-channel queuing systems with imprecise data: a membership func-

tion approach, J. Operat. Res. Soc.,59 (2008) 381-387.
[8] S. Ghimire, R.P. Ghimire, and G.B. Thapa, Mathematical models of M b/M/1 bulk arrival queuing system, J.

Instit. Engin. 10 (2014) 184–191.
[9] G. Choudhury, A batch arrival queue with a vacation time under a single vacation policy, Comput. Operat. Res.

29 (2002) 1941–1955.
[10] G. Choudhury, An MX/G/1 queuing system with a setup period and a vacation period, Queuing Syst. 36 (2000)

23–38.
[11] D. Gross and C.M. Harris, Fundamentals of Queuing Theory, Third Ed., Wiley, New York, 1998.
[12] I.E. Grossmann, Mixed-integer nonlinear programming techniques for the synthesis of engineering systems, Res.

Engin. Design, 1 (1990) 205–228.
[13] S. M. Gupta, Interrelationship between Controlling Arrival, and Service in Queuing Systems, Comput. Operat.

Res. 22 (1995) 1005–1014.
[14] C. Kao, C. Li and S. Chen, Parametric programming to the analysis of fuzzy queues, Fuzzy Sets Syst. 107 (1999)

93–100.
[15] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, 1975.
[16] J.C. Ke, Bi-level control for batch arrival queues with an early setup and unreliable server, Appl. Math. Model

28 (2004) 469–485.
[17] J.C. Ke, F.M. Chang, and C.J. Chang controlling arrivals for a Markovian queuing system with a second optional

service, Int. J. Indust. Engin. Theory Appl. Pract. 17 (2010) 48–57.
[18] R.F. Khalaf, K.C. Madan, and C.A. Lukas, An M[x]/G/1 queue with Bernoulli schedule general vacation times,

general extended vacations, random breakdowns, general delay times for repairs to start and general repair times,
J. Math. Res. 3 (2011) 8–20.

[19] V.A. Kumar, A membership function solution approach to fuzzy queue with Erlang service model, Int. J. Math.
Sci. Appl. 1 (2011).

[20] C.H. Lin and J.C. Ke, Optimal Operating Policy for a Controllable Queuing Model With a Fuzzy Environment,
J. Zhejiang University Sci., 10 (2009) 311-318.

[21] R.J. Li and E.S. Lee, Analysis of fuzzy queues, Comput. Math. Appl. 17 (1989) 1143–1147.
[22] M.K. Mary, J. Rose and T. Gokilavani, Analysis of Mx/M/1/MWV with fuzzy parameters, Int. J. Comput. Appl.

4 (2014).
[23] Z. Mueen, R. Ramli and N. Zura, Parametric nonlinear programming approach with fuzzy queues using hexagonal

membership functions, J. Comput. Theor. Nanosci. 14 (2017) 4979-4985.
[24] H. M. Park, T.S. Kim and K.C. Cha, Analysis of a two-phase queuing system with a constant-size batch policy,

European J. Operat. Res. 1 (2010) 118–122.
[25] S. Wang and D. Wang, A membership function solution to multiple-server fuzzy queues, Proc. Int. Conf. Serv.

Syst. Serv. Manag. 1 (2005).
[26] R.R. Yager, A characterization of the extension principle, Fuzzy Sets Syst. 18 (1986) 205–217.
[27] D. Yang and P. Chang, A parametric programming solution to the F-policy queue with fuzzy parameters, Int. J.

Syst. Sci. 46 (2015) 590-598.
[28] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1 (1978) 3–28.
[29] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Fourth Ed., Kluwer Academic, Boston 2001.


