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Abstract

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest
employing flower pollination algorithm in the environmental field to find the best estimate of the
semi-parametric regression function with measurement errors in the explanatory variables and the
dependent variable, where measurement errors appear frequently in fields such as chemistry, biological
sciences, medicine, and epidemiological studies, rather than an exact measurement.

We estimate the regression function of the semi-parametric model by estimating the parametric
model and estimating the non-parametric model, the parametric model is estimated by using an
instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The non-
parametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor
smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured
in building the ecological model and estimating the semi-parametric regression function with mea-
surement errors in the explanatory and dependent variables, then compare the models to choose the
best model used in the environmental scope measurement errors, where the comparison between the
models is done using the mean square error (MSE).

These methods were applied to real data on environmental pollution/ air pollution in the city
of Baghdad, and the most important conclusions that we reached when using statistical methods in
estimating parameters and choosing the best model, we found that the Median-Durbin model is the
best as it has less MSE, but when using flower The pollination algorithm showed that the Median-
Wald model is the best because it has the lowest MSE, and when we compare the statistical methods
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with the FPA in selecting semi-parametric models, we notice the superiority of the FP algorithm in
all methods and for all models.

Keywords: Semi-parametric, Measurement error, flower Pollination algorithm, instrument
variables method, kernel smoothing, Nadaraya Watson, K-Nearest neighbor smoothing, median
smoothing.

1. Introduction

Artificial Intelligence (AI) is considered one of the most important fields that are developing
rapidly, and it has many important applications in practical life, and in general, AI includes thinking,
Knowledge, planning, learning, communication, perception, and the ability to deal with a goal.
Artificial Intelligence Algorithms are based on the principles and concepts of artificial intelligence.
These algorithms are characterized by their ability to devise dynamic methods appropriate to the
nature of the problem to be studied and to determine a practical way to find an appropriate solution
from among a set of possible solutions to the problem. It is also characterized by optimizing the
value of the solution according to the constraints and variables.

To solve statistical problems whose data involve measurement errors, it is important to distin-
guish between the common error model and the measurement error model, where the amount and
type of measurement error affect estimates of the parameters of phenomena in terms of bias and con-
sistency in general and on health impact estimates in the epidemiology of environmental pollution in
a particular search. The measurement error of the explanatory variable and the dependent variable
is a common problem.
What are the consequences of analyzes that ignore measurement error?
Measurement error is common in epidemiological studies and can have significant effects on the
characteristics of environmental risk assessments, especially those related to biota.
Therefore, it is wise to include measurement error considerations in planning epidemiological studies
and environmental pollution to ensure human health and the environment, as classic measurement
error models will be studied for environmental pollution in Baghdad.

In this research, we will use semi-parametric regression models to build and estimate the param-
eters of an environmental model for air pollution, through which the non-parametric and parametric
regression models are combined at the same time, and then a regression model is characterized by
the possibility of dealing with the multi-dimensional problem of non-parametric models that occurs
when the number of the explanatory variables included in the analysis and then the decreasing ac-
curacy of the estimate, as well as the advantage of this type of models with more flexibility than
the parametric models that adhere to certain conditions. Some authors who wrote with errors of
measurement with semi-parametric models- (Lixing Zhu and Hengjian Cui, 2003) examine the effect
of measurement errors in both the parametric and the non-parametric part, simultaneously. con-
sider a partial linear regression model with measurement errors [14], (Hamidul, Howard, Raymond
& Louise, 2016) suggested a semi-spherical regression approach in the event of measurement errors
to obtain bias-corrected estimates of regression parameters and derive the characteristics of the large
sample [7], (Mengyan & Yanyuna, 2019) considered a general parameter regression model that allows
a covariate to be measured with heterogeneous errors, where the variance was dealt with using the
B-spline approximation [9], (Virgelio, Joseph & Erniel, 2019) assumed a mixed semi-parametric anal-
ysis of the covariance model [1], estimated the parameters of this model by the constrained maximum
potential method and spline smoothing.

It is necessary to find methods that give optimal results in the fields of science whose data (data of
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explanatory variables and the dependent variable) are accompanied by measurement errors without
the need to correct the data.

2. Research goal

1. Estimating the parameters of a semi-parametric regression model in the presence of the problem
of measurement errors in the explanatory variables and the dependent variable in the ecosystem
using several methods of estimation and choosing the best among them through the mean square
error (MSE).

2. Employing and suggesting mathematical formulas and functions for the Flower Pollination
algorithm to be used in studies whose data contain measurement errors.

3. Comparing the models with statistical methods used as well as their comparison when using
the artificial flower Pollination algorithm in environmental aspects through the mean square
error (MSE) standard.

Theoretical side

3. Measurement error

The measurement error is simply defined as the difference between the value of the observed
variable and the value of the correctly measured variable. This error occurs as a result of a defect
in the device used in the measurement process [3], although laboratories routinely calibrate their
measuring instruments using the standards and values that It is returned based on the use of the
resulting calibration curve, spatial or temporal fluctuation during measurement or inattention and
negligence by the person performing the measurement. The value of this error is defined as an added
value on the log scale [12].
The measurement error model for the explanatory variable and the dependent variable is as follows:

X∗ = X + u (3.1)

Y ∗ = Y + v (3.2)

Where Y ∗ : response variable (dependent variable) with measurement errors, (measured value).
Y : represents the real value vector of the dependent variable.
X : represents the real value vector of the explanatory variable.
X∗ : explanatory variable vector with measurement error (measured value).
u : measurement error of the explanatory variable with mean 0 and variance σ2

u.
v : measurement error of the dependent variable of degree n*1 with mean 0 and variance σ2

v

u , v , X :are mutually independent.

4. The Semi-parametric Regression Model With Measurement Errors

This model will be written in the following form because it contains measurement errors in the
three vectors, the explanatory variable vector for the parameter part, the explanatory variable vector
for the non-parametric part, and the response variable:

Y ∗ = X∗ β + g ( t∗ ) + ε (4.1)

X∗ = X + u (4.2)

T ∗ = T + s (4.3)

Y ∗ = Y + v + u+ s+ ε (4.4)
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Where

Y ∗ : the response variable (the dependent variable) with measurement errors for the variable itself,
for the parameter and non-parametric variable, and for the random error of the model, which
is of degree n * 1.

Y : represents the real value vector of the dependent variable.

X∗ : the explanatory variable vector with a measurement error of the parameter model (measured
observed value) with dimension (n*p).

X : represents the real value vector of the explanatory variable of the parameter part of the degree
(n*p).

P : the number of parametric explanatory variables.

t∗ : the explanatory variable vector with a measurement error of the non-parametric model (mea-
sured observed value) with dimension (n*q).

t : represents the real value vector of the explanatory variable of the non-parameter part of the
degree (n*q).

q : the number of non-parametric explanatory variables.

β : the vector represents the unknown parameter in the parametric part of the degree p*1.

g ( t∗ ) : It is an unknown smoothing function of degree n*1.

u : the measurement error of the explanatory variable in the parametric model has a mean of 0 and
a variance of σ2

u .

s : the measurement error of the explanatory variable in the non-parametric model has a mean of 0
and a variance of σ2

s .

v : the Measurement error of the dependent variable with mean 0 and variance σ2
v .

ε : An independent random error vector of degree n*1 with mean 0 and variance σ2.

u, v, s, X, T, and e: are mutually independent.

5. Parametric regression estimator with Measurement Errors

The parametric model is estimated using the instrumental variable method, which the method is
used to estimate B in an unbiased and consistent manner in the event of measurement errors. The
basis of this method is to find a set of variables associated with the explanatory variables in the
model but not associated with errors [12].
Let Z be a matrix of degree n*k for k instrument variables Z1, Z2, . . . , Zk each variable contains n
observations, so we have

plim

(
1

n
ŹX∗

)
= ΣZX∗ (5.1)
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The parameter estimator is as follows:

B̂IV =
(
Ź X∗

) −1
Ź Y ∗ (5.2)

B̂IV is an unbiased and consistent estimator of β.

5.1. Methods for choosing instrument

5.1.1. Wald’s method

We find the median of the observations of the variable X∗ (x∗1, x
∗
2, . . . , x

∗
n ), then classify the

observations by defining the instrument variable Z as follows [12]:

Z =

{
1 if X∗i > median (x∗1, x

∗
2, . . . , x

∗
n)

−1 if X∗i < median (x∗1, x
∗
2, . . . , x

∗
n)

(5.3)

Z =

 1 z1
...

...
1 zn

 , X =

 1 x∗1
...

...
1 x∗n

 (5.4)

Now for the two sets of Z observations, we calculate the following:
The first group: It is the set of observations with a value less than the median of the variable X∗,
for which we find the arithmetic mean of Y ∗ and X∗, Y

∗
1 , X

∗
1 respectively.

The second group: It is the group of observations with a higher value than the median of the
variable X∗, for which we find the arithmetic mean of Y ∗ and X∗, Y

∗
2 , X

∗
2 respectively.

To calculate B̂IV we use the equation (5.2)
We apply equation number (5.2).
If n is odd, the middle observations can be omitted.

5.1.2. Bartlett’s method

We arrange the observations of the variable X∗ in ascending or descending order, then we form
three groups for the instrument variable Z so that each group contains n/3 of the observations as
follows [12] :

Z =


1 if observation is in the top group
0 if observation is in the middle group
−1 if observation is in the bottom group

(5.5)

Now we ignore the observations in the middle group, then calculate the following for the lower and
upper groups.
The lower group: we find it Y

∗
1 , X

∗
1 .

The upper group: we find it Y
∗
3 , X

∗
3 .

To calculate B̂IV we use the equation (5.2)

β̂1IV =

(
Y
∗
3 − Y

∗
1

X
∗
3 −X

∗
1

)
(5.6)

β̂0IV = Y
∗ − β̂1IV X

∗
(5.7)
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5.1.3. Durbin’s method

We arrange the observations of the variable X∗ in ascending order, then define the values of the
observations of the instrument variable Z as ranks of the variable X∗ , and then apply the parameter
estimation equation [12].
We apply equation number (5.2).

β̂1IV =

∑n
i=1 Zi

(
Y ∗i − Y

∗
)

∑n
i=1 Zi

(
X∗i −X

∗
)
 (5.8)

To calculate B̂0IV we use the equation (5.7)

6. Non parametric regression estimator

The nonparametric model is estimated by using three smoothing methods, the first is kernel
smoothing using (Nadaraya Watson), the second is K-Nearest neighbor smoothing, and the last is
median smoothing.
The semi-parametric regression functions are estimated according to the following formula:

gn

(
t∗, β̂1IV

)
=

n∑
i=1

Wni(t
∗)(Y ∗i − X́∗i β̂1IV ) (6.1)

Kernel smoothing : Kernel smoothing is weighted average estimates that use the kernel function
as weights. The kernel’s weight sequence (in the case of X is one-dimensional) is defined as [6]:

Wni(t
∗) =

kh(t
∗ − t∗i )
f̂h(t)

(6.2)

Where

f̂h (t∗) = n−1
n∑
i=1

Kh(t
∗ − t∗i ) (6.3)

f̂h (t∗) : It is a density estimator for Rosenblatt-Parzen kernel.

Nadaraya – Watson Estimator : This estimator was proposed by Nadaraya 1965 and Watson
1964 based on the weight series method. This estimator is one of the most widely used and most
common estimators in estimating the nonparametric regression function g(t). This estimator has
many characteristics, including the possibility of using it, whether the design is fixed or random [6?
].
It is calculated according to the following formula :

Wni (t
∗) =

K
(
t∗−t∗i
h

)
∑n

i=1K
(
t∗−t∗i
h

) (6.4)

Where
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Wni (X) : Weight series whose sum = 1, which is a real, non-negative, continuous, finite, symmetric
function, and it’s integral = 1.
K : kernel function.
Kernel function properties : ∫ ∞

−∞
K (u) du = 1 (6.5)∫ ∞

−∞
uK (u) du = 0 (6.6)

The Gaussian function will be used in this estimator.
h: bandwidth h > 0.

h = 1.06 s n−1/5 (6.7)

and that shape is destined Nadaraya – Watson be like this :

ĝh (t∗) =

∑n
i=1Kh (t∗ − t∗i )

(
Y ∗i − X́∗i β̂1IV

)
∑n

i=1Kh (t∗ − t∗i )
(6.8)

K-Nearest neighbor K-NN : It is a weighted average of different neighbors, i.e. it is the weighted
average of the response variables for adjacency around x, this neighborhood is defined by the nearest
k of the x variables in the Euclidean distance. Its shape is determined by kernel functions and
bandwidth h [6, 2].
The weight sequence for K-NN was presented by Loftsgaarden & Quesenberry (1965) in the field of
density estimation. In regression, K-NN is defined as :

ĝn (t∗) = n−1
n∑
i=1

Wni (t
∗) (Y ∗i − X́∗i β̂1IV ) (6.9)

Where

{Wni(t
∗)}ni=1: weight sequence.

Jt∗ = {i : t∗i is one of the k nearest observations to t
∗} (6.10)

Wni (t
∗) =

{ n

k
if i ∈ Jt

0 otherwise
(6.11)

The Gaussian function will be used in this estimator.

Median smoothing : Smoothing the median is the closest technique to solving the problem of
estimating the conditional median function, that is mean using the median function instead of the
conditional expectation function. The conditional med(Y |X = x) is more immune to the conditional
expectation E(Y |X = x) . It is defined mathematically as follows [2] :

m̂ (x) = med {Y ∗i : i ∈ Jt∗} (6.12)

Jt∗ = as in the equation (6.13)

The median of Y corresponding to X is calculated and K is the nearest neighbor of X.
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7. The artificial flower pollination algorithm FPA

The flower pollination algorithm is one of the nature-inspired algorithms inspired by the process
of flower pollination. It was created by Yang in 2012.
Its applications: It works with non-linear models, in image processing, in computer science, engi-
neering, operations research, education (Selecting university academic credits), . . . .
Pollination takes two main forms: Biotic and Abiotic.
Biotic pollination: It means that pollen is spread by pollinators such as insects and animals, 90%
of flowers belong to this group, meaning that pollen grains are transmitted by pollinators, such as
swarms of insects and animals. Abiotic pollination: it means that wind and water carry out the
process of pollination, 10% of the flowers take the abiotic form by pollination [13, 5].
The pollination process is carried out in two ways:
Pollination-Self occurs when a flower pollinates itself or another flower on the same plant. Pollination-
Cross occurs when pollen grains are transferred from one flower of one plant to another flower of
another plant.

8. Rules of FPA

The constancy of a flower and the behavior of pollinators in the pollination process can be described
by the following four rules [13, 5]:

1. Bio Pollination and cross pollination: It is a global pollination process with pollinators that
carry pollination and that make levy trips.

2. Abiotic self pollination: It is considered local pollination.

3. The constancy of a flower can be considered as the probability of reproduction which is pro-
portional to the similarity of the two flowers concerned.

4. A switch or interaction between global pollination and local pollination can be controlled by
the possibility of switch p ∈ [0, 1].

Can be used (0.5) as an initial value for p (p = 0.5), and studies have indicated that (p = 0.8) works
best as an optimum value for most applications.

9. Mathematical Representation Of Global And Local Pollination

Global pollination and local pollination are the main steps of the flower pollination algorithm.
In global pollination, pollen grains are carried by pollinators such as insects, and pollen grains can
travel long distances because insects can often fly and move for a long range. Therefore, rule No. (1)
and rule No.(3) are mathematical as follows [13, 8]:

X t+1
i = X t

i + γ L (λ)
(
Xbest − X t

i

)
(9.1)

Where
X t
i : the solution for Xi in cycle t .

Xbest : the best solution obtained is the solution in cycle t . Which is the best solution that has been
found among all the solutions in the current generation.
γ : scaling factor to control step size.
L (λ) : pollination strength parameter.
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X t+1
i : the new solution.

L is the standard gamma function, and this distribution is used because it is suitable for large steps
of swarms.

L ∼
λ Γ (λ) sin(πλ

2
)

π

1

s1+λ
, (s > s0 > 0) (9.2)

The value of s is calculated as follows:

s =
u

|v|λ−1
(9.3)

u ∼ N
(
0, σ2

)
, v ∼ N (0, 1) (9.4)

σ2 =

[
Γ (1 + λ)

λ Γ
(
1+λ
2

) .
sin(π λ/2)

2(λ−1)/2

]1/λ
(9.5)

S
(
Xj
i (t)

)
=

1

1 + e−X
j
i (t)

(9.6)

Usually the value of s0 = 0.1.
In local pollination, the pollination is self-pollinating. It represents rule No. (2) and rule No. (3)
mathematically as follows:

X t+1
i = X t

i + ε
(
X t
j −X t

k

)
(9.7)

Where
X t
i : the solution for Xi in cycle t .

X t+1
i : the new solution.

X t
j , X t

k : pollen from different flowers on the same plant, where k , j are randomly selected indices.
ε: a random variable that follows a uniform distribution U(0, 1).
After the global and local round of pollination, intensive exploitation was made and the best flower
was taken, as shown in the following equation:

X t+1
i = Xbest +H (ε1 − [(ε2 − ε3)Xbest] (9.8)

Where
H : it is a control parameter, which is calculated as follows :

H =

{
1, if ε4 < p
0, otherwise

(9.9)

where
ε1 , ε2 , ε3 , ε4 : random variables that follow a uniform distribution U(0, 1).

10. Structure of the Flower Pollination algorithm FPA [13, 11]

Objective minimize or maximize f (x) , x = (x1, x2, . . . , xn)
Initialize a population of n flowers/pollen gametes with random solutions
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Find the best solution Xbest in the initial population
Define a switch probability p ∈ [0, 1]
While ( t < MaxGeneration)

For i = 1 : n (all n flowers in the population)
If rand < p

Draw a (d – dimensional) step vector L from a Levy distribution
Global pollination via X t+1

i = X t
i + γ L (λ)

(
Xbest − X t

i

)
Else

Draw ∈ from a uniform distribution in [0, 1]
Randomly choose j and k among all solution
Do local pollination via X t+1

i = X t
i + ε

(
X t
j −X t

k

)
End if

Evaluate new solutions
Calculate the fitness of the new solution (f (X t+1))
If new solutions are better, update them in the population
If f (X t+1) ≤ f (X t) then
X t = X t+1

End if
Find the current best solution Xbest

End while
Output the best solution found

11. Comparison standard

Many criteria measure the amount of efficiency in estimating the quasi-parametric regression
function and choosing the best model, but in this research, we will use the mean square error
criterion for comparison [4].

In statistics, the mean squared error of an estimator measures the average of the squares of the
errors - that is, the average squared difference between the estimated values and the actual value.

Application side

In this aspect, what was mentioned in the theoretical side will be studied and applied to real data
related to the environmental aspect (environmental pollution/air pollution) in the city of Baghdad
for the period from (3 June to 17 July) 2018.

Air pollution was studied with NO2 gas and what are the factors affecting it, where the influencing
factors were: NOx is the explanatory variable with measurement error in the parameter part, and
O3 is the explanatory variable with measurement error in the non-parametric part, and NO2 is the
dependent variable with measurement error (response variable).
This data was taken from the Iraqi Ministry of Health and Environment/ air quality monitoring
station/ HORIBA APNA-370 Ambient NOx Monitor.

12. Results and discussion

The real data results were obtained using MATLAB 2016a.
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Table 1: shows the mean square error values of the models (MSE)

Semi-parametric model MSE MSE (FP) Best

Nadaraya – Watson

Wald 0.225229 0.003306 FP

Bartlett 0.357334 0.003385 FP

Durbin 0.175333 0.003316 FP

K-Nearest neighbor

Wald 0.013574 0.00321352 FP

Bartlett 0.648600 0.004246 FP

Durbin 0.010202 0.003231 FP

Median

Wald 0.013574 0.00321326 FP

Bartlett 0.586634 0.004197 FP

Durbin 0.010201 0.003231 FP

Best Median-Durbin Median-Wald

Through Table No. (1), we notice that the Median-Durbin model in the semi-parametric models
appeared the best as it had the lowest MSE of 0.010201.

When employing semi-parametric models in the flower pollination algorithm, the Median-Wald
model appeared to be the best, as its MSE value was 0.00321326.

When comparing the ordinary methods in semi-parametric models with the FP algorithm, we
notice the superiority of the FP algorithm in all methods and for all models.
as shown in the following figures :

Figure 1: Nadaraya – Watson Durbin
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Figure 2: K-Nearest Neighbor Durbin

Figure 3: Median Durbin

Figure 4: Nadaray-Watson Wald in Artificial Flower Pollination Algorithm
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Figure 5: K-Nearest neighbor Wald in Artificial Flower Pollination Algorithm

Figure 6: Median Wald –in Artificial Flower Pollination Algorithm

Table 2: Parameter values of the median-Durbin best model in statistical methods

parameter result Test values

B0 0.0089902 0.789

B1 0.3564154 17.803 *

G(t) 0.00000529 0.000089

Through Table 2, which represents the parameter values of the best model, the value of
β1 = 0.3564154 appeared, which is an influential and positive value, and this means that there is an
effect of NOx by 36% on NO2 and directly.
The value of G (t) = 0.00000529 appeared, which is an ineffective and positive value, and this means
that there is no effect for O3 on NO2 .
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Table 3: Parameter values of the median-wald best model in employing - the flower pollination algorithm

result Test values

B0 0.0254972 7.28 *

B1 0.0061816 10.04 *

G(t) -0.0003071 0.052

Through Table 3, which represents the parameter values of the best model in the FP algorithm, the
value of β1 = 0.0061816 appeared, which is an influential and positive value, and this means that
there is an effect of NOx by 6% on NO2 and directly.
The value of G (t) = −0.0003071 appeared, which is an ineffective and positive value, and this means
that there is an effect of O3 by 0.03%.

13. Conclusions and Recommendations

In light of the theoretical side and based on the results of its application to the real data, a set of
conclusions and recommendations were reached:

13.1. Conclusions

After executing the experiment on environmental pollution data/air pollution in the presence of
measurement errors and the presented MSE results and the results of the parameters of the best
model, the researcher concluded the following:

1. The results of MSE when using statistical methods in semi-parametric models with measure-
ment errors indicated that the best model is Median-Durbin. When using the kernel smoothing
(Nadaraya – Watson) method with the three parametric methods, we found that the best model
is Nadaraya - Watson - Durbin. But when using the K-Nearest neighbor with the three para-
metric methods, we conclude that the best model is K-Nearest neighbor - Durbin. Finally,
when using Median smoothing with the three parametric methods, we concluded that the best
model is Median smoothing - Durbin.

2. By observing the results of MSE when employing the flower pollination algorithm, we conclude
that the best semi-parametric model with measurement errors is Median-Wald. When using
the kernel smoothing (Nadaraya – Watson) method with the three parametric methods using
FPA, we concluded that the best model is Nadaraya - Watson - Wald. But when using the
K-Nearest neighbor with the three parametric methods with FPA, we conclude that the best
model is K-Nearest neighbor - Wald. Finally, when using Median smoothing with the three
parametric methods, we conclude that the best model is Median smoothing – Wald.

3. When comparing the statistic methods in semi-parametric models with the FP algorithm, we
notice the superiority of the FP algorithm in all methods and for all models.

4. By observing the parameter values in the best semi-parametric model when using the statistical
methods, we concluded that NOx has effect on NO2 while O3 does not affect on NO2 .

Also, by observing the parameter values in the best semi-parametric model when employing FPA,
we concluded that NOx affects on NO2 while O3 has no effect NO2 .
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13.2. Recommendations

In light of the conclusions we reached through the research, the following recommendations can be
summarized:

1. The importance of taking into consideration enough errors accompanying the measurement of
different variables in any scientific, economic or social phenomenon.. and not neglecting or
overlooking them due to their clear impact on modeling those phenomena and the accuracy of
their results.

2. Conducting more studies on estimating the semi-parametric regression function with the pres-
ence of measurement errors using different semi-parametric models and developing them.

3. The use of artificial intelligence algorithms in estimating semi-parametric regression functions
in scientific, social, and economic studies when there are measurement errors in their variables
because of their great role in determining the best model or optimum estimate.
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