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Abstract

In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER,
we combined the effective sufficient dimension reduction method MAVE with the sparse method Sig-
nal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding
the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional
regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly
correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful
variables. Simulation studies confirmed MAVE-SiER performance.

Keywords: High dimensional predictors, Dimension reduction, sparse, Minimum average variance
estimation, Signal extraction approach to multivariate regression.

1. Introduction

High-dimensional data analysis has gained popularity in recent decades as a result of the huge
data explosion. Many scientific areas, it has received a great deal of interest. In the literature,
there are several model-based variable selection techniques. Finding efficient methods for processing
high-dimensional data sets is one of the most challenging issues in current statistics.
In the context of multiple-linear regression, there is a massive of research on sparse, that is, for Y =
E(Y|X) + ϵ = βTX + ϵ, where ϵ is i.i.d. N(0, σ2).
To deal with the instability, new approaches such as Nonnegative Garrote [6], LASSO [11], SCAD
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[4], LARS [3] and Elastic Net [16], have been proposed. Through continuous penalty and automated
variable selection, these approaches allow us to increase both model interpretability and prediction
accuracy.
SIR [10], combined L1 penalty with a forward regression dimension reduction technique to come
up with MAVE, MAVE (minimum average variance estimation, [14], MAVE is widely applied in
other areas such as time series, economics and bioinformatics, and proposed sparse MAVE to select
informative covariates. When compared to earlier works, Sparse MAVE is a model-free does not
require any strong probabilistic assumptions about the predictors. [10] proposed penalised MAVE (P-
MAVE) through combining bridge penalty with l1-norms of the rows of a basis matrix.[15] combined
MAVE with SCAD, adaptive Lasso and the MCP to produce SCAD-MAVE, ALMAVE and MCP-
MAVE, respectively. [13] combined Lasso with the group-wise MAVE which suggested by [8].

In this paper ,we combine the dimension reduction method MAVE [14] with a Signal extraction
approach to multivariate regression (SiER) [9] to propose a new variable selection method MAVE–
SiER working under sufficient dimension reduction [1, 2] settings, MAVE - SiER has advantages over
SiER because it extends SiER to multivariate response and nonlinear settings, has high efficient in
dimension reduction and Computation, especially when the number of predictors is large.
The rest of the paper is organized as follows. We review of MAVE is provided in Section 2. SiER is
discussed in Section 3 . Then in Section 4, we present the new approach MAVE – SiER. Section 5
contains the results from a simulation study. Finally, Section 6 ends of the paper with brief discussion.

2. Review of Minimum Average Variance Estimation (MAVE)

When applying regression models to high-dimensional data,[14] proposed the minimum average
variance estimation (MAVE) approach to reduce dimension covariates for the conditional mean with
fewer regularity conditions on the predictors.
Consider the regression model of a response Y ∈ Rq on a vector X∈ Rp can be written As

Y = g(BTX) + ε (2.1)

where g(•) is an unknown function, B = (β1, . . . , βd) is a p× d orthogonal matrix (BTB = Id) with
d < p and E( ε| X) = 0 almost surely. [14] defined the d-dimensional subspace BTX the effective
dimension reduction (EDR) space. Given a random sample {(Xi, Yi), i = 1, . . . , n}, minimizes the
objective function

argmin
[
E|Y − E(Y |XTB)|

]2
(2.2)

It follows that [
E|Y − E(Y |XTB)|

]2
= E{σ2

B(B
TX)} (2.3)

over all B ∈ Rp×d . It’s equivalent to minimize the following problem

E{σ2
B(B

TX)}, BTB = Id

A local linear expansion of at any For each j the following weighted sum of such linear approximation
is minimized,

σ2
B(B

TX) = argmin

(
n∑

i=1

[
|Y − E(Y |XTB)|

]2)
= argmin

(
n∑

i=1

[
|Yi − {α + (Xi −Xj)

TBbj}
]2)
(2.4)
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wij is a function of the distance between xi and xj.
The challenge of solving B is same as to the following minimization:

argmin

(
n∑

i=1

[
|Yi − {α + (Xi −Xj)

TBbj}
]2)

3. Signal extraction approach to multivariate regression

Propose by [10], for dimension reduction and regression in multiple response linear model with
high-dimensional predictor variables . This approach considered the decomposition of the coefficient
matrix B, let K denote the rank of B , each coefficient vector βj can be expressed as a linear
combination of w1, . . . , wK . So we have the decomposition

B = AW T = αkw
T
1 + . . .+ αkw

T
K (3.1)

Where A= [ α1 , . . . , αK ] and W= [ w1 , . . . , wK ] are p× K and q×K matrices, respectively.
There are infinitely many choices of w1 , . . . , wK hence the decomposition (3.1) is not unique, we
will consider a different decomposition which leads to the best lower rank approximation to XB ,We
call XB the signal matrix in the response matrix Y. Specifically, to find A and W we consider the
singular value decomposition (SVD) of XB,

XB = σ1γ1µ1 + . . .+ σKγKµK (3.2)

Where σ1 ≥ σ2 ≥ . . . ≥ σK ≥ 0 are singular values of XB, γk ∈ Rnand uk ∈ Rq, are the left
singular vectors corresponding to σk. respectively, with ∥uk∥2 = 1, ∥γk∥2 = 1 by the Eckart-Young

Theorem
∑k

j=1 σjγju
T
j is the best rank k approximation to XB. We define the columns of W and A

Wk =
σk√
n
uk, αk =

n

σ2
k

BWk, 1 ≤ k ≤ K (3.3)

Therefore
∑k

j=1 Xαjw
T
j =

∑k
j=1 σjγju

T
j is the best rank k approximation to XB and αT

k Sαk= 1, for
any 1≤ k ≤K.
In the following for any 1≤ k ≤K, let

Bk = AW T = αkw
T
1 + . . .+ αkw

T
K (3.4)

The sum of the first k terms of our decomposition. Our decomposition of B leads to the following
model transformation

Y = XB+ ε = TW T + ε = t1w
T
1 + . . .+ tKw

T
K + ε, (3.5)

Where
T = [t1, . . . , tK ], and tj = Xαj, 1 ≤ j ≤ K.

To estimate the decomposition, we first estimate α1,. . . , αk by then estimate t1, . . . , tK Finally,
based on model (3.5) and the least squares method, we obtain the estimates of w1 . . . , wK .αk is the
solution to

MaxαTBα, subject αTSα = 1, αT
l Sα = 0, 1 ≤ l ≤ k − 1 (3.6)
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The approximation error of the best rank k approximation to XB is∥∥∥∥∥XB−
k∑

i=1

tiw
T
i

∥∥∥∥∥
2

F

=

∥∥∥∥∥XB−X(
k∑

i=1

αiw
T
i )

∥∥∥∥∥
2

F

= ∥XB−XBk∥2F = n

k∑
i=k+1

ui(Ξ) for any 1 ≤ k ≤ K

As
∑K

k=1Xαkw
T
k the SVD of XB, we have that Xαk is the kth left-singular vector of XB, and hence

it is the kth eigenvector of the matrix (XB)(XB)T with the corresponding eigenvalue σ2
k, So we

have
(Xαk)

T (XB)(XB)T (Xαk) = σ2
k(Xαk)

T (Xαk) (3.7)

which implies that

αT
kBαk =

σ2
k

n
αT
kSαk (3.8)

Our choice of W and A makes the signal concentrated in the first few components as much as possible.
The estimates αk can be obtained by solving the following generalized eigenvalue problem.

MaxαT B̂α, subject αTSα = 1, α̂T
l Sα = 0, 1 ≤ l ≤ k − 1 (3.9)

Where we estimate B by

B̂ =
1

n2
XT (Y − 1ny

T )(Y − 1ny
T )TX (3.10)

Where y is the sample mean of y1, . . . , yn, and 1n is an n-dimensional vector with all elements
equal to one. In the classic setting of small p and large n, the estimates α̂1, . . . , α̂k can be sequentially
obtained by solving (3.10)

only a small number of the coefficient vectors β1,..., βp, are nonzero vectors. Since these vectors are
the row vectors of B, this assumption is the row-wise sparsity of B. implies that αk is a sparse vector
and the number of its nonzero coordinates is less than or equal to the number of nonzero vectors
among β1,..., βp. Motivated by the sparsity of αk, we propose the following penalized optimization
problem whose solution is the sparse estimateα̂k of αk

Max
αT B̂α

αTSα + τ ∥α∥2λ
subject αTSα = 0, 1 ≤ l ≤ k − 1 (3.11)

Where ∥α∥2λ = (1- λ) ∥α∥22 +λ ∥α∥21 , is a mixture of the squared l2 and squared l1 norms. and
both τ ≥ 0 and 0 < λ < 1 are tuning parameters. In the penalty τ ∥α∥2λ the l2 term is used to
overcome the singularity problem of S and the l1 term encourages the sparsity of α̂k.
In (3.11) scale-invariant, that is, if we replace α by tα, where t is any nonzero number, the value of
the objective function is unchanged, Due to the scale-invariant property, (3.11) is equivalent to

MaxαT B̂α, subject αTSα + τ ∥α∥2λ ≤ 1, α̂T
l Sα = 0, 1 ≤ l ≤ k − 1 (3.12)

4. MAVE – SiER

Despite the fact that MAVE is a promising dimension reduction approach, the reduced variables
are still linear combinations of all the original predictors. As a result, it faces the same interpretive
challenges as most dimension reduction approaches. We use SiER in the following section to optimize
(2.4) for MAVE since MAVE can be built easily as an iterative “ordinary least squares” technique,
as shown in Section 2, from which we may estimate and choose relevant variables at the same time.
This approach is known as MAVE – SiER .
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4.1. Algorithm for MAVE – SiER

1. Initialize m = 1, and set B = B0, any arbitrary p× 1 vector.

2. For given B, solve (aj, bj) where j = 1, . . . , n, from the following quadratic minimization
problem:

margin

n∑
j=1

n∑
i=1

[Yi − { α + (Xi −Xj)
TBbj]

2wij

3. For a given (âj, b̂j) solve BMSiER from the following minimization problem:

argmin [
n∑

j=1

n∑
i=1

{ Yi − { α + (Xi −Xj)
TBbj]

2wij}+
p∑

i=1

P SiER
λ |Bm| (4.1)

4. Replace the m− th column of B by BMSiER and Iterate steps 2 and 3 to convergence.

5. Update B by (B1MSiER B2MSiER,. . . , B3MSiER,β0), and set m to be m+ 1.

6. If m < d, continue steps 2 to 5 until m = d,

5. Simulation study

The aim of this section, we compare the performance of the proposed MAVE -SiER method with
three related methods on simulated data.
The first method elastic net [16] proposed a technique which it can select groups of correlated
variables and overcomes the difficulty of p > n. The elastic net is based on a combination of the
ridge (L2) and the lasso (L1) penalties. The elastic net is defined in two stages. Assuming that the
response is centered and the predictors are standardized. The third method is the SPLS [9] which
identifies sparse latent components by maximizing the covariance between them and the responses
with sparsity penalty imposed. The last method is the SiER, [10] it considers the decomposition of
the coefficient matrix that leads to the best approximation to the signal part in the response given
any rank, and estimates the decomposition by solving a penalized generalized eigenvalue problem .

The data were generated from the model Y = XB + ϵ , Sample size n was chosen as 50, 100 and
200, and we drawn 500 data replicates in each case. We set βj1 = 1√

15
, for j = 1, . . . , 15 , βj2 =

0.5√
30

, for j = 16 , . . . , 45 , βj3 = 0.25√
60

, for j = 46 , . . . , 105 ,βjk = 0 for others.For each i = 1, .

. . , n, the first 150 predictors (Xi1 , . . . , Xi150)
T ∼ N150 (0,Σ ), where the 150Ö150 matrix Σ has

the (j, k)th element Σjk = ρ|j−k| for 1 ≤ j, k ≤ 150, and the other predictors are independent normal
variables , Xij ∼ N (0,0.12 ) for 1 ≤ j ≤ p . The noise vector ε case form N (0, σ2R)

R =

 1 r r2

r 1 r
r2 r 1


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Table 1: Summary of mean square error at Various Sample Size of 50 replicates for first case

p n q p r MAVE– SiER SiER SPLS Elastic net

500 100 3 0.3 0.2 2.150 1.299 2.077 2.217

0.9 2.082 1.249 1.698 1.806

0.7 0.2 1.240 0.383 0.392 0.453

0.9 1.314 0.390 0.403 0.483

500 3 0.3 0.2 2.474 2.014 2.257 2.622

0.9 2.623 1.973 2.205 2.427

0.7 0.2 1.474 0.619 0.749 0.968

0.9 1.669 0.441 0.593 0.835

1000 3 0.3 0.2 2.435 1.933 2.117 2.367

0.9 2.286 1.571 1.793 2.304

0.7 0.2 1.511 0.724 0.734 0.884

0.9 1.526 0.424 0.465 0.473

In terms of sparsity and prediction precision, the SiER clearly outperforms the other methods
(see Table 1). Among the competitors, MAVE-SiER is the worst. The mean square error of the
SiER is lower than that of all methods.

Table 2: Summary of mean square error at Various Sample Size of 50 replicates for second case

p n q p r MAVE– SiER SiER SPLS Elastic net

500 100 3 0.3 0.2 3.092 3.526 4.980 3.396

0.9 3.012 3.617 4.670 3.268

0.7 0.2 3.181 3.551 4.435 3.445

0.9 3.029 3.936 4.981 3.362

500 3 0.3 0.2 3.069 3.356 4.253 2.993

0.9 3.245 3.703 4.824 2.993

0.7 0.2 3.093 3.790 4.618 3.162

0.9 2.993 3.674 4.643 3.293

1000 3 0.3 0.2 2.823 3.682 3.898 3.082

0.9 3.129 3.698 3.912 3.512

0.7 0.2 2.453 3.181 3.842 2.730

0.9 2.240 2.995 3.278 2.650

While in the second case, from (Table 2), The data were generated from the model, Y =
BTX/

(
0.5 + (BTX + 1.5)2

)
+0.5ϵ, the MAVE-SiER clearly outperforms the other methods. Among

the competitors, SPLS is the worst. elastic net performance is comparable to that of MAVE-SiER
and better than the performance of the other methods. Furthermore, the mean square error of the
MAVE-SiER is lower than that of all methods.
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6. Discussion

In this paper,we combine the strength of a MAVE and SiER and proposed new approach we called
MAVE - SiER. MAVE can estimate SE(y|x) while SiER sparse estimation and dimension reduction.
The MAVE-SiER enable SiER to work with nonlinear regression. From the results, it is obvious that
MAVE-SiER gives accurate prediction and encourages variable selection under sufficient dimension
reduction settings.
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