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Abstract

Here, the comparison between Sinc method in combination with double exponential transformations
(DE) and approximation by means of differential transform method (DTM) for nonlinear Hammer-
stein integral equations is considered. Convergence analysis is presented. Detection of effectiveness
from various aspects such as run time, different norms, condition number are highlighted and plotted
graphically. Results of two schemes are practically well, but in manner of separable kernel, DTM
solution is more accurate and so fast.
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1. Introduction

We consider usual form of the nonlinear Hammerstein integral equation as :

y(x) = g(x) +

∫ x

a

ω(x, t, y(t))dt, a ≤ x ≤ b,

ω(x, t, y(t)) = K(x, t)H(t, y(t)).

(1.1)

∗Corresponding author
Email addresses: kazemigelian@yahoo.com (GHasem Kazemi Gelian), ghoochani@yahoo.com (Rezvan

Ghoochani Shirvan), fariborzi.araghi@gmail.com (Mohammad Ali Fariborzi Araghi)

Received: February 2020 Accepted: April 2020

http://dx.doi.org/10.22075/ijnaa.2020.19923.2111


1292 Kazemi, Ghoochani Shirvan, Fariborzi Araghi

for known real constants a, b and given functions g(x), K(x, t). Modeling of natural phenomena such
as fluid dynamics, electro-magnetic leads to applicable and usual form of Eq. (1). More information
and other applications can be found in [5].

Final goal in Eq. (1) is finding y(x) in analytical or numerical methods. For this purpose dif-
ferent methods are applied. In [5, 14] and other references, successive approximation, RBF method,
Adomian decomposition, block-pulse functions, Chebyshev and Taylor collocation, polynomials ap-
proximation, wavelets, etc are mentioned.

Comparison between computational components has great rule in numerical mathematics. The
main focus of the present research is comparison, especially, between sinc approximation and dif-
ferential transform method for nonlinear Hammerstein integrals by considering calculation remarks
such as run time of program, Condition number of obtained system, error norms.

Firstly, Sinc approximations which are powerful means in numerical analysis. Special property
of Sinc method in comparison with other methods is order of errors, which is O(exp(−k

√
N)) and is

said as exponentially. For more discussions in this manner see [16, 18, 21].
In the recent years sinc method is combined with other transformation which is known as double
exponential transformation and abbreviated as DE to give better results[23, 24]. In this manner
error bound has order O(exp(−cN/ logN)). This approximation are applied in several problems in
numerical analysis [17, 19].

Secondly, Differential Transform method (DTM) as a meshless and semi analytical method is a
fast an accurate method to solve different problems in linear and nonlinear initial value problems,
differential and integral equations [15, 25].
Although the base of DTM is Taylor series expansion, but new additional works in this method such
as reduced differential transform method follows it practically well and more user friendly. For fully
discussion see references [2, 3, 6, 13].
This is organised as: Main definitions and important tools for sinc approximation DTM are described
in sections 2 and 3. Error bound for two mentioned methods is presented in section 4. Finally, in
section 5, two numerical examples and computational remarks are listed in different tables and plotted
graphically.

2. Sinc method to nonlinear Hammerstein integral equations

Whittaker cardinal for a function g on real axis can be defined as

C(g, h)(x) =
∞∑

i=−∞

g(ih)S(i, h)(x), (2.1)

whenever this series is convergent, and

S(i, h)(x) = Si(
x− ih

h
), i = 0,±1,±2, ..., (2.2)

Also

Si (x) =

{
1 x = 0,
sin(πx)

πx
x ̸= 0.
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Definition 2.1. We say function g has decay DE property respect to map ψ if for real constant α, β
we have

|g(ψ(t))ψ′(t)| ≤ β exp(−α exp |t|), t ∈ (−∞,∞).

The following main theorem states sinc indefinite integration based on DE transformation. Here, the
order of error is double exponentially.

Theorem 2.2. [11, 21] The DE formula for indefinite integration is:∫ s

a

f(x)dx = h

N∑
j=−N

f(ψ(jh))ψ′(jh)

(
1

2
+

1

π
si(

ψ−1(s)

h
− jπ)

)
+O

(
logN

N
exp(− πdN

log(πdN/α)
)

)
,

(2.3)

with the following assumptions:

ψ(t) =
b− a

2
tanh(

π

2
sinh t) +

a+ b

2
, (2.4)

ψ′(t) =
b− a

2

π/2 cosh(t)

cosh2(π/2 sinh(t))
, (2.5)

and

h =
1

N
log(πdN/α). (2.6)

3. Sinc approximation to nonlinear Hammerstein integral equations

To apply sinc approximation to Eq. (1), from Theorem 1, integral term can be replaced by the
expansion series. It follows:∫ x

a

K(x, t)F (t, y(t))dt ≃h
N∑

i=−N

K(x, ψ(ih))ψ′(ih)

(
1

2
+

1

π
si(

πψ−1(x)

h
− jπ)

)
Fj,

Fj = F (tj, y(tj)), j = −N...N.

(3.1)

Substituting Eq. (8) in Eq. (1), it concludes that

y(x)− h

N∑
i=−N

K(x, ψ(ih))ψ′(ih)

(
1

2
+

1

π
si(

πψ−1(x)

h
− jπ)

)
Fj ≃ g(x). (3.2)

Sinc collocation points xk as xk = ψ(kh), k = −N...N are imported to obtain unknown Fj. These
imbedding points lead to a nonlinear system of equation that must be solved with an appropriate
method and useful package in software. In the Sinc approximation based on the mentioned algorithm,
the size of obtained system is (2N + 1)(2N + 1) with 2N + 1 variables yj.

y(xk)− h
N∑

j=−N

K(xk, ψ(jh))ψ
′(jh)

(
1

2
+

1

π
si(π(k − j))

)
Fj ≃ g(xk),

k, j = −N..N.

(3.3)
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By using the notations:

C = [hK(xk, ψ(jh))ψ
′(jh)

(
1

2
+

1

π
si(π(k − j))

)
],

Y = (y−N , ..., yN)
t ,g = (g(x−N), ..., g(xN))

t,

F = (F−N , ..., FN)
t.

(3.4)

Matrix notation (9) is
Y −CF = g. (3.5)

From obtained approximate solution yj, the following interpolation form can be used to get new
approximate solution in all arbitrary points:

yN(x) = g(x) + h
N∑

i=−N

K(x, ψ(ih))ψ′(ih)

(
1

2
+

1

π
si(

πϕ−1(x)

h
− jπ))

)
Fj. (3.6)

4. Differential transform method to nonlinear Hammerstein integral equations

In this section, brief description of differential transform method is presented. For more discus-
sions see references [1, 4, 10].

Definition 4.1. Based on derivative of function f from order k − th, transformation is defined as

F (k) =
1

k!

(
dkf(x)

dxk

)
x=x0

, (4.1)

equivalently, the differential inverse transform of f(x) can be defined as

f(x) =
∞∑
k=0

F (k)(x− x0)
k. (4.2)

Taking together Eqs. (14) and (15), it follows

f(x) =
∞∑
k=0

1

k!

(
dkf(x)

dxk

)
x=x0

(x− x0)
k. (4.3)

The basis operations which are used in the transformation analysis are shown in Table 1.

Main function Transformed function

y(x) = αu(x)± βv(x) Y (k) = αU(k)± βV (k)

y(x) = dnv(x)
dxn Y (k) = (k+n)!

k!
V (k + n)

y(x) = u(x)v(x) Y (k) =
∑k

i=0 U(i)V (k − i)

y(x) = xn Y (k) = δ(k − n) =

{
1 k = n

0 k ̸= n

y(x) =
∫ x

x0
u(t)dt Y (k) = U(k−1)

k
, k ≥ 1, U(0) = 0

y(x) =
∫ x

x0
u(t)v(t)dt Y (k) = 1

k

∑k−1
k1=0 U(k1)V (k − k1 − 1)

y(x) = u(x)
∫ x

x0
v(t)dt Y (k) =

∑k
k1=1

1
k1
U(k − k1)V (k1 − 1) k ≥ 1

Table 1. Operations of differential transform method.
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5. Error bounds

To show accuracy and powerfully in these methods, error analysis of methods are described. By
mentioned relation in previous section, two main formula for convergence analysis and error bounds
are stated:

Theorem 5.1. [8] Suppose y(x) and yN(x) are exact and approximate solution of Eq. (1), respec-
tively, for constants α and C in the strip region Dd, d > 0 we have

sup
x∈(a,b)

|y(x)− yN(x)| ≤ O

(
logN

N
exp(− πdN

log(πdN/α)
)

)
. (5.1)

Theorem 5.2. Based on Taylor expansion of y(x) suppose y(x) =
∑∞

k=0 ϕk(x) with ϕk(x) = Y (k)(x−
x0)

k be the series solution of Eq. (1). Also ym(x) =
∑m

k=0 ϕk(x) be the truncated and approximate
solution, for constant 0 < ξ < 1 we have

sup
x∈(a,b)

|y(x)− ym(x)| ≤
1

1− ξ
ξm+1∥ϕ0∥. (5.2)

Proof

Set Sn = ϕ0 + ϕ1 + · · · + ϕn. It can be easily showed that sequence {Sn} is a Cauchy sequence
in the Banach space. Since,

∥Sn+1 − Sn∥ = ∥φn+1∥ ≤ ξ∥ϕn∥ ≤ · · · ≤ ξn+1ϕ0. (5.3)

For n, l ∈ N, n ≥ l, it follows that

∥Sn − Sl∥ = ∥(Sn − Sn−1) + (Sn−1 − Sn−2) + ...+ (Sl+1 − Sl)∥
≤∥(Sn − Sn−1)∥+ ∥(Sn−1 − Sn−2)∥+ ...+ ∥(Sl+1 − Sl)∥

≤ 1

1− ξ
ξn−l∥ϕ0∥.

So, for large values of n, l this deviation vanishes.

lim
n,l→∞

∥Sn − Sl∥ = 0. (5.4)

Also, inequality 1− ξn−l < 1, gives

∥Sn − Sl∥ ≤ 1

1− ξ
ξl+1∥ϕ0∥. (5.5)

Similarly, for large value on n sequens Sn tends to y(x).
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6. Numerical Experiments

To show authority and capability of these methods in numerical computations and possibility of
comparison we use two examples. All the examples are programmed with Maple 20 software. More-
over, to have meaningful comparison, beside errors measures some useful remarks such as Condition
number and run time are calculated and presented. Moreover the following infinity norm

∥.∥∞ = max |y(xj)− yM(xj)|, −N ≤ j ≤ N. (6.1)

other similar and important norms are defined for accuracy in details such as L2 and the root mean
square (RMS):

∥.∥2 =

√√√√ N∑
j=−N

[y(xj)− yN(xj)]
1
2 ,

RMS =

√√√√ 1

N

N∑
j=−N

[y(xj)− yN(xj)]
1
2 .

Example 1. The first nonlinear Hammerstein integral equation example is selected from [8] with
the exact solution y(x) = cos(x).

y(x) = 1 + sin2(x) +

∫ x

0

−3 sin(x− t)y2(t), 0 ≤ x ≤ 1. (6.2)

Similar to the source of [8], all the parameters in calculation with software are listed below:

a = 0, b = 1, d =
π

2
, α = 1,

xk = ψ(kh), k = −N...N, h =
1

N
log(πdN/α).

(6.3)

As an important factor in comparison, Sinc points are selected as collocation points for two methods
to have better results. Outputs from runed program are presented in Table 2.
In Table 2, column N , shows numbers of Sinc basis functions. Also, run time T(second), norms and
condition number are showed in different columns in Table 2. Decrease in error measure is seen by
addtion in the values of N . Detection of error improving can be obtanid easily from the extracted
results. As a good criteria in calculation for Sinc approximation is Condition number column. This
property comes from the structure of systems of equations which means sparsity in cofficient matrix.

N T (s) ∥.∥∞ ∥.∥2 RMS Cond

5 34.60 9.3E-004 1.9E-002 5.9E-004 3.8E+000
8 480.80 8.7E-005 1.2E-004 5.5E-005 5.5E+000
11 100.1 9.1E-006 2.7E-005 5.7E-006 7.1E+000

Table 2. Outputs for Example 1 by Sinc approximation.

Difference between the exact solution and the approximate solution for N = 2 in the Sinc method is
plotted in Figure 1.
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Figure 1: Comparison between the exact and approximate solution of Example 1 by sinc method

In DTM solution, by taking differential transform from Eq. (23), based on Table 1, we get

y(x) = 1 + sin2(x) +

∫ x

0

sinx cos ty2(t)dt−
∫ x

0

sin t cosxy2(t)dt,

Y (k) = δ(k) +
k∑

i=0

1

i!
sin

(iπ
2

) 1

(k − i)!
sin

(
(k − i)

π

2

)
− 3

k∑
k3=1

k3∑
k2=1

k2∑
k1=1

1

k3
· 1

(k − k3)!
· 1

(k1 − 1)!

{sin
(
(k − k3)

π

2

)
cos

(
(k1 − 1)

π

2

)
Y (k2 − k1)Y (k3 − k2)

− 1

k3
· 1

(k − k3)!
· 1

(k1 − 1)!
cos

(
(k − k3)

π

2
)}

sin
(
(k1 − 1)

π

2

)
Y (k3 − k1)Y (k3 − k2).
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Figure 2: Comparison between the exact and approximate solution of Example 1 in DTM method with N = 5.

So, for k = 1, 2, 3, ... with initial condition Y (0) = 1 it follows

Y (1) = 0,

Y (2) = −1

2
,

Y (3) = 0,

Y (4) =
1

4!
,

Y (x) =
∞∑
k=0

Y (k)xk = Y (0) + Y (1)x+ Y (2)x2 + · · ·

= 1− 1

2!
x2 +

1

4!
x4 + · · · = cos(x).

Table 3, presents results of Example 1 by DTM solution. As seen, By decreasing the number of
basis functions the errors have been improved. Also run time and created error for different values
of N are more remarkable compared to sinc collocation method. Also note that choice N = 5 in the
Sinc method we have 11 basis functions, while in DTM approximation we must take also 11 basis
functions to have meaningful comparison.

N T (s) ∥.∥∞ ∥.∥2
5 0.03 1.00E-10 6.32E-003
8 0.06 1.00E-11 4.47E-003

Table 3. Results for Example 1 by DTM solution.

Figure 2, shows difference between the exact solution and approximate solution for N = 5.

As seen in Figure 3, different plots for N = 2, 3, 4 and exact solution are plotted. Accuracy is
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Figure 3: Comparison between the exact and the approximate solution of Example 1 in DTM method with N = 2, 3, 4.

decreased as N increased.

Example 2. Consider the following nonlinear Hammerstein integral equation

y(t) = −15

56
t8 +

13

14
t7 − 11

10
t6 +

9

20
t5 + t2 − t+

∫ t

0

(t+ s)y3(s)ds, (6.4)

with the exact solution y(t) = t2 − t.

Results of Sinc approximation with collocation points xk for Example 2 are showed in Table 4.
Similar to the results of previous example large values in N give accurate and better advantages in
outputs.

N T (s) ∥.∥∞ ∥.∥2 RMS Cond

5 22.5 7.4E-004 2.5E-002 4.9E-003 2.2E+000
8 280.5 7.7E-006 1.3E-003 2.5E-006 4.8E+000
11 90.13 3.1E-006 5.4E-006 5.4E-006 1.1E+000

Table 4. Output results of Example 2 by Sinc approximation.

By taking differential transform based on Table 1, from Eq. (25) we get

Y (k) = −15

56
δ(k − 8) +

13

14
δ(k − 7)− 11

10
δ(k − 6) +

9

20
δ(k − 5)δ(k − 2)− δ(k − 1)

+
k∑

k3=1

k3∑
k2=1

k2∑
k1=1

1

k3
Y (k1 − 1)Y (k2 − k1)Y (k3 − k2)δ(k − k3 − 1)

+
1

k

k−1∑
k3=0

k3∑
k2=0

k2∑
k1=0

δ(k1 − 1)Y (k2 − k1)Y (k3 − k2)Y (k − k3 − 1).
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Figure 4: Behavior of error plot from Example 2 by Sinc method.

So, for k = 1, 2, 3, ... with initial condition Y (0) = 0, it follows

Y (0) = 0,

Y (1) = −1,

Y (2) = 1,

Y (k) = 0 k ≥ 3,

y(x) =
∞∑
k=0

Y (k)tk = Y0 + Y1t+ Y2t
2 + ... = −t+ t2.

Because of polynomial expansion in DTM approximation, here the exact solution is attained.

N T (s) ∥.∥∞
1 0.01 0.0029
2 0.01 0.0000
3 0.01 0.0000

Table 5. Results for Example 2 by DTM approximation.

Numerical results which are presented in Ttable 5, show that for N = 2, 3, ... error is vanished.
Run time for program also is very small in comparison with Sinc method. However, results show
that two methods are practically well, but DTM approximation gives better accuracy than the Sinc
collocation at the expense of more computational effort.

7. Conclusion

Comparing two methods in numerical analysis in various areas is more important and so appli-
cable. Memory of computer, errors and time of programs are main factors in comparison. Here,
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we use Sinc method with DE transformation and DTM solution to nonlinear Hammerstein integral
equations. Based on works [7, 9, 12, 14], comparing Sinc collocation method to DTM approximation
have the following advantages:

1-The numerical methods demonstrate the good accuracy of two schemes but DTM outputs in a
same manner have better results.

2-By increasing the value of Mt, Sinc points, RMS and ∥.∥ columns are closely similar but run
time and condition number columns are different.

3-Determining the parameter α in Sinc collocation method is still computationally intensive. Finding
optima value will improve accuracy.

4-In DTM approximation for 4 nested loops, order of complexity is O(n4) while in sinc method
is O(n2). This characteristic makes most importance in computational cost.
5- In some problems, DTM solution gives exact solution in closed form such Example 2.
6-Based on results, although the implementation and coding are very easy in sinc method, but DTM
approximation gives higher accuracy at the calculation and error of approximation.
7-For non separable kernel in Eq. (1) calculations will be more complicated.
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