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Abstract

The Burger-Huxley equation as a well-known nonlinear physical model is studied numerically in the
present paper. In this respect, the nonstandard finite difference (NSFD) scheme in company with
the Richtmyer’s (3, 1, 1) implicit formula is formally adopted to accomplish this goal. Moreover,
the stability, convergence, and consistency analyses of nonstandard finite difference schemes are
investigated systematically. Several case studies with comparisons are provided, confirming that the
current numerical scheme is capable of resulting in highly accurate approximations.
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1. Introduction

Most of the problems in various field as biology, chemistry, physics, and engineering are modeled
by nonlinear partial differential equations. The generalized Burgers-Huxley equation is the form;

∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
= βu(1− uδ)(uδ − γ), 0 ≤ x ≤ 1, t ≥ 0, (1.1)
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with the following initial and boundary conditions

u(x, 0) = f1(x),

u(0, t) = g1(t),

u(1, t) = g2(t), (1.2)

where α, β, δ and γ are parameters that β ≥ 0, δ ≻ 0, γ ∈ (0, 1). When α ̸= 0, β ̸= 0, δ = 1 equation
(1.2) becomes the following Burgers-Huxley equation:

∂u

∂t
+ αu

∂u

∂x
− ∂2u

∂x2
= βu(1− u)(u− γ), (1.3)

This equation shows being a nonlinear partial differential equation is of high importance for describ-
ing the interaction between reaction mechanisms, convection effects and diffusion transports. This
equation was investigated by Satsuma in 1986.

In literature, many numerical methods have been proposed for approximating solution of this
equation. Adomian was applied to the generalized Burger-Huxley equation [1]. The collocation
method was applied to solving this equation [2]. The variational iteration method [3], a numerical
solution of the equation, based on collocation method using Radial basis function [4], the differential
transform method [5], Haar Wavelet method [6], the discrete Adomian decomposition method [7]. A
fourth order finite difference scheme [8] and finite difference method [9], were applied for solving this
equation.

This paper is organized as follows: Section 2, introduced the computational technique to ap-
proximate solution of the model (1.3), here we prove that our NSFD scheme is consistency and
convergence to the exact solution, an analysis of nonlinear stability is presented [10], [11]. Section
3, for Huxley-Burger and generalized Huxley equations this scheme was applied and the numerical
results are reported and compared with the results of method used in [9], [12], [7], [5]. Tables are
presented for ability of the method to solve the equation for different values of It is clearly seen that
the numerical results are reasonably in good agreement with the exact solution. Finally a conclusion
is given in section 4, all the numerical experiments presented in this section were computed using
the MATLAB 10 on a pc with a 2.5 GHz, 64-bit processor, 4 GB memory.

2. Numerical method

2.1. Finite-difference Scheme

The main idea behind the Finite difference methods for obtaining the solution of a given partial
differential equation is to approximate the derivatives appearing in the equation by the function at a
selected number of points. The most usual way to generate these approximations is through the use
of Taylor series. Let M and N be positive integers. In order to approximate the Equation (1.3) over
the real line, we restrict our attention to a bounded spatial domain and impose appropriate boundary
conditions. In order to approximate the solution of the Huxley-Berger equation problem under study
over a temporal interval [0, T ] we set 0 = t0 < t1 < · · · < tM = T and as = x0 < x1 < · · · < xn = bs

of [0, T ], [as, bs],∆x =
bs − as
N

, and ∆t =
T

M
. ukn, is the approximation provided by the numerical

method for the exact value of u(xn, tk) for n = 0, · · · , N, k = 0, 1, 2, · · · ,M .
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2.2. Nonstandard finite difference scheme

We construct a general NSFD scheme for the equation (1.3) by using the Richtmyer’s (3, 1, 1)
implicit formula [10], [12]. This formula is a three-point and three-level formula. In this scheme,
a weighted average of finite difference approximation to the time derivative is used. The following
nomenclatures are introduced to approximate the partial derivatives, u with respect to t and x at
the point (xn, tk).

du

dt
|kn= (1− θ)

uk+1
n − ukn
ϕ(∆t)

+ θ
ukn − uk−1

n

ϕ(∆t)
+O((1 + 2θ)∆t, (∆x)2), (2.1)

d2u

dx2
|kn=

ukn+1 − 2ukn + ukn−1

ψ(∆x)
+O(∆(x)2), (2.2)

du

dx
|kn=

ukn − ukn−1

ϕ(∆x)
+O(∆(x)), (2.3)

Where ϕ(∆t) = 1−e
−∆t
2

1
2

, ϕ(∆x) = 1−e
−∆x

2
1
2

, and ψ(∆x) = 4sinh2
(
∆x
2

)
By these conventions in hand,

we will approximate solutions of Equation (1.3) in the and [0, T ], through the finite-difference scheme

du

dt
|kn +α(uk+1

n )
du

dx
|kn=

d2u

dx2
|k+1
n +βuk+1

n f(ukn), (2.4)

where,

f(ukn) = (ukn − γ)(1− ukn). (2.5)

The Nonstandard finite difference scheme (2.4) may be conveniently rewritten as

A1u
k+1
n+1 + A2u

k+1
n + A1u

k+1
n−1 = A3u

k
n + A4u

k−1
n , (2.6)

with

A1 = −R2, A2 = 2R2 + 1− θ − βϕ(∆t)f(ukn) + αR1(u
k
n − uk−1

n ), A3 = 1− 2θ, A4 = θ.

where

R1 =
ϕ(∆t)

ϕ(∆x)
, R2 =

ϕ(∆t)

ψ(∆x)
. (2.7)

are the Fourier numbers of the NSFD scheme (2.4), the coefficients A1, A2, A3, A4 depend on ukn.

2.3. Matrix representation

In this work, we will impose constraints on the form

u(as, t) = a0(t) and u(bs, t) = a1(t) (2.8)

Satisfied for every t ≥ 0. Here, a0, a1 are non-negative, real function which is less than or equal to
1. Let Mn be the vector space of all matrices over R of size (n ∗ n), for each positive integer n. The
numerical method (2.6) can be presented in matrix form as the following

Auk+1 = bk, (2.9)
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for k ∈ {1, . . . ,M − 1}, uk is the (N + 1)-dimensional vector (uk0, u
k
1, ..., u

k
N), for k ∈ {0, 1, . . . ,M}.

We let
bk = Buk + Cuk−1 + dk, (2.10)

for every k ∈ {0, 1, . . . ,M}, where B and C are the diagonal matrices MN+1 given by:

B =


0 0 · · · 0 0
0 A3 · · · 0 0
...

... · · · ...
...

0 0 · · · A3 0
0 0 · · · 0 0

 , C =


0 0 · · · 0 0
0 A4 · · · 0 0
...

... · · · ...
...

0 0 · · · A4 0
0 0 · · · 0 0

 . (2.11)

The matrix A is a matrix of MN+1, the vector d
k is an (n+1)-dimensional vector. The system (2.9)

can be solved under the method in [14], [15].
By employing discrete Dirichlet constraints in the form of uk0 = a0(tk) and ukN = a1(tk), for
k ∈ {0, 1, . . . ,M} we have the following presentations of A and dk.

A =



1 0 0 0 · · · 0 0 0
A1 A2 A1 0 · · · 0 0 0
0 A1 A2 A1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · A1 A2 A1

0 0 0 0 · · · 0 0 1


, dk =



a0(tk)
0
...
...
0

a1(tk)


. (2.12)

2.4. Numerical properties

In this Section, we show the properties of stability, convergence and consistency for NSFD scheme
(2.6).

2.4.1. Convergence Analysis

The local truncation error of our scheme at (xn, tk) is

ℓkn = (1− θ)
uk+1
n − ukn
φ(∆t)

+ θ
uk+1
n − uk−1

n

φ(∆t)
+ αuk+1

n

ukn − ukn−1

φ(∆x)

−
uk+1
n+1 − 2uk+1

n + uk+1
n−1

ψ(∆x)
− βuk+1

n f(ukn). (2.13)

Considering u is the exact solution of (1.3) and using Taylor’s series expansion, we have

ℓkn = (1− 2θ)
∆t

2

∂2u

∂t2

∣∣∣∣k
n

− α
∆x

2

∂2u

∂x2

∣∣∣∣k
n

− (∆x)2

12

∂4u

∂x4

∣∣∣∣k+1

n

. (2.14)

We assume that utt, uxxxx, uxx are continuous in [0, T ]× [as, bs], so there are constant K1, K2, K3 such
that ∣∣ℓkn∣∣ ≤ K1∆t+K2(∆x) +K3(∆x)

2 ≡ E.

Rearranging the terms of (2.13) we have

A1u
k+1
n+1 + A2u

k+1
n + A1u

k+1
n−1 = A3u

k
n + A4u

k−1
n + ℓkn∆t. (2.15)
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Let ekn = ukn − Uk
n , U is numerical solution at (xn, tk). We subtract (2.5) from (2.15) and assume

1− θ ≥ 0.
After taking absolute of both sides of the equation (2.10), the following inequality is then obtained

A1

∣∣ek+1
n+1

∣∣+ (2R2 + 1− θ)
∣∣ek+1

n

∣∣+ (β∆tK4)
∣∣ek+1

n

∣∣+ A1

∣∣ek+1
n−1

∣∣ ≤ A3

∣∣ekn∣∣+ A4

∣∣ek−1
n

∣∣
− αR1

∣∣ekn − ekn−1

∣∣ ∣∣ek+1
n

∣∣
+ E∆t, (2.16)

Where K4 is the maximum value of f ′(u), if we let

ek = max
0≤n≤N

∣∣ekn∣∣ ,
then, the above inequality becomes

ek+1 ≤ (1− 2θ)Mek + θMek−1 +ME∆t, (2.17)

that,
M = 1− θ −K4β∆t.

Since e0 = e−1 = 0, from equation (2.17) we have

ek ≤ (1 +M(1− 2θ) + · · ·+Mk−1(1− 2θ)k−1)ME∆t+ (k − 1)(Mθ + 2(Mθ)2

+ · · ·+ (k − 1)(Mθ)k−1)ME∆t, (2.18)

so ek → 0 as ∆t,∆x→ 0. Thus we have proved the following theorem.

Theorem 2.1. If the solution of (1.3) has continuous utt, uxxxx, uxx in [as, bs]×[0, T ] then the approx-
imation solution generated by the NSFD scheme (2.6) convergence to the exact one as ∆t,∆x → 0,
keeping 0 ≤ θ ≤ 1.

2.4.2. Stability analysis

For stability analysis of Huxley-Burger equation we use matrix method, we assume ukn = K as a
constant, if we write the equation (2.6) in terms of constants K, the coefficient matrix of equation
(2.4) can be given by 

1 0 0 0 · · · 0 0 0
A1 F A1 0 · · · 0 0 0
0 A1 F A1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · A1 F A1

0 0 0 0 · · · 0 0 1


.

Here, F = 2R2 + 1− θ − q(1−K)(K − γ), which is also a constant that q = βϕ(∆t).
The coefficient matrix is symmetric and positive definite, then its Eigenvalues are also positive and
minimize the errors Eigenvalue of coefficient matrix must be less than or equal to one, so λ1 ≤ 1.
Eigenvalue for above matrix can be represented as [13].

1 + 2R2 − θ − q(1−K)(K − γ) + 2 cos
πl

r + 1
≤ 1, (2.19)

where l = 1, 2, 3, · · · , r. When value of

a) cos πl
r+1

= 0, then R2

q(1−K)(K−γ)+θ
≤ 1

2
,

b) cos πl
r+1

= 1, then R2

q(1−K)(K−γ)+θ
≤ 1

2
.



1512 Izadi, Saberi Najafi, Refahi Sheikhani

2.4.3. Consistency analysis

The local truncation error (LTE) of a numerical method is an estimate of the error introduced in a
single iteration of the method, assuming that everything fed into the method was perfectly accurate.
Expanding the coefficients, uk+1

n , uk+1
n+1, u

k+1
n−1, u

k−1
n , ukn−1, by Taylor series method.

uk+1
n = ukn +

(∆t)

1!

∂u

∂t
+

(∆t)2

2!

∂2u

∂t2
+

(∆t)

3!

3∂3u

∂t3
+ · · ·+O(∆t4), (2.20)

uk+1
n+1 = ukn +

(∆x)

1!

∂u

∂x
+

(∆x)2

2!

∂2u

∂x2
+

(∆x)

3!

3∂3u

∂x3
+ · · ·+O(∆x4) +

(∆t)

1!

∂u

∂t

+
(∆t)2

2!

∂2u

∂t2
+

(∆t)

3!

3∂3u

∂t3
+ · · ·+O(∆t4), (2.21)

uk+1
n−1 = ukn −

(∆x)

1!

∂u

∂x
+

(∆x)2

2!

∂2u

∂x2
− (∆x)

3!

3∂3u

∂x3
+ · · ·+O(∆x4) +

(∆t)

1!

∂u

∂t

+
(∆t)2

2!

∂2u

∂t2
+

(∆t)

3!

3∂3u

∂t3
+ · · ·+O(∆t4), (2.22)

uk−1
n = ukn −

(∆t)

1!

∂u

∂t
+

(∆t)2

2!

∂2u

∂t2
− (∆t)

3!

3∂3u

∂t3
+ · · ·+O(∆t4), (2.23)

ukn−1 = ukn −
(∆x)

1!

∂u

∂x
+

(∆x)2

2!

∂2u

∂x2
− (∆x)

3!

3∂3u

∂x3
+ · · ·+O(∆x4). (2.24)

Now substituting the value of equations (2.20), (2.21), (2.22), (2.23), (2.24) in equation (2.6), we get

1

∆t
[
∂u

∂t
(∆t) +O(∆t2)] +

1

∆x
[α
∂u

∂x
(∆x) +O(∆x2)] =

1

(∆x2)
[
∂2u

∂x2
(∆x2) +O(∆x4)]

+
1

∆t
[βuk+1

n f(ukn)(∆t) +O(∆t2)]. (2.25)

Local Truncation error for above equation can be written as,

LTE = lim
∆x,∆t→0

(1− 2θ)
(∆t2)

2!

∂2u

∂t2
+

(∆t3)

3!

∂3u

∂t3
+ · · · − 2

(∆x4)

4!

∂4u

∂x4
− 2

(∆x6)

6!

∂6u

∂t6

+ · · ·+ α(−(∆x2)

2!

∂2u

∂x2
+

(∆x3)

3!

∂3u

∂x3
− · · ·+ (∆t)

1!

∂u

∂t
+ · · · )

− βf(ukn)(
(∆t)

1!

∂u

∂t
+

(∆t2)

2!

∂2u

∂t2
+ · · · ) = 0. (2.26)

A finite difference representation of PDE is said to be consistent if we can show that the difference
between PDE and its FDE representation vanishes as meh is refined. so we can write as,

lim
mesh→0

(PDE − FDE) = lim
mesh→0

(LTE) = 0, (2.27)

Since ∆t,∆x approaches to zero, so from equation (2.26), local truncation error becomes zero, there-
fore the NSFD scheme (2.6) is consistent. And solving the equation (2.25) and comparing with
equation (2.6) we can say order of our proposed scheme is first in time and second order in space.

3. Examples

3.1. Example1

In this Section, two examples are provided to illustrate the validity and effectiveness of the pro-
posed methods. The initial and boundary conditions are directly obtained from analytical solution.
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Consider the following Burgers-Huxley equation in the domain [0, 1]

∂u

∂t
+ αu

∂u

∂x
− ∂2u

∂x2
= βu(1− u) (u− γ). (3.1)

With the initial condition
u(x, 0) =

{γ
2
+
γ

2
tanh (G1x)

}
, (3.2)

and the boundary conditions

u(0, t) =
{γ
2
+
γ

2
tanh (−G1G2x)

}
, (3.3)

u(1, t) =
{γ
2
+
γ

2
tanh (G1(1−G2t)

}
, (3.4)

The exact solution is presented in [14] by

u(x, t) =
{γ
2
+
γ

2
tanh {G1(x−G2t)}

}
, (3.5)

that

G1 =
−α +

√
α2 + 8β

8
γ

G2 =
γα

2
− (2− γ)(−α +

√
α2 + 8β

8
. (3.6)

By using the NSFD scheme (2.6) for solving equation (1.3), we presented the absolute error for
various values for x and t at alpha = 0.1, β = 0.001, γ = 0.0001 in Table1, and the CPU time at
these points is computed.

Table 1: Shows the absolute errors for the numerical approximations are obtained by NSFD scheme (2.6), respect to
the exact solution in example 1 with α = 0.1, β = 0.001, γ = 0.0001, θ = 0.01 and the CPU time for each point

x t Absolute Error CPU time

0.1
0.02
0.1
1

9.2609× 10−15

1.1053× 10−14

1.1054× 10−14

0.001056
0.000463
0.000555

0.5
0.02
0.1
1

2.7310× 10−14

3.3733× 10−14

3.3737× 10−14

0.001145
0.000580
0.000462

0.9
0.02
0.1
1

1.1040× 10−14

1.5361× 10−13

1.3218× 10−14

0.001135
0.000463
0.000455

Figure 1, show the graphs for the numerical results of the method for various values for t. The
figure shows that the numerical and exact solutions are exactly coincident together.
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Figure 1: The graphs of the approximate and exact solutions of the partial differential Equation (1.3) in Example
(1) by the model NSFD(9) for x ∈ [0, 1] and several times. t = 0.02, 0.1, 0.9 the model parameter θ = 0.01 and
α = 1, β = 0.001, γ = 0.0001 along with the discrete steps ∆t = 0.001, ∆x = 0.05.

Figure 2, illustrates the graph of the absolute error for the numerical method NSFD (9), with
α = 0.1, β = 0.001, γ = 0.0001 at different time level, for ∆t = 0.001, ∆x = 0.05.

Figure 2: The absolute error of NSFD (9) model in Example 1 with α = 0.1, β = 0.001, γ = 0.0001 at different time
levels using ∆t = 0.0001,∆x = 0.05.

Table2, shows comparison of present method with [1], [3], [5], [7], [9] for α = β = 1, γ = 0.001
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From table 1-2, it can be observed that the computed results show excellent agreement with the
exact solution.

Table 2: Shows the comparison of absolute error for the Example 1 with α = 1, β = 1, γ = 0.001.
x t Present method [1] [3] [5] [7] [9]

0.1
0.05
0.1
1

1.0842× 10−18

1.5179× 10−18

3.2526× 10−19

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.5454× 10−8

2.2593× 10−8

3.3729× 10−8

0.5
0.05
0.1
1

3.8520× 10−10

2.1825× 10−10

3.8520× 10−10

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

1.3748× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

3.4705× 10−8

5.7659× 10−8

9.3698× 10−8

0.9
0.05
0.1
1

2.5680× 10−10

2.5680× 10−10

2.2458× 10−10

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

1.8740× 10−8

3.7481× 10−8

3.7481× 10−7

3.4705× 10−8

5.7659× 10−8

9.3698× 10−8

3.2. Example2

Consider the generalized Huxley equation of the form

∂u

∂t
− α

∂2u

∂x2
= βu(1− uδ) (u− γδ), (3.7)

with the initial condition

u(x, 0) =
{γ
2
+
γ

2
tanh (σγx)

} 1
δ
, (3.8)

and the boundary conditions

u(0, t) =

{
γ

2
+
γ

2
tanh{σγ{(1 + δ − γ)ρ

2(1 + δ)
}t}

} 1
δ

, (3.9)

and

u(1, t) =

{
γ

2
+
γ

2
tanh{σγ{1 + (1 + δ − γ)ρ

2(1 + δ)
}t}

} 1
δ

, (3.10)

the exact solution of this equation was derived by [13] using nonlinear transformations and is given
by

u(x, t) =

{
γ

2
+
γ

2
tanh{σγ{x+ (1 + δ − γ)ρ

2(1 + δ)
}t}

} 1
δ

, (3.11)

where

σ =
δρ

4(1 + δ)
,

and
ρ =

√
4β(1 + δ).

For the numerical computation, we use the parameters β = 1, γ = 0.001, δ = 1, 2, 3. Numerical
results absolute errors of different values of t are given in table 3-5. The comparison of the present
method with [9] is shown in these tables. From these results, it is obvious that numerical solutions
are in excellent agreement with the exact solution.
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Table 3: Shows the comparison of absolute error for the Example 2 with β = 1, γ = 0.001, δ = 1.

x t Absolute error Present method Absolute error[9]

0.1
0.05
0.1
1

4.9504× 10−11

9.9439× 10−11

1.4929× 10−10

1.03030× 10−8

1.50629× 10−8

2.24877× 10−8

0.5
0.05
0.1
1

4.9513× 10−11

9.9492× 10−11

1.4947× 10−10

2.36369× 10−8

3.84395× 10−8

6.24653× 10−8

0.9
0.05
0.1
1

4.9512× 10−11

9.9483× 10−11

1.4943× 10−10

1.03030× 10−8

1.50629× 10−8

2.24877× 10−8

Table 4: Shows the comparison of absolute error for the Example 2 with β = 1, γ = 0.001, δ = 2.

x t Absolute error Present method Absolute error[9]

0.1
0.05
0.1
1

7.4163× 10−11

1.4909× 10−10

2.2388× 10−10

1.40343× 10−6

2.05158× 10−6

3.05621× 10−6

0.5
0.05
0.1
1

7.4179× 10−11

1.4917× 10−10

2.2416× 10−10

3.15158× 10−6

5.23566× 10−6

8.49007× 10−6

0.9
0.05
0.1
1

7.4180× 10−11

1.4917× 10−10

2.2412× 10−10

1.40337× 10−6

2.05162× 10−6

3.05644× 10−6

Table 5: Shows the comparison of absolute error for the Example 2 with β = 1, γ = 0.001, δ = 3.

x t Absolute error Present method Absolute error[9]

0.1
0.05
0.1
1

7.3471× 10−11

1.4842× 10−10

2.2323× 10−10

8.79142× 10−6

1.28501× 10−5

1.90246× 10−5

0.5
0.05
0.1
1

7.3485× 10−11

1.4850× 10−10

2.2350× 10−10

1.97445× 10−5

3.27943× 10−5

5.28544× 10−5

0.9
0.05
0.1
1

7.3483× 10−11

1.4849× 10−10

2.2345× 10−10

8.79142× 10−6

1.28495× 10−5

1.90252× 10−5

Figure3 illustrates the graphs of the absolute errors of numerical solutions of the NSFD (9) with
δ = 1, 2, 3, 4, for ∆t = 0.0001, ∆x = 0.01, θ = 0.01 in Example 2.
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Figure 3: The graphs of absolute error of NSFD (9) for, δ = 1, 2, 3, 4 with ∆t = 0.0001, ∆x = 0.01 in Example2.

Figure4, shows the (3D) graph of the numerical solution and exact solution of NSFD(9) for
Example 2. The figure shows that the numerical and exact solutions are exactly coincident together.

Figure 4: 3(D) graphs of the approximate and exact solutions of the partial differential Equation (3.7) in Example (2)
obtained by the model NSFD(9) with the discrete steps ∆t = 0.0001, ∆x = 0.01.

Tables 6, 7, illustrate the absolute error between the exact and numerical results obtained by
NSFD (9), for the Equation (3.1) and (3.7) with some amount of θ, these results show that the
absolute error of these NSFD schemes depend on θ, when close to zero the NSFD scheme has the
lowest absolute error.

Table 6: Shows the absolute error for the results obtained by NSFD(9) in Example1 with ∆t = 0.001,∆x = 0.01, θ =
0.0001.0.1, 0.5, α = 0.1, β = 0.001, γ = 0.0001 at t = 0.5.

θ 0.0001 0.1 0.5
error 7.6549× 10−15 5.8084× 10−13 6.6663× 10−11
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Table 7: Shows the absolute error for the results obtained by NSFD(9) in Example2 with ∆t = 0.001, ∆x = 0.01, θ =
0.0001.0.1, 0.5, δ = 1 at t = 0.5.

θ 0.0001 0.1 0.5
error 1.4990× 10−9 1.3487× 10−8 1.8100× 10−7

As all the Figures and Tables show, the proposed methods give very accurate results.

4. Conclusion

In this paper, the solution of the Berger-Huxley and Generalized Huxley Equations is successfully
approximated by a high-order numerical NSFD method. The convergence, consistency and stability
analysis for this NSFD scheme have been proved. Numerical solutions for different θ are given using
tables. The absolute error of these NSFD schemes depends on θ, when θ close to zero the NSFD
scheme has the lowest absolute error. The numerical results from the method have been compared
with the exact solution and the results [1, 3, 5, 7, 9]. As the numerical results show, performance of
the methods is in excellent agreement with the exact solution. It may be concluded that the NSFD
method (9) is very powerful and efficient technique for finding an approximate solution for various
kind of linear/nonlinear problems.

Note: The data used to support the findings of this study are included in the article. We have
not used any extra data in this article. We have solved the Equation by a mathematical technique
and all the results are inside the paper.
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