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Abstract

This paper deals with the generalized H(., ., ., .)-ϕ-η-cocoercive operator and use its application
via resolvent equation approach to solve the variational-like inclusion involving infinite family of
set-valued mappings in semi-inner product spaces. Applying the generalized resolvent operator tech-
nique involving generalized H(., ., ., .)-ϕ-η-cocoercive operator, an equivalence between the set-valued
variational-like inclusion problem and fixed point problem is established. A relationship between the
set-valued variational-like inclusion problem and resolvent equation is also established. Using this
equivalent formulation an iterative algorithm is developed that approximate the unique solution of
the resolvent equation.
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1. Introduction

Variational inclusions, as the generalization of variational inequalities, have been widely studied
in recent years. Some of the most interesting and important problems in the theory of varia-
tional inclusions include variational, quasi-variational, variational-like inequalities as special cases.
Variational Inequality theory is very important due to its large application in various problem for
example, partial differential equations and optimization problems, see [3]. Monotonicity play a
very important role in the study of variational inclusions. In recent past, monotone mappings
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have a large number of applications, especially in differential equations, integral equations, math-
ematical economics, optimal control, and so forth. There are several kinds of generalized mono-
tonicity such as pseudomonotone, quasimonotone, paramonotone, maximal monotone mapping,
relaxed monotone mapping, H-monotone mapping, A-monotone mapping etc., see for example,
[4, 5, 6, 9, 10, 14, 17, 18, 29, 31, 33, 35, 36, 38, 39]. The cocoercive mappings were studied by
Tseng [37], Magnanti and Perakis [32], and Zhu and Marcotte [43] which are also the generalized
forms of monotone mappings.

The resolvent operator techniques are very crucial to study the existence of solutions and to create
iterative schemes for various kinds of variational inequalities and their generalizations, which gives
mathematical models to certain problems appearing in optimization and control theory, engineering
sciences and economics. In order to study several equilibrium problem, variational inequalities and
variational inclusions, Farajzadeh et al. [13] introduced various kinds of vector equilibrium problems
which are combinations of a vector equilibrium problem and generalized vector variational inequality
problem, Farajzadeh et al. [12] established an iterative process for a hybrid pair of a finite family of
generalized I-asymptotically nonexpansive single-valued mappings and a finite family of generalized
nonexpansive multi-valued mappings, Fang and Huang, Kazmi and Khan, and Lan et al. investi-
gated various generalized operators such as H-monotone [9], H-accretive [11], (P, η)-proximal point
[23], (P, η)-accretive [22], (H, η)-monotone [11], and (A, η)-accretive mappings [28]. Zou and Huang
[44] introduced and studied H(., .)-accretive operators, Kazmi et al. [24, 25, 26] introduced and
studied generalized H(., .)-accretive operators and H(., .)-η-proximal point mapping, Xu and Wang
[41] introduced and studied (H(., .), η)-monotone operators, Ahmad et al. [1] introduced and stud-
ied H(., .)-cocoercive operators and Husain and Gupta [19, 20] introduced and studied H(., .)-mixed
operator and generalized H(., ., .)-η-cocoercive operators.

Recently, Sahu et al. [35] showed the existence of solutions for a class of nonlinear implicit
variational inclusion problems in semi-inner product spaces, which is more general than the results
studied in [36]. Luo and Huang [31], introduced and studied (H,ϕ)-η-monotone mapping in Banach
spaces which gives a unifying framework for certain classes of monotone mapping. Most recently,
Bhat and Zahoor [5, 6], introduced and studied (H,φ)-η-monotone mapping in semi-inner product
space and examined the convergence analysis of proposed iterative schemes for various classes of
variational inclusion via generalized resolvent operator. For the applications view point of discussed
operators in variational inequalities and variational inclusion, see [9, 10, 19, 20, 21, 25, 29, 31, 33,
35, 36, 38, 39, 41, 44]. Khan et al. [27] by making the use of resolvent operator technique of
maximal monotone mapping and the property of fixed-point set of set-valued contractive mapping
study the behavior and sensitivity analysis of a solution set for a parametric generalized mixed multi-
valued implicit quasi-variational inclusion problem involving a map N : H × H × H × Ω → H in
Hilbert space H where Ω ⊂ H is nonempty and open, which generalize the results presented by
Ram [34] for parametric generalized nonlinear quasi-variational inclusion problem involving a map
N : H ×H × Ω→ H.

Very recently Gupta and Singh [16] examine the notion generalized H(., ., .)-ϕ-η-cocoercive opera-
tor which is the generalization of of H(., ., .)-η-cocoercive operator [20, 21] and use its application via
the resolvent equation approach to find the solution of variational-like inclusion involving involving
infinite family of set valued mappings in semi-inner product spaces. Furthermore, they constructed
an iterative algorithm by using the equivalent formulation of the set-valued variational-like inclusion
problem and the resolvent equations to solve the resolvent equation.

Inspired and motivated by the above research work going on in this direction and [27, 34], we con-
sider the notion of generalized H(., ., ., .)-ϕ-η-cocoercive operator a natural generalization of H(., ., .)-
ϕ-η-cocoercive operator [16]. Next, we consider the variational inclusion problem involving infinite
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family of set-valued mappings. We find an equivalence between the variational-like inclusion and
the resolvent operator equation containing generalized H(., ., ., .)-ϕ-η-cocoercive operator and also
find a relation between variational-like inclusion and fixed point problem. These equivalent fixed
resolvent equation formulation and the fixed point problem give us a sketch to obtain an iterative
algorithm. As an application, we attempt to solve the variational-like inclusions involving infinite
family of set-valued mappings in 2-uniformly smooth Banach space. The results presented in this
paper can be viewed as an extension and generalization of the existing results in the literature, see
[1, 2, 5, 6, 16, 19, 25, 31, 44].

First of all we recall the following definitions and important concepts which are needed throughout
the paper.

Definition 1.1. (see [30, 35]) Let us consider the vector space X over the field F of real or complex
numbers. A functional [., .] : X ×X → F is called a semi-inner product if it satisfies the following
conditions:

(i) [x1 + x2, y1] = [x1, y1] + [x2, y1], ∀ x1, x2, y1 ∈ X

(ii) [αx1, y1] = α[x1, y1], ∀α ∈ F, x1, y1 ∈ X

(iii) [x1, x1] ≥ 0, for x1 6= 0

(iv) |[x1, y1]|2 ≤ [x1, x1][y1, y1], ∀ x1, y1 ∈ X

The pair (X, [., .]) is called a semi-inner product space.

We note that ‖x1‖ = [x1, x1]
1
2 is a norm on X and we can say every semi-inner product space is a

normed linear space. On the other hand, every normed linear space can be made into a semi-inner
product space in infinitely many different ways. Giles [15] had proven that if the underlying space X
is a uniformly convex smooth Banach space then it is feasible to define a semi-inner product uniquely.

Remark 1.2. (see [5]) This unique semi-inner product has the following nice properties:

(i) [x1, y1] = 0 if and only if y1 is orthogonal to x1, that is if and only if ‖y1‖ ≤ ‖y1 + αx1‖ , for
all scalars α.

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on X then
there is a unique vector y1 ∈ X such that f(x1) = [x1, y1], for all x1 ∈ X.

(iii) The semi-inner product is continuous, that is for each x1, y1 ∈ X, we have Re[y1, x1 + αy1]→
Re[y1, x1] as α→ 0.

The sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly convex smooth Banach
spaces. Therefore one can define semi-inner product on these spaces, uniquely.

Example 1.3. (see [35]) The real sequence space lp, for 1 < p < ∞ is a semi-inner product space
with the semi-inner product defined by

[x, y] =
1

‖y‖p−2p

∑
j

xiyi|y|p−2, x, y ∈ lp.
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Example 1.4. (see [15, 35]) The real Banach space Lp(X,µ) for 1 < p <∞ is a semi-inner product
space with the semi-inner product defined by

[f, g] =
1

‖g‖p−2p

∫
X

f(x)|g(x)|p−1sgn(g(x))dµ, f, g ∈ Lp.

Definition 1.5. (see [35, 40]) Let X be a real Banach space. The modulus of smoothness ρX :
[0,+∞)→ [0,+∞) of X is defined as

ρX(t) = sup

{
‖x1 + y1‖+ ‖x1 − y1‖

2
− 1 : ‖x1‖ = 1, ‖y1‖ = t, t > 0

}
.

X is said to be uniformly smooth if lim
t→0

ρX(t)

t
= 0.

X is said to b p-uniformly smooth for p > 1, if there exists a real constant c > 0 such that ρX(t) ≤ ctp.
X is said to be 2-uniformly smooth if there exists a real constant c > 0 such that ρX(t) ≤ ct2.

Lemma 1.6. (see [35, 40]) Let p > 1 be a real number and X be a smooth Banach space. Then the
following statements are equivalent:

(i) X is 2-uniformly smooth.

(ii) There is a constant c > 0, such that for every x1, y1 ∈ X, the following inequality holds

‖x1 + y1‖2 ≤ ‖x1‖2 + 2 〈y1, fx1〉+ c‖y1‖2, (1.1)

where fx1 ∈ J(x1) and
J(x1) =

{
x1
∗ ∈ X∗ : 〈x1, x1∗〉 = ‖x1‖2 and ‖x1∗‖ = ‖x1‖

}
is the normalized duality mapping, where

X∗ denotes the dual space of X and 〈x1, x1∗〉 denotes the value of the functional x1
∗ at x1, that is,

x1
∗(x1).

Remark 1.7. (see [35]) Every normed linear space is a semi-inner product space (see Lumer [30]).
In fact by Hahn Banach theorem, for each x1 ∈ X, there exists at least one functional fx1 ∈ X∗

such that 〈x1, fx1〉 = ‖x1‖2. Given any such mapping f from X into X∗, we can verify that [y1, x1] =
〈y1, fx1〉 defines a semi-inner product. Hence we can write the inequality (1.1) as

‖x1 + y1‖2 ≤ ‖x1‖2 + 2[y1, x1] + c‖y1‖2, ∀ x1, y1 ∈ X. (1.2)

The constant c is chosen with best possible minimum value. We call c, as the constant of smoothness
of X.

Example 1.8. (see [35]) The functions space Lp is 2-uniformly smooth for p ≥ 2, and is p-uniformly
smooth for 1 < p < 2. If 2 ≤ p <∞, then we have for all x1, y1 ∈ Lp,

‖x1 + y1‖2 ≤ ‖x1‖2 + 2[y1, x1] + (p− 1)‖y1‖2,

where (p− 1) is the constant of smoothness.

The rest part of paper is organized as follows:
In section 2, we present some definitions which will be used later. In section 3, we present some

definitions and assumptions to prove some result. As an application, we prove Lemmas and developed
algorithm to prove strongly convergence and uniqueness of the solutions of the resolvent equation
corresponding to set-valued variational-like inclusion problem.
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2. Preliminaries

Let X be a 2-uniformly smooth Banach space. Its norm and topological dual space is given by
‖.‖ and X∗, respectively. The semi-inner product [., .] signify the dual pair among Y and Y ∗.

Definition 2.1. (see [31, 35]) Let X be real a real 2-uniformly smooth Banach space, η : X×X →
X and P : X → X be single valued mappings. Then P is said to be:

(i) P is (r, η)-strongly monotone if there exists a constant r > 0 such that

[P (x)− p(y), η(x, y)] ≥ r‖x− y‖2, ∀ x, y ∈ X,

(ii) P is (s, η)-cocoercive if there exists a constant s > 0 such that

[P (x)− p(y), η(x, y)] ≥ s‖P (x)− P (y)‖2, ∀ x, y ∈ X,

(iii) P is (s′, η)-relaxed cocoercive if there exists a constant s′ > 0 such that

[P (x)− p(y), η(x, y)] ≥ −s′‖P (x)− P (y)‖2, ∀ x, y ∈ X,

(iv) P is α-expansive if there exists constant α > 0 such that

‖P (x)− P (y)‖ ≥ α ‖x− y‖ , ∀x, y ∈ X,

(v) η is said to be τ -Lipschitz continuous if there exists constant τ > 0 such that

‖η(x, y)‖ ≤ τ ‖x− y‖ , ∀x, y ∈ X.

Definition 2.2. (see [20, 21]) Let P,Q,R, S : X → X, η : X×X → X, H : X×X×X×X → X
are single-valued mappings, then

(i) H(P, ., ., .) is (µ1, η)-cocoercive with respect to P if there exists constant µ1 > 0 such that

[H(Px1, u, u, u)−H(Px2, u, u, u), η(x1, x2)] ≥ µ1‖Px1 − Px2‖2, ∀ u, x1, x2 ∈ X,

(ii) H(., Q, ., .) is (µ2, η)-cocoercive with respect to Q if there exists constant µ2 > 0 such that

[H(u,Qx1, u, u)−H(u,Qx2, u, u), η(x1, x2)] ≥ µ2‖Qx1 −Qx2‖2, ∀ u, x1, x2 ∈ X,

(iii) H(., ., R, .) is (γ, η)-relaxed cocoercive with respect to R if there exists constant γ > 0 such that

[H(u, u,Rx1, u)−H(u, u,Rx2, u), η(x1, x2)] ≥ −γ‖Rx1 −Rx2‖2, ∀ u, x1, x2 ∈ X,

(iv) H(., ., ., S) is (δ, η)-strongly monotone with respect to S if there exists constant δ > 0 such that

[H(u, u, u, Sx1)−H(u, u, u, Sx2), η(x1, x2)] ≥ δ ‖x1 − x2‖ , ∀ u, x1, x2 ∈ X,

(v) H(P, ., ., .) is κ1-Lipschitz continuous with respect to P if there exists constant κ1 > 0 such that

‖H(Px1, u, u, u)−H(Px2, u, u, u)‖ ≤ κ1 ‖x1 − x2‖ , ∀ u, x1, x2 ∈ X.
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Similarly we can define the Lipschitz continuity for H(., ., ., .) with respect to other components.

LetM : X → 2X be a set-valued mapping, the graph ofM is given by G(M) = {(x, y) : y ∈M(x)} .
The domain of M is given by

D(M) = {x ∈ X : ∃ y ∈ X : (x, y) ∈ G(M)} .

The Range of M is given by

R(M) = {y ∈ X : ∃ x ∈ X : (x, y) ∈ G(M)} .

The inverse of M is given by
M−1 = {(y, x) : (x, y) ∈ G(M)} .

For any two set-valued mappings N and M , and any real number ρ, we define

N +M = {(x, y1 + y2) : (x, y1) ∈ G(N), (x, y2) ∈ G(M)} ,

ρM = {(x, ρy) : (x, y) ∈ G(M)} .

For any mapping A and a set-valued mapping M : X → 2X , we define
A+M = {(x, y1 + y2) : Ax = y1, (x, y2) ∈ G(M)} .

Definition 2.3. (see [31, 35]) A set valued mapping M : X → 2X is said to be (m, η)-relaxed
monotone if there exists a constant m > 0 such that

[x∗ − y∗, η(x, y)] ≥ −m‖x− y‖2, ∀ x, y ∈ X, x∗ ∈M(x), y∗ ∈M(y).

Definition 2.4. Let G : X∞ = X × X × X × X... → X be a mapping. Then G is αi-Lipschitz
continuous with respect to ith component if there exists a constant αi > 0 such that

‖G(., ., ., xi, ...)−G(., ., ., yi, ...)‖ ≤ αi ‖xi − yi‖ , ∀ xi, yi ∈ X.

Definition 2.5. The Hausdorff metric H(., .) on CB(X), is defined by

H(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
, A,B ∈ CB(X),

where d(., .) is the induced metric on X and CB(X) denotes the family of all nonempty closed and
bounded subsets of X.

Definition 2.6. (see [16]) A set-valued mapping S : X → CB(X) is called H-Lipschitz continuous
with constant λS > 0, if

H(Sx, Sy) ≤ λS ‖x− y‖ , ∀ x, y ∈ X
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3. Generalized H(., ., ., .)-ϕ-η-cocoercive operator

In this section, we present some definitions, assumptions to prove the main results related with
generalized H(., ., ., .)-ϕ-η-cocoercive operator.

Let X be 2-uniformly smooth Banach space. Suppose that η : X×X → X, H : X×X×X×X →
X and ϕ, P,Q,R, S : X → X be the single-valued mappings and M : X → 2X be a set-valued
mapping.

Definition 3.1. Let H(., ., ., .) is (µ1, η)-cocoercive with respect to P with non-negative constant
µ1, (µ2, η)-cocoercive with respect to Q with non-negative constant µ2, (γ, η)-relaxed cocoercive with
respect to R with non-negative constant γ and (δ, η)-strongly monotone with respect to S with non-
negative constant δ, then M is called generalized H(., ., ., .)-ϕ-η-cocoercive with respect to P, Q, R
and S if

(i) ϕ ◦M is (m, η)-relaxed monotone,

(ii) (H(., ., ., .) + λϕ ◦M(X) = X, λ > 0.

Now we need the following assumptions:

A1: Let H(., ., ., .) is (µ1, η)-cocoercive with respect to P with non-negative constant µ1, (µ2, η)-
cocoercive with respect to Q with non-negative constant µ2, (γ, η)-relaxed cocoercive with respect
to R with non-negative constant γ and (δ, η)-strongly monotone with respect to S with non-negative
constant δ with µ1, µ2 > γ.
A2: Let P is α1-expansive, Q is α2-expansive and R is β-Lipschitz continuous with α1, α2 > β.
A3: Let η is τ -Lipschitz continuous
A4: Let M is generalized H(., ., ., .)-ϕ-η-cocoercive operator with respect to P,Q,R and S.

Theorem 3.2. Suppose assumptions A1, A2 and A3 hold good with ` = µ1α1
2+µ2α2

2−γβ2+δ > mλ,
then (H(P,Q,R, S) + λϕ ◦M)−1 is single valued.

Proof . Let v, w ∈ (H(P,Q,R, S) + λϕ ◦M)−1(u) for any given u ∈ X. It is obvious that{
−H(Pv,Qv,Rv, Sv) + u ∈ λϕ ◦M(v)
−H(Pw,Qw,Rw, Sw) + u ∈ λϕ ◦M(w)

Since ϕ ◦M is (m, η)-relaxed monotone in the first argument, we have

−mλ‖v − w‖2 ≤ [−H(Pv,Qv,Rv, Sv) + u− (−H(Pw,Qw,Rw, Sw) + u), η(v, w)]

= [−H(Pv,Qv,Rv, Sv) +H(Pw,Qw,Rw, Sw), η(v, w)]

= −[H(Pv,Qv,Rv, Sv)−H(Pw,Qv,Rv, Sv), η(v, w)]

−[H(Pw,Qv,Rv, Sv)−H(Pw,Qw,Rv, Sv), η(v, w)]

−[H(Pw,Qw,Rv, Sv)−H(Pw,Qw,Rw, Sv), η(v, w)]

−[H(Pw,Qw,Rw, Sv)−H(Pw,Qw,Rw, Sw), η(v, w)].

Since assumption A1 holds, we have

−mλ‖v − w‖2 ≤ −µ1‖Pv − Pw‖2 − µ2‖Qv −Qw‖2 + γ‖Rv −Rw‖2 − δ‖v − w‖2.
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Since assumption A2 holds, we have

−mλ‖v − w‖2 ≤ −µ1α1
2‖v − w‖2 − µ2α2

2‖v − w‖2 + γβ2‖v − w‖2 − δ‖v − w‖2

= −(µ1α1
2 + µ2α2

2 − γβ2 + δ)‖v − w‖2

0 ≤ −(`−mλ)‖v − w‖2 ≤ 0, where ` = µ1α1
2 + µ2α2

2 − γβ2 + δ.

Since µ1, µ2 > γ, α1, α2 > β, δ > 0, it follows that ‖v − w‖ ≤ 0 and hence v = w. Therefore
(H(P,Q,R, S) + λϕ ◦M)−1 is single-valued. �

Definition 3.3. Let assumptions A1, A2 and A4 hold good with ` = µ1α1
2 +µ2α2

2−γβ2 +δ > mλ,
then the resolvent operator R

H(.,.,.,.)−η
M,λ,ϕ : X → X is given as

R
H(.,.,.,.)−η
M,λ,ϕ (x) = (H(P,Q,R, S) + λϕ ◦M)−1(x), ∀ x ∈ X. (3.1)

Theorem 3.4. Suppose assumptions A1-A4 hold good with ` = µ1α1
2 +µ2α2

2− γβ2 + δ. > mλ, and
η is τ -Lipschitz then R

H(.,.,.,.)−η
M,λ,ϕ : X → X is τ

`−mλ-Lipschitz continuous, that is,∥∥∥RH(.,.,.,.)−η
M,λ,ϕ (v)−RH(.,.,.,.)−η

M,λ,ϕ (w)
∥∥∥ ≤ τ

`−mλ
‖v − w‖ , ∀ v, w ∈ X.

Proof . Suppose v, w ∈ X be any given points, then from (3.1), we have

R
H(.,.,.,.)−η
M,λ,ϕ (v) = (H(P,Q,R, S) + λϕ ◦M)−1(v),

R
H(.,.,.,.)−η
M,λ,ϕ (w) = (H(P,Q,R, S) + λϕ ◦M)−1(w).

Let x0 = R
H(.,.,.,.)−η
M,λ,ϕ (v) and x1 = R

H(.,.,.,.)−η
M,λ,ϕ (w).{

λ−1 (v −H (P (x0), Q(x0), R(x0), S(x0))) ∈ ϕ ◦M(x0)
λ−1 (w −H (P (x1), Q(x1), R(x1), S(x1))) ∈ ϕ ◦M(x1).

Since ϕ ◦M is (m, η)-relaxed monotone in the first arguments, we have
[(v −H (P (x0), Q(x0), R(x0), S(x0)))− (w −H (P (x1), Q(x1), R(x1), S(x1))) ,
η(x0, x1)] ≥ −mλ‖x0 − x1‖2,
which implies

[v − w, η(x0, x1)] ≥ [H (P (x0), Q(x0), R(x0), S(x0))−
H (P (x1), Q(x1), R(x1), S(x1)) , η(x0, x1)]−mλ‖x0 − x1‖2.

Now, we have

‖v − w‖ ‖η(x0, x1)‖ ≥ [v − w, η(x0, x1)]

≥ [H (P (x0), Q(x0), R(x0), S(x0))−H (P (x1), Q(x1), R(x1), S(x1)) , η(x0, x1)]

−mλ‖x0 − x1‖2.

Since assumption A1, A2, A3 hold and η is τ -Lipschitz continuous, we have

‖v − w‖ τ ‖x0 − x1‖ ≥ (`−mλ)‖x0 − x1‖2

or
∥∥∥RH(.,.,.,.)−η

M,λ,ϕ (v)−RH(.,.,.,.)−η
M,λ,ϕ (w)

∥∥∥ ≤ τ

`−mλ
‖v − w‖ , ∀ v, w ∈ X.

Hence, we get the required result. �
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4. Application

Now we shall show that generalized H(., ., ., .)-ϕ-η-cocoercive operator can be used as an effective
tool to solve variational inclusion problems under suitable assumptions.

Let X be 2-uniformly smooth Banach space. Let V, Ti : X → CB(X), i = 1, 2, 3, ... be the
infinite family of set-valued mappings and P,Q,R, S, h, k, ϕ : X → X be the single-valued mappings.
Let η : X ×X → X,H : X ×X ×X ×X → X and G : X∞ = X ×X ×X...→ X be the mappings.
Suppose that set-valued mapping M : X → 2X be a generalized H(., ., ., .)-ϕ-η-cocoercive operator
with respect to P,Q,R and S. We consider the following variational like inclusion problem involving
infinite family of set-valued mappings to find y ∈ X, a ∈ V (y) and yi ∈ Ti(y), i = 1, 2, ... such that

0 ∈ G(y1, y2, y3, ...) + k(a) +M(h(y)− k(y)). (4.1)

Variational inclusion problem of type (4.1), studied by Ahmed and Dilshad [1] and Wang [42] in the
setting of real Banach space.

Lemma 4.1. Let us consider the mapping ϕ : X → X such that ϕ(y1 + y2) = ϕ(y1) + ϕ(y2) and
Ker(ϕ) = {0} where Ker(ϕ) = {y1 ∈ X : ϕ(y1) = 0} . If (y, a, (y1, y2, ...)), where y ∈ X, a ∈ V (y)
and yi ∈ Ti(y), i = 1, 2, 3, ... is a solution of problem (4.1) if and only if (y, a, (y1, y2, ...)) satisfies
the following relation:

h(y) = k(a) +R
H(.,.,.,.)−η
M,λ,ϕ [H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]. (4.2)

The resolvent equation corresponding to set-valued variational-like inclusion problem (4.1) is

ϕ ◦G(y1, y2, y3, ...) + k(a) + λ−1J
H(.,.,.,.)−η
M,λ,ϕ (q) = 0, (4.3)

where λ > 0.

J
H(.,.,.,.)−η
M,λ,ϕ (q) = [I −H(P (R

H(.,.,.,.)−η
M,λ,ϕ (q)), Q(R

H(.,.,.,.)−η
M,λ,ϕ (q)),

R(R
H(.,.,.,.)−η
M,λ,ϕ (q)), S(R

H(.,.,.,.)−η
M,λ,ϕ (q)))],

I is the identity mapping and

H(P,Q,R, S)
[
R
H(.,.,.,.)−η
M,λ,ϕ (q)

]
= H(P (R

H(.,.,.,.)−η
M,λ,ϕ (q)), Q(R

H(.,.,.,.)−η
M,λ,ϕ (q)),

R(R
H(.,.,.,.)−η
M,λ,ϕ (q)), S(R

H(.,.,.,.)−η
M,λ,ϕ (q))).

Next we show the solution of variational-like inclusion problem (4.1) is equivalent to the resolvent
equation (4.3) in the following lemma.

Lemma 4.2. If (y, a, (y1, y2, y3, ...)) with y ∈ X, a ∈ V (y) and yi ∈ Ti(y), i = 1, 2, 3, ... is a solution
of problem (4.1) if and only if the resolvent equation (4.3) has a solution (q, y, a, (y1, y2, y3, ...)) with
y, q ∈ X, a ∈ V (y) and yi ∈ Ti(y, i = 1, 2, 3, ..., ) where

h(y)− k(a) = R
H(.,.,.,.)−η
M,λ,ϕ (q), (4.4)

and q = H(P (h(y)−k(a)), Q(h(y)−k(a)), R(h(y)−k(a)), S(h(y)−k(a)))−λ {ϕ ◦G(y1, y2, y3, ...) + k(a)} .
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Proof . Let (y, a, (y1, y2, y3, ...)) be a solution of problem (4.1), and using Lemma 4.1 we have

J
H(.,.,.,.)−η
M,λ,ϕ = [I −H(P (R

H(.,.,.,.)−η
M,λ,ϕ ), Q(R

H(.,.,.,.)−η
M,λ,ϕ ), R(R

H(.,.,.,.)−η
M,λ,ϕ ),

S(R
H(.,.,.,.)−η
M,λ,ϕ ))],

J
H(.,.,.,.)−η
M,λ,ϕ (q) = J

H(.,.,.,.)−η
M,λ,ϕ [H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]
= [I −H(P (R

H(.,.,.,.)−η
M,λ,ϕ ), Q(R

H(.,.,.,.)−η
M,λ,ϕ ), R(R

H(.,.,.,.)−η
M,λ,ϕ ),

S(R
H(.,.,.,.)−η
M,λ,ϕ ))]

[H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)), S(h(y)− k(a)))

−λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]
= [H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)), S(h(y)− k(a)))

−λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]
−H(P (R

H(.,.,.,.)−η
M,λ,ϕ ), Q(R

H(.,.,.,.)−η
M,λ,ϕ ), R(R

H(.,.,.,.)−η
M,λ,ϕ ), S(R

H(.,.,.,.)−η
M,λ,ϕ ))

[H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)), S(h(y)− k(a)))

−λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]
= [H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)), S(h(y)− k(a)))

−λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]
−H(P (R

H(.,.,.,.)−η
M,λ,ϕ )(H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}),
Q(R

H(.,.,.,.)−η
M,λ,ϕ )(H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}),
R(R

H(.,.,.,.)−η
M,λ,ϕ )(H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}),
S(R

H(.,.,.,.)−η
M,λ,ϕ )(H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}))
= [H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)), S(h(y)− k(a)))

−λ {ϕ ◦G(y1, y2, y3, ...) + k(a)}]
−H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)), S(h(y)− k(a)))

= −λ {ϕ ◦G(y1, y2, y3, ...) + k(a)} .

This implies that
ϕ ◦G(y1, y2, y3, ...) + k(a) + λ−1J

H(.,.,.,.)−η
M,λ,ϕ (q) = 0. (4.5)

Conversely, let (q, y, a, (y1, y2, y3, ...)) is a solution of resolvent equation (4.3), then

J
H(.,.,.,.)−η
M,λ,ϕ (q) = −λ[ϕ ◦G(y1, y2, y3, ...) + k(a)]

[H(P (R
H(.,.,.,.)−η
M,λ,ϕ ), Q(R

H(.,.,.,.)−η
M,λ,ϕ ), R(R

H(.,.,.,.)−η
M,λ,ϕ ), S(R

H(.,.,.,.)−η
M,λ,ϕ ))](q) = −λ[ϕ ◦G(y1, y2, y3, ...) + k(a)]

q−H(P (h(y)−k(a)), Q(h(y)−k(a)), R(h(y)−k(a)), S(h(y)−k(a))) = −λ[ϕ◦G(y1, y2, y3, ...)+k(a)].
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It follows that

q = H(P (h(y)−k(a)), Q(h(y)−k(a)), R(h(y)−k(a)), S(h(y)−k(a)))−λ[ϕ◦G(y1, y2, y3, ...) +k(a)].

Hence (y, a, (y1, y2, y3, ...)) is a solution of variational inclusion problem (4.1). �
Lemma 4.1 and Lemma 4.2 are very important from the numerical point of view. They permit

us to suggest the following iterative scheme for finding the approximate solution of (4.3).

Algorithm 1 For any given (q0, y0, a0, (y
0
1, y

0
2, y

0
3, ...)), we can choose q0, y0 ∈ X, a0 ∈ V (y0) and

y0i ∈ Ti(y0), i = 1, 2, 3, ... and 0 < ε < 1 such that sequences {qn}, {yn}, {an} and {yni } satisfy

h(yn) = k(an) +R
H(.,.,.,.)−η
M,λ,ϕ (qn),

an ∈ V (an), ‖an − an+1‖ ≤ H(V (yn), V (yn+1)) + εn+1 ‖yn + yn+1‖ ,
for each i, yni ∈ Ti(yn),

∥∥yni − yn+1
i

∥∥ ≤ H(Ti(yn), Ti(yn+1))
+εn+1 ‖yn + yn+1‖ ,

qn+1 = H(P (h(yn)− k(an)), Q(h(yn)− k(an)), R(h(yn)− k(an)),
S(h(yn)− k(an)))− λ{ϕ ◦G(yn, zn) + k(an)},

where λ > 0, n ≥ 0, and H is the Hausdorff metric on CB(X).
Next, we find the convergence of the iterative algorithm for the resolvent equation (4.3) corresponding
to set-valued variational inclusion problem (4.1) and the unique solution (t, x, y, z) of the resolvent
equation (4.3).

Theorem 4.3. Let us consider the problem (4.1) with assumptions A1-A4 hold good and ϕ : X → X
be a single valued mapping with ϕ(y1+y2) = ϕ(y1)+ϕ(y2) and Ker(ϕ) = {0}. Let set-valued mappings
V, Ti : X → CB(X), i = 1, 2, 3, ... be λV , βi-H-Lipschitz continuous respectively. Let single valued
mapping h : X → X be r-strongly monotone and λh-Lipschitz continuous, and k : X → X be λk-
Lipschitz continuous. Let mapping H : X×X×X×X → X be κ1, κ2, κ3 and κ4-Lipschitz continuous
with respect to P,Q,R and S, respectively. Let ϕ ◦ G be αi-Lipschitz continuous with respect to ith

component, i = 1, 2, 3, .... Suppose that the following condition holds

0 < (κ1 + κ2 + κ3 + κ4){λh + λkλV }+ λ
∞∑
i=1

αiβi + λλkλV

<
(`−mλ)

{
1−

√
1− 2r + λh

2 − λkλV
}

τ
.

Then there exist q, y ∈ X, a ∈ V (y) and yi ∈ Ti(y) that satisfy the resolvent equation (4.3). The
iterative sequence {qn}, {yn}, {an} and {yni }, i = 1, 2, 3, ... and n = 1, 2, 3, ..., generated by Algorithm
1 converges strongly to the unique solution q, y, a and yi respectively.

Proof . Using Algorithm 1 and λV , βi-H Lipschitz continuity of V, Ti, respectively, we have

‖an − an−1‖ ≤ H(V (yn), V (yn−1)) + εn ‖yn − yn−1‖ ≤ {λV + εn} ‖yn − yn−1‖ (4.6)∥∥yni − yn−1i

∥∥ ≤ H(Ti(yn), Ti(yn−1)) + εn ‖yn − yn−1‖ ≤ {βi + εn} ‖yn − yn−1‖ , (4.7)
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where n=1,2,3,... .
Now, we compute

‖qn+1 − qn‖ = ||H(P (h(yn)− k(an)), Q(h(yn)− k(an)), R(h(yn)− k(an)),

S(h(yn)− k(an))))−H(P (h(yn−1)− k(an−1)),

Q(h(yn−1)− k(an−1)), R(h(yn−1)− k(an−1)),

S(h(yn−1)− k(an−1)))− λ{ϕ ◦G(yn1 , y
n
2 , y

n
3 , ...) + k(an)

−ϕ ◦G(yn−11 , yn−12 , yn−13 , ...) + k(an−1)}||
≤ ||H(P (h(yn)− k(an)), Q(h(yn)− k(an)), R(h(yn)− k(an)),

S(h(yn)− k(an)))−H(P (h(yn−1)− k(an−1)), Q(h(yn−1)− k(an−1)),

R(h(yn−1)− k(an−1)), S(h(yn−1)− k(an−1)))||
+λ
∥∥ϕ ◦G(yn1 , y

n
2 , y

n
3 , ...)− ϕ ◦G(yn−11 , yn−12 , yn−13 , ...)

∥∥
+λ ‖k(an)− k(an−1)‖ . (4.8)

Next, we compute

‖h(yn)− k(an)− h(yn−1)− k(an−1)‖ ≤ ‖h(yn)− h(yn−1)‖+ ‖k(an)− k(an−1)‖
≤ λh ‖yn − yn−1‖+ λk ‖an − an−1‖
≤ λh ‖yn − yn−1‖+ λk(λV + εn) ‖yn − yn−1‖
≤ {λh + λk(λV + εn)} ‖yn − yn−1‖ . (4.9)

Since, H(P,Q,R, S) is κ1, κ2, κ3, κ4-Lipschitz continuous with respect to P,Q,R and S respectively,
we have

||H(P (h(yn)− k(an)), Q(h(yn)− k(an)), R(h(yn)− k(an)), S(h(yn)− k(an))))

−H(P (h(yn−1)− k(an−1)), Q(h(yn−1)− k(an−1)),

R(h(yn−1)− k(an−1)), S(h(yn−1)− k(an−1)))||
≤ (κ1 + κ2 + κ3 + κ4) ‖(h(yn)− k(an))− (h(yn−1)− k(an−1))‖
≤ (κ1 + κ2 + κ3 + κ4){λh + λk(λV + εn)} ‖yn − yn−1‖ . (4.10)

Since ϕ ◦ Gi, i = 1, 2, 3, ... are αi-Lipschitz continuous and T ′is are βi-H-Lipschitz continuous, we
have ∥∥ϕ ◦G(yn1 , y

n
2 , ...)− ϕ ◦G(yn−11 , yn−12 , ...)

∥∥
=

∥∥ϕ ◦G(yn1 , y
n
2 , ...)− ϕ ◦G(yn−11 , yn2 , ...) + ϕ ◦G(yn−11 , yn2 , ...) + ...

∥∥
≤

∥∥ϕ ◦G(yn1 , y
n
2 , ...)− ϕ ◦G(yn−11 , yn2 , ...)

∥∥
+
∥∥ϕ ◦G(yn−11 , yn2 , ...)− ϕ ◦G(yn−11 , yn−12 , ...)

∥∥+ ...

≤ α1

∥∥yn1 − yn−11

∥∥+ α2

∥∥yn2 − yn−12

∥∥+ ...

≤ α1(β1 + εn) ‖yn − yn−1‖+ α2(β2 + εn) ‖yn − yn−1‖+ ...

≤
∞∑
i=1

αi(βi + εn) ‖yn − yn−1‖ . (4.11)
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Using (4.6),(4.10) and (4.11) in (4.8), we have

‖qn+1 − qn‖ ≤ (κ1 + κ2 + κ3 + κ4){λh + λk(λV + εn)} ‖yn − yn−1‖

+λ
∞∑
i=1

αi(βi + εn) ‖yn − yn−1‖+ λλk(λV + εn) ‖yn − yn−1‖

= {(κ1 + κ2 + κ3 + κ4){λh + λk(λV + εn)}+ λ

∞∑
i=1

αi(βi + εn)

+λλk(λV + εn)} ‖yn − yn−1‖ . (4.12)

By condition (4.6) and Lipschitz continuity of resolvent operator, we have

‖yn − yn−1‖ = ‖{yn − yn−1 − (h(yn)− h(yn−1))}+ {k(an)− k(an−1)}
+R

H(.,.,.,.)−η
M,λ,ϕ (qn−1)−RH(.,.,.,.)−η

M,λ,ϕ (qn)‖
≤ ‖yn − yn−1 − (h(yn)− h(yn−1))‖

+‖RH(.,.,.,.)−η
M,λ,ϕ (qn−1)−RH(.,.,.,.)−η

M,λ,ϕ (qn)‖+ ‖k(an)− k(an−1)‖

≤ ‖yn − yn−1 − (h(yn)− h(yn−1))‖+
τ

`−mλ
‖qn − qn−1‖

+λk(λV + εn) ‖yn − yn−1‖ . (4.13)

Now, ‖yn − yn−1 − (h(yn)− h(yn−1))‖2

= ‖yn − yn−1‖2 − 2[h(yn)− h(yn−1), yn − yn−1] + ‖h(yn)− h(yn−1)‖2

≤ ‖yn − yn−1‖2 − 2r‖yn − yn−1‖2 + λh
2‖yn − yn−1‖2

≤ (1− 2r − λh2)‖yn − yn−1‖2. (4.14)

Using (4.14) in (4.13), we have

‖yn − yn−1‖ ≤
√

1− 2r + λh
2‖yn − yn−1‖+

τ

(`−mλ)
‖qn − qn−1‖

+λk(λV + εn)‖yn − yn−1‖.

‖yn − yn−1‖ ≤
τ{

1− {
√

1− 2r + λh
2 + λk(λV + εn)}

}
(`−mλ)

‖qn − qn−1‖. (4.15)

Using (4.15) in (4.12), we have

‖qn+1 − qn‖ ≤ Ψ(εn)‖qk − qk−1‖, (4.16)

where

Ψ(εn) =

τ

(κ1+κ2+κ3+κ4){λh+λk(λV +εn)}+λ

∞∑
i=1

αi(βi + εn) + λλk(λV + εn)

{
1−{
√

1−2r+λh2+λk(λV +εn)}
}
(`−mλ)

.

Since 0 < ε < 1, this implies that Ψ(εn)→ Ψ as n→∞, where

Ψ =

τ

{
(κ1 + κ2 + κ3 + κ4){λh + λkλV }+ λ

∞∑
i=1

αiβi + λλkλV

}
{

1− {
√

1− 2r + λh
2 + λkλV +}

}
(`−mλ)

.
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Clearly, {qn} is a Cauchy sequence in Banach space X, because it is given that Ψ < 1, then there
exists q ∈ X such that qn → q as n→∞. From (4.15), it is clear that yn is also a Cauchy sequence
in Banach space X, then there exists y in X such that yn → y as n→∞.
From Algorithm 1 and equations (4.6) and (4.7), the sequences {yni } and {an} are also Cauchy
sequences in X. Thus there exists yi and a such that yni → yi and an → a as n → ∞. Further, we
will prove that yi ∈ Ti(y). Since yni ∈ Ti(y), then

d(yi, Ti(y)) ≤ ‖yi − yni ‖+ d(yni , Ti(y))

≤ ‖yi − yni ‖+H(Ti(yn), Ti(y))

≤ ‖yi − yni ‖+ βi‖yn − y‖ → 0, n→∞,

implies that d(yi, Ti(y)) = 0.
Since Ti(y) ∈ CB(X), we have yi ∈ Ti(y), i = 1, 2, 3, ....

Similarly we can easily show that a ∈ V (y).

By Algorithm 1 and continuity of of R
H(.,.,.,.)−η
M,λ,ϕ , P, Q, R, S, V, Ti, ϕ ◦G, k, h, η and M , we know

that (q, y, a, (y1, y2, y3, ...)) satisfy

qn+1 = [H(P (h(yn)− k(an)), Q(h(yn)− k(an)), R(h(yn)− k(an)),

S(h(yn)− k(an)))− λ{ϕ ◦G(yn1 , y
n
2 , y

n
3 , ...) + k(an)}],

→ q = [H(P (h(y)− k(a)), Q(h(y)− k(a)), R(h(y)− k(a)),

S(h(y)− k(a)))− λ{ϕ ◦G(y1, y2, y3, ...) + k(a)}], as n→∞

R
H(.,.,.,.)−η
M,λ,ϕ (qn) = h(yn)− k(an)→ h(y)− k(a) = R

H(.,.,.,.)−η
M,λ,ϕ (q) as n→∞.

By using Lemma 4.2, we have

ϕ ◦G(y1, y2, y3, ...) + λ−1(q −H(P (R
H(.,.,.,.)−η
M,λ,ϕ (q)), Q(R

H(.,.,.,.)−η
M,λ,ϕ (q)),

R(R
H(.,.,.,.)−η
M,λ,ϕ (q)), S(R

H(.,.,.,.)−η
M,λ,ϕ (q)))) = 0.

Thus we have
ϕ ◦G(y1, y2, y3, ...) + λ−1J

H(.,.,.,.)−η
M,λ,ϕ (q) = 0. (4.17)

Hence (q, y, a, (y1, y2, y3, ...)) is a unique solution of the problem (4.3). �

Example 4.4. Let X = R2 with usual inner product

Let V x = Tix =

{(
1
n
x1

1
n
x2

)
: ∀ n ∈ N, x = (x1, x2) ∈ R2

}
.

Then it is easy to check that V is 1
10

-Lipschitz continuous for n = 10 and Ti is 1-H-Lipschitz contin-
uous for n = 1, i = 1, 2, 3, ....
Let h, k, P,Q,R, S, ϕ : R2 → R2 be defined by

h(x) =

(
1
20
x1

1
20
x2

)
, k(x) =

(
1
5
x1

1
5
x2

)
, P (x) =

(
1
16
x1

1
16
x2

)
, Q(x) =

(
1
17
x1

1
17
x2

)
,

R(x) =

(
1
18
x1

1
18
x2

)
, S(x) =

(
1
19
x1

1
19
x2

)
, and ϕ(x) =

(
1
3
x1

1
3
x2

)
Clearly h is 1

20
-Lipschitz continuous and 1

20
-strongly monotone, k is 1

5
-Lipschitz continuous

Now define G : R2 × R2 × R2 × ...→ R2 by

G(x1, x2, x3, ...) =

(
1
2
xi1

1
2
xi2

)
, i = 1, 2, 3, ... .

Then for i = 1, ϕ ◦G is 1
6
-Lipschitz continuous.
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Suppose that H : R2 × R2 × R2 × R2 → R2 is defined by

H(Px,Qx,Rx, Sx) = Px+Qx+Rx+ Sx, ∀ x ∈ R2.

Then it is obvious that H is 1
16
, 1

17
, 1

18
, 1

19
-Lipschitz continuous with respect to P,Q,R and S respec-

tively.
Then it is easy to check that

0 < (κ1 + κ2 + κ3 + κ4){λh + λkλV }+ λ

∞∑
i=1

αiβi + λλkλV

<
(`−mλ)

{
1−

√
1− 2r + λh

2 − λkλV
}

τ

for i = 1.
Therefore for the constants
l = 3, m = 2, λ = 1, λV = 1

10
, β1 = 1, λh = r = 1

20
, α1 = 1

6
, λk = 1

5
, κ1 = 1

16
, κ2 = 1

17
, κ3 = 1

18

and κ4 = 1
19

obtained above. All the condition of the Theorem 4.3 are satisfied for τ = 0.02.
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