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Abstract

The aim of this paper is to introduce some new modified types of arrow domination by adding
some conditions on the arrow dominating set or on its complement set. Co-independent arrow
domination, restrained arrow domination, connected arrow domination, and complementary tree
arrow domination are the main types of domination introduced here. More properties and bounds
are discussed and applied to some graphs.
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1. Introduction

Throughout this work, all graphs are finite, simple and undirected. A graph G(V,E) has a vertex
set V (G) and edge set E(G). For any vertex u ∈ V (G) , the set N (u) = {v ∈ V (G) : vu ∈ E(G)} is
an open neighborhood. For basics concepts of graph theory see [16, 26, 27]. A set D ⊆ V is called
dominating set of G if every vertex out of it is adjacent with one or more vertices from D. The order
of D is called the domination number of G and denoted by γ (G) , for more details see [17, 18, 19].
There are several types of dominating parameters discussed more properties and applications, see for
example [1, 12, 14, 15, 21, 23, 24, 28, 29, 30]. Some papers contains connection between domination
and other branches of Mathematics such as [13, 20, 22, 25, 31].

Theorem 1.1. Let G be a graph with an arrow dominating set, then:

1. Every arrow dominating set is a total dominating set.

2. G has no independent arrow dominating set.

3. G has no arrow bi-dominating set.
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4. Every arrow dominating set is not isolate dominating set.

Proof .

1. Since every v ∈ D is adjacent with two vertices from D at least. Thus, D is total dominating
set.

2. Let D be an arrow dominating set in G , then D has no isolated vertices. Thus, D is not
independent dominating set.

3. Let D be a bi-dominating set , then every vertex in D dominates exactly two vertices in V −D,
that is contradict definition of arrow dominating set.

4. Similar to case 2.

□

2. Co- independent Arrow Domination

In this section, by adding new condition on the subgraph G [ V −D ].We get a new type of
domination say co-independent arrow domination and its inverse. We study its properties and apply
it on some graphs.

Definition 2.1. A subset D ⊆ V (G) is co – independent arrow dominating set of G, if D is an
arrow dominating set and G[ V −D ] has no edges.

Definition 2.2. A set D is a minimal co – independent arrow dominating set if it has no co –
independent arrow dominating subset. The minimum co – independent arrow dominating set is the
smallest minimal co – independent arrow dominating set in G.

Definition 2.3. The co-independent arrow domination number γcoi
ar (G) , is the cardinality of the

minimum co-independent arrow dominating set of G. Such set is referred as γcoi
ar −set.

Definition 2.4. Let G be a graph with γcoi
ar −set . A subset D−1 ⊆ V − D is an inverse co-

independent arrow dominating set with respect to D, if D−1 is an arrow dominating set of G and
G[ V −D−1] has no edges.

Definition 2.5. A set D−1 is a minimal inverse co-independent arrow dominating set, if it has
no inverse co-independent arrow dominating subset. The minimum inverse co-independent arrow
dominating set is the smallest minimal inverse co-independent arrow dominating set of G.

Definition 2.6. The inverse co-independent arrow domination number γ−coi
ar (G) , is the cardinality

of the minimum inverse co-independent arrow dominating set of G. Such set is referred as γ−coi
ar −set.

Remark 2.7. For any graph G (n,m) with co-independent arrow dominating set D and γ−coi
ar (G),

we have:

1. deg (v) = 0 , ∀ v ∈ G [V −D ].

2. γ(G) ≤ γcoi
ar (G).

3. γcoi(G) ≤ γcoi
ar (G).

Theorem 2.8. Let G(n,m) be a graph with co-independent arrow dominating set, then: 2 γcoi
ar (G) ≤

m ≤ 1
2
[γcoi

ar (G)]
2
+ γcoi

ar (G)].
Proof . Let D be γcoi

ar − set in G, then the number of edges between D and G [ V −D ] equals
|D| = γcoi

ar (G) there are two cases proved as follows :
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Case 1: To prove the lower bound , suppose that G [ V −D ] is a null graph and since every v ∈ D
adjacent with at least two vertices in D, then deg (v) = 2 in G[ D ]. Thus, G[ D ] is a
cycle or a union of cycle graphs with order and size |D| = γar (G). Therefore, m ≤ γar(G)
+γar (G) = 2γar(G).

Case 2 : To prove the upper bound. Let G [D ] is a complete graph. Since G[ V −D ] is a null graph

, then the size of G[ V − D ] equal to zero. Hence, m ≥ |D||D−1|
2

+ γcoi
ar =

γcoi
ar (γcoi

ar −1)
2

+ γcoi
ar =

1
2
[γcoi

ar
2
+ γcoi

ar ].

□

Remark 2.9. There is no co-independent arrow domination in a path graph Pn and in a cycle graph
Cn for all n.

Proposition 2.10. A complete graph Kn (n ≥ 4) , then γcoi
ar (Kn) = γar(Kn) = n− 1 .

Proof . Since every vertex in D dominates exactly one vertex from V −D and adjacent with at least
two vertices from D ,then D must be contains all vertices of Kn unless one vertex. See for example
Figure 1. □

Figure 1: Co –independent Arrow Dominating Set in Complete Graph

Proposition 2.11. A wheel graph Wn (n ≥ 3), then γcoi
ar (Wn) = γar (Wn) = n.

Proof . Since the wheel graph Wn is Cn + K1. Let v1 , v2, . . . .. , vn+1 be the vertices of Wn such
that vn+1 is the vertex of K1. Since every vertex in D dominates exactly one vertex and adjacent
with two or more vertices in D . Then , D must be contians all vertices of Wn unless the vertex of
K1. If we delete any vertex from D , then there exist two vertices in D dominate two vertices and
adjacent with only one vertex in D which is contradict arrow definition. Hence, D is minimum arrow
dominating set. See for example Figure 2 □

Theorem 2.12. A complete bipartite graph Kn,m (n,m ≥ 3) has no co-independent arrow dominat-
ing set.
Proof . Let µ1and µ2 are two disjoint sets of Kn,m such that |µ1| = n and | µ2| = m. Since any
arrow dominating set D contain n − 1 vertices of µ1 and m − 1vertices of µ2. Since there exist an
edge between the two vertices in G[ V −D ]. Hence, D is not co-independent arrow dominating set.
□
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Figure 2: Co-independent Arrow Dominating Set in Wheel Graph

Proposition 2.13. The Barbell graph Bn,n (n ≥ 3) has co-independent arrow domination and γcoi
ar (Bn,n) =

γar (Bn,n) = 2n− 2 if and only if n ≥ 4.
Proof . By Proposition 2.10. Since the Barbell graph have two copies of Kn , then γar (Bn,n ) =
2n− 2 . Where the edge that joined the two copies of Kn must be incident on two vertices both of. □

Theorem 2.14. A big helm graph Hn (n ≥ 3) has γcoi
ar (Hn) = γar (Hn) = n+ 1.

Proof . By Proposition 2.11, let D contain all vertices of Wn. Then, every vertex in D dominates
one vertex and adjacent with three or more vertices from D. Hence, γar (Hn) = n+1. See for example
Figure 3 □

Figure 3: Co-independent Arrow Dominating Set in Big Helm Graph

Remark 2.15. Pn , Knand Wn graphs have no co-independent arrow dominating set.

Proposition 2.16. The complement of complete bipartite graph Kn,m has co-independent arrow
dominating set if and only if n,m ≥ 4 such that γcoi

ar (Kn,m) = γar

(
Kn,m

)
= n+m− 2.

Proof . Since Kn,m = Kn ∪Km then γar(Kn,m) = n+m− 2 according to Proposition 2.10. □

Proposition 2.17. The complement cycle graph Cn has no co-independent arrow dominating set.
Proof . Since Cn has no arrow dominating set for all n unless n = 6 . But , every vertex in
G [V −D] has degree two that means joined by two edges. Hence , Cn has no co-independent arrow
dominating set. □
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Theorem 2.18. Let G be a graph with co-independent arrow dominating set , then G has no inverse
co-independent arrow dominating set.
Proof . Let G has inverse co-independent arrow dominating set D−1. Since D−1 = V − D by
Corrollary 2.4.11, If a graph G has γ−1

ar (G) , then D−1 = V −D. And γar (G) + γ−1
ar (G) = n, since

G[ V −D ] has no edges , then every v ∈ D−1 has no neighborhoods in D−1 which is contradict arrow
dominating definition. Hence, G has no invers co-independent arrow dominating set. □

3. Restrained Arrow Domination

In this section, by adding new condition on the subgraph G [ V −D ] ,we get restrained arrow
domination. Inveres , bounds and properties are introduced for this type of domination.

Definition 3.1. An arrow dominating set D of a graph G is a restrained arrow dominating set
if G[ V − D ] has no isolated vertices. A restrained arrow dominating set of a graph G is said a
minimal restrained arrow dominating set if it has no proper sub set as restrained arrow dominating
set. The smaller restrained arrow dominating set is called minimum restrained arrow dominating set.
The cardinality of the minimum restrained arrow dominating set is known as the restrained arrow
domination number of G and denoted by γr

ar(G). Such set is reffered as γr
ar− set.

Definition 3.2. Let G be a graph with γr
ar− set D, a subset D−1 ⊆ V −D is an inverse restrained

arrow dominating set , if D−1 is a restrained arrow dominating set of G and G[ V −D−1 ] has no
isolated vertex.

Theorem 3.3. The size of any graph G(n,m) having restrained arrow domination number γr
ar(G)

is 2γr
ar + ⌈n−γr

ar(G)
2

⌉ ≤ m ≤
(
n
2

)
+ γr

ar
2 + (1− n)γr

ar

Proof . Let D be a γr
ar−set of G, since v ∈ D dominates exactly one vertex from V −D, then the

number of edges between D and V −D equals to |D| = γr
ar(G). Then , there are two cases are proved

as follows:

Case 1: To prove the lower bound , suppose that G[ V − D ] contains as few edges as possible to

be a graph with no isolated vertices. Thus, the number of edges in G [V −D] equals ⌈ |V−D|
2

⌉ =
⌈n−γr

ar(G)
2

⌉ . Since every vertex v ∈ D adjacent with at least two vertices , then deg deg (v) = 2
in G[ D]. Thus, G[D] is a cycle or union of cycle graphs with order and size |D| = γr

ar(G).

Therefore , m ≥ 2γr
ar + ⌈n−γr

ar(G)
2

⌉.

Case 2: To prove the upper bound. Let G[D] and G[V − D] are complete graphs. Then , let
m1 and m2 be the number of edges of G [ D ] and G[ V − D ] respectively. Therefore ,

m1 = | D | | D−1|
2

= γar ( γar−1)
2

and m2 = | V−D ||V−D−1 |
2

= (n−γar) (n−γar−1)
2

. Hence ,

m ≥ m1 +m2 + γar (G) = γar +
γar (γar−1)

2
+ (n−γar )(n−γar−1)

2
=

(
n
2

)
+ γ2

ar + (1− n) γar .

□

Proposition 3.4. A complete graph Kn (n ≥ 4) has no restrained arrow dominating set.
Proof . Since every arrow dominating set in Kn has n − 1 vertices in D and one vertex in −D ,
then this vertex is isolated which is contradict restrained arrow dominating set. □

Proposition 3.5. A wheel graph Wn(n ≥ 4) has no restrained arrow dominating set.
Proof . Since the arrow dominating set in a wheel graph Wn has all vertices of the cycle , then
V −D has one isolated vertex which is contradict restrained arrow dominating set. □
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Proposition 3.6. The complete bipartite graph Kn,m has restrained arrow dominating set such that
γr
ar (Kn,m) = γar (Kn,m) = n+m− 2 if and only if ,m ≥ 3.

Proof . By Theorem 2.3.6 there exist an edge in G[ V − D] from the remaining vertex of β1 and
the remaining vertex of β2 which are belong to V −D, then G[ V −D ] has no isolated vertex , thus
Kn,m has a γr

ar− set. See for example Figure 4. □

Figure 4: Restrained Arrow Dominating Set in Complete Bipartite Graph

Proposition 3.7. A Barbell graph Bn,n (n ≥ 3) has restrained arrow dominating set such that
γr
ar (Bn,n) = γar (Bn,n) = 2n− 2 if and only if n ≥ 4.

Proof . By Proposition 2.13. Where the edge that joined the two copies of Kn must be incident on
two vertices of V −D. See Figure 5 □

Figure 5: A restrained arrow dominating set in Barbell graph B5,5.

Proposition 3.8. A big helm graph Hn(n ≥ 3) has no restrained arrow dominating set.
Proof . Since the arrow dominating set in Hn has all vertices of wheel graph, and other vertices in
V −D are isolated vertices. There is no restrained arrow domination. □

Remark 3.9. Kn, Wn and Kn,m graphs have no restrained arrow dominating set.

Proposition 3.10. The complement path graph Pn has a restrained arrow dominating set if and
only if n = 6 where γr

ar(P6) = γar(P6) = 2.
Proof . Since P6 has only two vertices and its joint by an edge, then γr

ar(P6) = 2. □

Proposition 3.11. The complement cycle graph C6 has a restrained arrow dominating set if and
only if n = 6 where γr

ar(C6) = γar(C6) = 3.
Proof . It is clear, C3 is a null graph. ∆

(
C4

)
= 1 and deg(v) = 2 for every v in C5 , then there is

no arrow dominating set for n ≤ 5. If n = 6, let D = {v1, v3, v5}, then D is a γar−set of order three
every vertex in it dominates only one vertex and adjacent with exactly two vertices. If ≥ 7 , then Cn

has no an arrow dominating set for the same cause of Pn (n ≥ 6). □
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Proposition 3.12. The complement cycle graph Cn (n = 6) has inverse restrained arrow dominat-
ing set such that γ−r

ar

(
C6

)
= γ−1

ar

(
C6

)
= 3.

Proof . C3 it is a null graph. ∆
(
C4

)
= 1 and deg deg (v) = 2 for every vertex in C5 , then there

is no inverse arrow dominating set for n ≤ 5 . If n = 6 , let D−1 = {v2, v4, v6}, then D−1 is a γ−1
ar

set of order three every vertex in it dominate only one vertex and adjacent exactly two vertices , then
γ−1
ar

(
C6

)
= 3 . If n ≥ 7, then Cn has no inverse arrow dominating set. □

Proposition 3.13. There is no an inverse restrained arrow dominating set in a complement com-
plete bipartite Kn,m graph.
Proof . Since Kn,m = Kn ∪Km. Since every arrow dominating set in Kn has n − 1 vertices in D
and one vertex in −D , then this vertex is isolated which is contradict restrained arrow dominating
set. □

4. Connected Arrow Domination

In this section, by adding new condition on the subgraph [ D ] , we get a new type of domination
say connected arrow domination. We fined its inverse and study its properties and discussed it on
some graphs.

Definition 4.1. Let D ⊆ V (G) is called connected arrow dominating set in G if D is an arrow
dominating set such that G[ D ] is a connected induced sub graph. D is minimal connected arrow
dominating set if it has no proper subset as connected arrow dominating set. The smallest connected
arrow dominating set is called minimum connected arrow dominating set. The cardinality of minimum
connected arrow dominating set is known as the connected arrow domination number and denoted by
γc
ar(G).

Definition 4.2. Let G be a graph with γc
ar− set D a subset D−1 ⊆ V −D is an inverse connected

arrow dominating set , if D−1 is a connected arrow dominating set of G.

Theorem 4.3. The size of a graph G(n,m) has connected arrow domination number γc
ar(G) is

2 γc
ar(G) ≤ m ≤

(
n
2

)
+ γc

ar (G) + (1− n)γc
ar(G).

Proof . Let D be a γar− set of G , since every v ∈ D dominates exactly one vertex from V −D ,
then the number of edges between D and V −D equal |D| = γar(G) , then there are two cases proved
as follows:

Case 1: To prove the lower bound suppose that G[ V −D ] is a null graph and since every v ∈ D
adjacent with at least two vertices in D, then deg deg (v) = 2 in G[ D]. Thus, G[ D] is a
cycle graph with order and size |D| = γar(G). Therefore, ≥ 2γar(G).

Case 2: Similar the proof of Theorem 3.3 case (2).

□

Proposition 4.4. The complete graph Kn has connected arrow dominating set, such that γc
ar (Kn) =

γar (Kn) = n− 1.
Proof . Similar to proof of Proposition 3.4. □

Proposition 4.5. The wheel graph Wn has connected arrow dominating set, such that γc
ar (Wn) =

γar (Wn) = n .
Proof . Similar to proof of Proposition 3.5. □
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Proposition 4.6. The complete bipartite graph Kn,m has connected arrow domination set such that
γc
ar (Kn,m) = γar (Kn,m) = n+m− 2 if and only if n,m ≥ 3.

Proof . Similar to proof of Proposition 3.6. □

Proposition 4.7. The Barbell graph Bn,n has connected arrow dominating set such that γc
ar (Bn,n) =

γar (Bn,n) = 2n− 2.
Proof . Similar to proof of Proposition 3.7. □

Proposition 4.8. A big helm graph Hn has connected arrow dominating such that γc
ar (Hn) =

γar (Hn) = n+ 1.
Proof . Similar to proof of Proposition 3.8. □

Proposition 4.9. The complement path graph Pn has connected arrow domination such that γc
ar

(
Pn

)
=

γar(Pn) = 4 if and only if n = 6.
Proof . It is clear, ∆

(
Pn

)
= 2 for n ≤ 4 and Pn without arrow domination. If n = 5 there

are three vertices v2, v3, v4 of degree two don’t belong to D. So, if D = {v1, v5}, then every vi of
D has only one neighborhood in D and dominate two vertices. For n = 6, let D = {v1, v3, v4, v6},
since every vi ∈ D dominate exactly one vertex from V −D and adjacent two or more vertices, then
γar

(
P6

)
= 4. If n ≥ 7, every dominating set D has either a vertex that dominates two or more

vertices or a vertex don’t dominate any vertex. For example see Figure 6 □

Figure 6: Connected Arrow Dominating Set in Complement Path Graph P6

Proposition 4.10. The complement cycle graph Cn has connected arrow dominating set such that
γc
ar

(
Cn

)
= γar(Cn) = 3 if and only if n = 6.

Proof . Similar to proof of Proposition 3.11. □

Proposition 4.11. The complement complete bipartite graph Kn,m has γc
ar− set such that γc

ar

(
Kn,m

)
=

γar(Kn,m) = n+m− 2 if and only if n,m ≥ 4.
Proof . Similar to proof of Proposition 3.4. □

Proposition 4.12. The complement cycle graph Cn has an inverse connected arrow dominating set
such that: γ−c

ar

(
Cn

)
= γ−1

ar (Cn) = 3 if and only if n = 6
Proof . Similar to proof of Proposition 3.12. □

Proposition 4.13. The complement complete bipartite Kn,m graph has no inverse connected arrow
domination set.
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5. Complementary tree arrow domination

In this section, by adding new condition on the subgraph G [ V −D ].We get a new type of arrow
domination say a complementary tree arrow domination we fined its inverse and study its properties
and discuss it on some graphs.

Definition 5.1. The complementary tree arrow dominating set D is an arrow dominating set such
that the induced subgraph G[V −D] is a tree. D is minimal complementary tree arrow dominating set
if it has no proper subset complementary tree arrow dominating set. The minimum complementary
tree arrow dominating set is the smallest of complementary tree arrow dominating set. The cardinality
of a complementary tree arrow domination number and denoted by γctd

ar (G).

Definition 5.2. Let G be a graph with a γctd
ar − set , subset D−1 ⊆ V − D is an inverse comple-

mentary tree arrow dominating set if D−1 is a complementary tree arrow dominating set with respect
to D and G [V −D−1] is a tree.

Theorem 5.3. The size of any graph G(n,m) having complementary tree arrow domination number

is γctd
ar (G) + (n− 1) ≤ m ≤ γctd

ar (G) + 1
2
[γctd

ar
2
(G)− γctd

ar (G)] + (n− 1).
Proof . Let D be a γctd

ar (G)− set of G, where every vertex in D dominates exactly one vertex from
V −D, then the number of edges between D and V −D equals to |D| = γctd

ar . There are two cases
proved as follows:

Case 1: To prove the lower bound , since the induced subgraph G[ V −D ] is a tree graph has the
number of edges m1 = |V −D| − 1 = n− γctd

ar (G)− 1 . Since v ∈ D adjacent with at least two
vertices from D, G[ D ] is a cycle graph or union of cycles with order and size |D| = γctd

ar (G)
Therefore, m ≥ γctd

ar (G) + (n− 1).

Case : To prove the upper bound. Let G[ D ] is a complete graph where G[ V − D ] is a tree
graph. Let m1 and m2 be the number of edges of G[ D ] and G[ V −D ] respectively. Therefore,

m1 =
|D|| D−1 |

2
= γctd

ar (G)(γctd
ar (G)−1)
2

, m2 = n−γctd
ar (G)−1. Hence, m ≥ γctd

ar (G)+
γctd
ar (G)(γctd

ar (G)−1)
2

+
n− γctd

ar (G)− 1 .

□

Proposition 5.4. A complete graph Kn (n ≥ 4) has complementary tree arrow dominating set such
that γctd

ar (Kn) = γar (Kn) = n− 1.
Proof . Since Kn has only one vertex in G[ V −D] which is a tree. Thus, γctd

ar (Kn) = n− 1. □

Proposition 5.5. A wheel graph Wn(n ≥ 3) has complementary tree arrow dominating set such that
γctd
ar (Wn) = γar (Wn) = n.

Proof . Since there is one vertex in G[ V −D] from Wn which is a tree , then γctd
ar (Wn) = n. □

Proposition 5.6. The complete bipartite graph Kn,m (n,m ≥ 3) has a γctd
ar −set such that γctd

ar (Kn,m) =
γar (Kn,m) = n+m− 2.
Proof . Similar the proof of Proposition 3.6. □

Proposition 5.7. The Barbell graph Bn,n (n ≥ 3) has complementary tree arrow dominating set such
that γctd

ar (Bn,n) = γar (Bn,n) = 2n− 2.
Proof . By Proposition 2.13 , where the edge that joined the two copies of Kn must be incident on
two vertices of V −D. □
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Proposition 5.8. The big helm graph Hn has no γctd
ar − set.

Proof . Since Hn graph has only isolated vertices in G [ V − D]. Then, it has no complementary
tree arrow dominating set. □

Proposition 5.9. There is no complementary tree arrow dominating set in the complement cycle
graph.
Proof . Since Cn has no arrow dominating set for all n unless when = 6. But G [V −D ] in C6 has
cycle graph. Hence , C6 has no complementary tree arrow dominating set for all n. □

Proposition 5.10. The complement complete bipartite Kn,m graph has complementary tree arrow
dominating set such that γctd

ar

(
Kn,m

)
= n+m− 2.

Proof . Similar to proof of Proposition 5.4. □

6. Conclusions

Several types of arrow domination are introduced here with some bounds and properties. These
types are applied and discussed on more known graphs.
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