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Abstract

Throughout this manuscript, we show time periodic solutions to a linear diffusion parabolic equation
with Diriclet condition. Based on the topological degree theorem, we prove a time periodic solutions
of the system such that we found the fixed point when the domain of the solution is sufficiently
small.
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1. Introduction

In this manuscript, we consider a periodic solutions of a linear diffusion parabolic equation with
Diriclet boundary conditions:

% — Av+a(n)- Vv — Az, t,v) = h(z,t), (x,t) € Sr, (1.1)
v(z,t) =0, (x,t) € 00 x [0, T, (1.2)
v(z,0) =v(x,T), r €, (1.3)
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The domain € is a bounded region in RY ,with appropriately smooth boundary 99, S = Qx (0, T')
,Sometimes we use this model to describe some physical phenomena.Let v(z,t) be a function respect
to x and t, Av represents the linear diffusion term and perturbations (a(n) - Vv) heavily depends
on Vv , the perturbation describes a convection effect with velocity field a(n). In last decades,the
existence of a periodic solution has been discussed by several authors [1I, 2, 3], [4], [5 ©) [7, 8, @, 10].
Recently, Nakao studied the parabolic equation below:

vy = V3(B(v)) + h(z,t) + Az, t,v). (1.4)
with boundary conditions,
v(z,t) =0

where A, h both of them are periodic in the time with a period T" > 0,. The author proved the
existence solutions with periodic initial conditions by application the topological degree theorem.for
more details about equation , see [10]. In our manuscript we made some important assumptions
about the equation and then we used the topological degree theorem to prove the existence
solutions with periodic initial conditions of the problem ({1.1f)- (1.3]).

2. Existence of Weak Solutions

Throughout this section we The most important results and hypotheses :

F1) A(x,t,v) is Holder continuous in R x R x €2, here we can see a periodic in the time ¢ with a
period T and A(z,t,v) < aolv|*™* with 0 < o < 1 and nonnegative constants ag.

F2) h(x,t) € Cp(Sr) N L®(0,T,W;(Q)) such that h(z,t) nonnegative in Q x R, where C7(S7)
denotes the set of functions which are continuous in 2 X R and T-periodic with respect to t.

Because the equation ((1.1)) is degeneracy , the system ([I.1))- (1.3) does not have generally a
classical solution. So, we shall discuss rather the solutions of system ([1.1))-(1.3]) in a weak sense .

Definition 2.1. Let v be a weak solution to problem —, if v € L2(0,T; HY(T)) N Cr(St)
and satisfies

// (—v% + VoVd — B(v) - VI — Az, t,u)d — h(z, t)ﬁ) dxdt = 0, (2.1)
St

for any ¥ € CY(Sy) with the periodic initial value ¥(z,0) = J(z,T) . here B(v) = Zjvzl B;(v) is a
function of the form [(v) = fov a;(s)ds, where j € N

We denote WP™(Q) and LP(2) norms on €2 by ||.||,.m and ||.||, , respectively. The first step, we prove
the following a priori estimate which plays an important role in the proof of the main results of our
manuscript.
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Lemma 2.2. Let v(z,t) be a solution of

% — Av+a(n) - Vo = 0 A(z,t,0) + oh(z,1), (z,t) € Sr,
v(z,t) =0, (,t) € 99 x [0, 7],
v(z,0) = v(z, T), T €L,

where o € [0,1] and R > 0 not dependent of o such that

Vo)l (5T) < R.

such that the measure of €2 is small enough.
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(2.5)

Proof . After multiplying the equation (2.2)) )by |v|Pv and then integrating The new equation over

(). we obtain

/ M%—/Z% |U\Pu—dx_z/ (/ 9)ls |p5ds)xj da
<Z/ (/ |psds) cos(n,z;)dx = 0,

we denote to outward normal vector by n

& [ rOP = m+2) [ Adputids < o +2an [ e+ (o+2) [ oo,

we integration the second term of the left-hand side from ([2.6]), we have
- [ svl@ etz = o+ 1) [ Jo@pve P
Q Q
o+ 1) [ [o)Volt) e
Q

/Q lv(t)[Po(t)hdx = ( /Q |v(t)]p+2dx)gié ( /Q hp”d:c)piz de,

and hence, from ({2.6]), we get to

and

d > o
@55 + DIV (v Fe@E)IE < Dalp + 2)(le@) 575 + Il @1552),

where for j = 1,2, D; > 0 are a constant does not depend on v(t) and p.

If 0 <a <1, we using two inequality together Young’s and Holder’s, we obtain to

(2.6)

(2.7)
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pta+l
—a p+2
/ w(t)|PHetlde < |Q[Fe ( / ]v(t)\p”dx) da
Q Q
<max{L, |22 }v(®)[[15" (2.8)
l —«a a
<max{1, [0/} ot MES o) 75
=[lo@®) 533 + llv(®) 15T,
Combined with (2.8)), it yields
d v
Env(t)lliii + Dy ||V (Jo(®)|20(®))]I5 < Dalp + 2)([o(®) 515 + lo()]555), (2.9)
If o = 1 directly from({2.8))we obtain eq. (2.9). set
velt) = ol Toe, =3 (28— 2)
k=1

where k € N, and then , py = 2pp_; + 2. From (12.9)), we have

2(pp+1)

d P2
Oz + DIV ()5 < Dapr + 2)llor(O)5 + Dape + 2)llox()]l ™

Applying the Gagliardo-Nirenberg inequality, yields that

lor(®)]l2 < DIVur(®)lallox ()17, (2.10)
with
= 0,1).
N +2 €01
From (2.10) with the fact that |Jvk(¢)]]1 = ||vk—1(t)||ar";, we get the below inequality:

_ 2(pp+1)

d a 3 PE+2
S ok @S = = Diflox(@®)ll3 llox(t e ™+ Dalpr + Vw3 + Dap +2) o (B)],™

40-1) 2(pp+1)

2
< = Diflos@®I3 loe®llz © + Dalpr + Dok @)z + Da(pr + 2)llve(®)ll,™ -

Let
v = max{1,sup ||vk(t)]|2},
t

we have
2(pp+1) 2 2(pgp+1)

d . ;
@5 < lloe(®ll™ ™ {=Dallox(llz ™™

(2.11)

4(6—1)

M-t + Da(pr + 2)[Jor(t )||p’“+2 + Da(pe +2)}-

By young’s inequality
cd < ec? + 6_%qu,

where ¢ > 0,d > 0,¢ > 0,¢ > 1,p’ > 1 and z% = q/q71. we choose
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4(0-1)

B 1
¢ = [lon(t )Ilp’““a d=(p+2)"",  e= V-1

/ +2—0p,—0 +m+1)(N+1
p:Ik:(pk ka ):((Pk N))( )—pk—1>,

and then, we get

2 1 2,2<Pk+21> 4(6; 1) I 51(11 91)
(Pr + 2)||ox(t )Ilpk+ loe®llz ™ 35+ Dlpe + 15Ty 7.
Easily you can watch that
lim [, = +o0.
k—o0
Denote / 418
=y 2410
I, —1 (1 — 1)
combining ([2.11]) and - we obtain
d ) 2(Pk_:21) l)1 %_2(Pk+21) 4(0—1)
+ c
el < ol A=—lloe@®ll ™ et + Da(pe +2) Sy + Da(pr +2)}.
and then

2 2(pptl)  4(0p—1)

d D .
0+ Do IFT < D oolls 7 s+ Do+ 2%
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(2.12)

(2.13)

Since vy (t) is periodic, there exists ¢ s.t. |[|vg(t)||2 takes the maximum value at this point.

Therefore, the left hand side of (2.13) is vanished. It follows that

4(1 ) 1

lor ()l < {D[(pr +2) + (pr +2)* L= |y T 17,

where

20pp +2) —20(pp +1) 21

T, = _ .
‘ 0(pr +2) P+ 2

We conclude from the above

4(pp+2)(1-0)
L 40-0) ptr2 2Ppt2)U—0)

¢ d : C 2 1
o (®lls < (DG + LT 17 = {Dlp+ 14y H 5, T

_ppt2

Since T = 19

and 22 are bounded, we get
21, ;

lo()ll2 < D252,
where the constant a” does not depend on k.
In|lvg(®)|lo <Iny <InD+kln B+ 2Iny,_4,
if £ =2" > 1. We get
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k—2 k—2
I flog(®): < DY 2+ 25 Inyy + m B (k —4)2')

j=0 =0
< @' —1D)InD+2" Iy + f(k)In E,

where

f(k)y=2F—2k1 L2
And hence,

0k () [lpery < {D¥ 12 BIWYRTE
Letting £ — oo, we get
lor(t)lloe < Da¥ < D(max{1, sup|Jo(#)]]2})* (2.14)

From ([2.14) and using the estimate ||v(¢)||2, and then take value to p = 0. we obtain

d
—lo®15+ DallVe@)ll5 < Dallo()ll3 + Dal[v()]l2-
and thus by the Poincaré inequality, we obtain

Dyllv®)]3 < IVo(®)]13

when || is small then the measure of Q very large and so, when D, is a constant greater than
zero which depends only on NV

d
IoOIE + DDy lo(O)l; < Dallv(@)llz + Dallo(@)]].

and thus, when |Q]| is sufficiently small, we have Dy D,, > D,.Then by by using the Young’s inequality,
we get

d
@1z + Dlv(@)ll < D.
for D are a constants independent of v. since v is periodic,it follows that

lo(®)]2 < R, (2.15)
here R is a constants does not depend on o. Combining (2.15)) with (2.14]),we get (2.5). So, the

Lemma is proved.

O

Theorem 2.3. If assumptions(F1)and(F2)are satisfied, then problem (1.1)-(1.3) has at least one

non-trivial non-negative periodic solution.

Proof . In this theorem, we can define a map by considering the system below:
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% — div(|Vo™P2Vo™) 4+ a(n) - Vv = g(x, 1), (x,t) € St, (2.16)
v(z,t) =0, (x,t) € 0Q x [0,T], (2.17)
v(x,0) =v(z,T), x €€, (2.18)

where g(x,t) is a given function in Cp(Sr).and then by using an argument same way to (see
[10]), that the problem - (2.18)has a unique solution. and then, we can define a map
Q : [0,1] x Cr(St) — Cr(S7).We define @ in the form v = Qg we obtain to v = Qg is com-
pact and continuous map. by the same way in (see [9]), we can conclude that |[v]|ze(s,) is bounded
where g € L=(Sr) and v, Vo € C%(St) respect to some > 0.Then (through the application the
Arzela-Ascoli over a map () ) the compactness of the map is compact () conclude from Hdélder con-
tinuity of vand ||v|| e (s,). from the Hélder continuity of Vv we obtain to the continuity of the map Q.

Let ¢p(v) = A(x,t,v) + h(z,t) , by using (F1)-(F2) and the above arguments, the map Q(c¢) is a
complete and continuous for o € [0, 1]. We using Lemma ,to get at least one fixed point v of the
map Q(o¢) satisfies

[vllee <D

where D > 0 is not dependent of 0. By the topological degree theorem (see [I1]), we infer that
the problem (|1.1)) - (1.3)), admits at least one periodic solution v. thus complete the proof.
U

Acknowledgements

We would like to deeply thank the editor and reviewers for their insightful and remarkable com-
ments to improve the present work.

References

[1] N. Alaa and M. Iguernane, Weak periodic solutions of some quasilinear parabolic equations with data measures,
J. Inequal. Pure Appl. Math. 3(3) (2002) Article 46.

[2] R.A. Hameed, J. Sun and B. Wu, FEzistence of periodic solutions of a p-Laplacian-Neumann problem, Boundary
Value Prob. 171 (2013) 1-11.

[3] R.A. Hameed, B. Wu and J. Sun, Periodic solution of a quasilinear parabolic equation with nonlocal terms and
Neumann boundary conditions”, Boundary Value Prob. 34(2013) 1-11.

[4] R.A. Hameed, M.A. Rasheed, H.S. Mustafa and F.N. Ghaffoori, The ezistence of periodic solutions to doubly
degenerate Allen-Cahn equation with Neumann boundary condition, Int. J. Nonlinear Anal. Appl. 13(1) (2022)
397-408.

[5] L.G.Khoma and N.G. Khoma, Generalized periodic solutions of quasilinear equations, Ukr. Math. J. 48(3) (1996)
453-459.

[6] G.M. Lieberman, Time-periodic solutions of quasilinear parabolic differential equations: I Dirichlet boundary
conditions, J. Math. Anal. Appl. 264(2) (2001) 617-638.

[7] Z.H. Liu, Periodic solutions for double degenerate quasilinear parabolic equations, Nonlinear Anal. 51(7) (2002)
1245-1257.

[8] B.P. Liu and C.V. Pao, Periodic solutions of coupled semilinear parabolic boundary value problems, Nonlinear
Anal. 6(3) (1982) 237-252.

[9] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type,
Translation of Mathematical Monographs, vol. 23. Amer. Math. Soc. Providence, 1968.

[10] LI. Smulev, Periodic solutions of the first boundary value problem for parabolic equations, Amer. Math. Soc.
Transl. Set 79(2) (1969) 215-229.
[11] D.G. Guo, Nonlinear Functional Analysis, Shandong Science and Technology Press, Jinan, 2001.



	Introduction
	Existence of Weak Solutions

