
Int. J. Nonlinear Anal. Appl. 13 (2022) No. 1, 1649–1658
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.5780

Solving multi-objectives function problem using
branch and bound and local search methods

Manal Hashim Ibrahima,∗, Faez Hassan Alia, Hanan Ali Chachana

aMathematics Dept, Mustansiriyah University, College of Science/ Baghdad, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper we consider 1//
∑n

j=1 (Ej + Tj + Cj + Uj + Vj) problem, the discussed problem is called
a Multi objectives Function (MOF) problem, As objective is to find a sequence that minimizes the
multiple objective functions, the sum earliness, the tardiness, the completion time, the number of
late jobs and the late work. The NP-hard nature of the problem, hence the existence of a polynomial
time method for finding an optimal solution is unlikely. This complexity result leads us to use an
enumeration solution approach. In this paper we propose a branch and bound method to solve
this problem. Also, we use fast local search methods yielding near optimal solution. We report on
computation experience; the performances of exact and local search methods are tested on large class
of test problems.

Keywords: Machine Scheduling with Multi-Objective problem, Branch and Bound, Simulated
Annealing, Genetic Algorithm. Optimization, Firefly algorithm.

1. Introduction

In the Multi-Objective Functions problems, we are given a set of n jobs N = {1, 2, . . . , n} which
are available for processing at time zero has to be scheduled without preemption on a single machine
that can handle at most one job at a time. The machine is assumed to be continuously available from
time zero onwards and machine idle time is not allowed. Each job j, j ∈ N , requires a processing
time pj and should be completed on its due date dj.
Machine Scheduling Problem (MSP) in recent years attracted the attention of many researchers in
both academic and industrial environments and large number of papers confirms the application of
these matters in logistics, production planning and supply chain management [1].

∗Corresponding author
Email address: manalhashimibrahim@uomustansiriyah.edu.iq (Manal Hashim Ibrahim)

Received: April 2021 Accepted: September 2021

http://dx.doi.org/10.22075/ijnaa.2022.5780

1650 M. H. Ibrahim, F. H. Ali, H. A. Chachan

The considered problem in this research was inspired from a real-world case that many companies
can frequently face. The problem under study widely used in engineering disciplines to solve problems,
with multiple conflicting design objectives ([2, 3]).

In this paper, first, we solve the discussed problem using Branch and Bound (BAB) method as an
exact method, secondly, we will discuss some approximate Local Search Methods (LSMs) for MSP.
Many scheduling problems have proved to be of this type. Therefore, we will apply approximate
methods of a large volume of test problems to one of the scheduling problems and to a void the
problem of solving problems that require large arithmetic times. The approximate method can be
defined as a good solution method used to find a solution close to the optimal solution and with a
suitable calculation time, but the disadvantage of this method is that it does not guarantee that the
solution will be optimal [4].

In recent years, this type of problem has been discussed by Mohammad (2017) [5] using BAB al-
gorithm was used to solve the problem 1//

∑n
j=1Cj + ETmax for n ≤ 40 and his Tree Type Heuristic

(TTH) gave excellent times for jobs. While Chachan and Hameed (2019) [6] studies the prob-
lem 1//

∑n
j=1 (Cj + Tj + Ej + Vj) and get the optimal solution by BAB for n ≤ 18. Also found a

near optimal solution for this type of problem by LSMs, Such as the problem
1//

∑
Cj +

∑
Tj +

∑
Ej + Tmax + Emax is considered to be strongly NP-hard by Abdul-Razaq and

Akram (2018) [7], but they applied two local search algorithms; descent (DM) method and simulated
annealing (SA) method to solve the problem for n ≤ 5000 jobs. Abdul-Razaq and Ali (2016) [8],
propose the Particle Swarm Optimization (PSO) and GA as heuristic methods to find approxima-
tion solutions for 1//Lex(

∑
Cj ,

∑
Tj) and they found that these LSM solve the problem for jobs

with reasonable time. Abdul-Razaq and Motair reach jobs n ≤ 10000 by using three local search
techniques; DM, SA and tabu search (TS) in solving the problem 1// (

∑
Cj +

∑
Tj+Tmax + Emax),

where they showed that the performance of the algorithms is evaluated on a large set of test problems
and the results which are compared showed that SA and TS algorithms are better than DM with
preference to SA, and showed that the three algorithms find optimal or near optimal solutions in a
reasonable times [9].

The remainder of the paper is organized as follows: Firstly, we introducing the formulation of
mathematical models of the proposed problem in section 2 and the derivation of lower bound (LB)
in section 3. Next, we introduced and developed the heuristic methods in section 4. Also, we use
the Exact (Complete Enumeration Method (CEM) and Branch and Bound (BAB)) method to get
the optimal solution for the study problem in section 5. In this work we introduced LSMs to solve
the study problem in section 6. The computational experiments of the proposed (models) is given
in section 7. Section 8 contained the remarking conclusion and future extensions.

2. Problem Formulation

In this section, we consider MSP with n jobs on a single machine which is always available
can do them, where each one of these jobs can be executed on that machine at its special time
(i.e. only one job can be executed at a time), and the machine can do only one job at a time
to minimize the total earliness time, total tardiness time, total completion time, total number of
tardy jobs, and total late work (i.e., to minimize the multi-objective) .This problem is defined by
1//

∑n
j=1 (Ej + Tj + Cj + Uj + Vj). Using the standard scheduling problem classification notation,

Solving multi-objectives function problem using branch and... 1651

the main problem is denoted by (P) and can be formulated as follows:

MinZ = Min
n∑
j=1

(Ej + Tj + Cj + Uj + Vj)

Subject to :
Cj ≥ pj, j = 1, . . . , n
Cj = Cj−1 + pj ; j = 2, . . . , n
Ej = max {dj − Cj , 0} , j = 1, . . . , n
Tj = max {Cj − dj, 0} , j = 1, . . . , n

Uj =

{
0 if Cj ≤ dj
1 otherwise

Vj = max{pj, Tj}

(P)

3. Derivation of Lower Bound

Deriving a lower bound (LB) for a problem that has a multiple objective function is very difficult
since it is not easy to find a sequence that give the minimum for two objectives. Since our problem
is NP-hard we may find a sequence that gives minimum value for one of them but not both. The
problem (P) can be decomposed into three subproblems (P1), (P2) and (P3).

V1 = min
σεS
{Z1 (σ)} = min

σ∈S

n∑
j=1

(Ej + Tj + Cj)

subject to :
Cj ≥ pσj j = 1, . . . , n
Cj = Cσj−1 + pσj j = 2, . . . , n
Ej ≥ dσj − Cj j = 1, . . . , n
Ej ≥ 0 j = 1, . . . , n
Tj ≥ Cj − dσj j = 1, . . . , n
Tj ≥ 0 j = 1, . . . , n

(P1)

Also the subproblem:

V2 = min
σεS
{Z2 (σ)} = min

σεS

n∑
j=1

Uσj

subject to :
Cj ≥ pσj j = 1, . . . , n
Cj = Cj−1 + pσj j = 2, . . . , n

Uj =

{
0 , if Cj ≤ dσj
1, if Cj > dσj

j = 1, . . . , n

(P2)

And the subproblem:

V3 = min
σεS
{Z3 (σ)} = min

σεS

n∑
j=1

Vσj

Subject to :
Cj ≥ pσj, j = 1, . . . , n
Cj = Cj−1 + pσj, j = 2, . . . , n
Vj = min {Tj, pσj} , j = 1, . . . , n

(P3)

1652 M. H. Ibrahim, F. H. Ali, H. A. Chachan

This decomposition has simpler structure than (P), and thus appear easily first to solve optimality
for (P1) to get Z1 by Mohammed[5] which is obtain as follows:

LB1 =
n∑
j=1

(Ej + Tj + Cj) = max(
n∑
j=1

dj,

n∑
j=1

max(2Cj − dj, Cj))

Second, to get the minimum value (Z2) for (P2), using Moor’s Algorithm [10] below:
Algorithm (1): Moor’s Algorithm (MA)
Step (1): Order the jobs by (EDD) rule i.e., jobs are sequenced in non-decreasing order of their due
dates, set E = L = ∅ andk = t = 0.
Step (2): Set k = k + 1 , if k > n go to step (4).
Step (3): Set t = t + Pk , E = E ∪ {K} , If t ≤ dk go to step(2), otherwise (i.e., If t > dk) then
find a job j ∈ E such that Pj is as large as possible and let t = tpj, L = L∪{j} , E = E−{j} , and
go to step (2).
Step (4): E is the set of early jobs and L is the set of late jobs.
Thus get LB2 =

∑n
j=1 Uσj

Third, to obtain optimal solution for (P3) to get Z3, first we have to introduce the following
theorem:

Theorem 3.1 (Lawler 1973). [11] The 1//fmax problem is minimized as follows:
While there are unassigned jobs, assign the job that has minimum cost when scheduled in the last
unassigned position in that position.

So Lawler’s Algorithm (LA) solved the 1//fmax problem where fmax ∈ {Lmax, Tmax, Vmax}[12] to
find minimum fmax. LA is described by the following steps:
Algorithm (2): Lawler’s Algorithm (LA)
Step (1): Let N = {1, 2, . . . , n} , F is the set of all jobs with no successors and π = ∅.
Step (2): Let j∗ be a job such that fj∗(

∑
i∈N pi) = minj∈F{fj(

∑
i∈N pi)} .

Step (3): Set N = N − {j∗} and sequence jobj∗ in last position of, i.e. π =(j∗, π).
Step (4): Modify F with respect to the new set of schedulable jobs.
Step (5): If N = ∅ stop, otherwise go to step (2).
Thus get LB3 =

∑n
j=1 Vσj .

Theorem 3.2. [11] Z1 + Z2 ≤ Z where Z1, Z2 and Z are the minimum objective function values
for the problems (P1), (P2) and (P).

Lemma 3.3. [11] If L1 is LB for (P1) and L2 is LB for (P2), then L1 +L2 is LB for (P) problem.
Hence LB=Z1+Z2+Z3 is a LB for the (P) problem since:

LB = min
σ∈S

n∑
j=1

(Eσj + Tσj + Cσj + Uσj + Vσj) ≥ Z1 + Z2 + Z3 . . . (3.1)

4. Dispatch Rules and Heuristic Methods

In this section we describe several dispatch heuristics that were used to generate initial sequences
for the upper bounding procedures. Some of these heuristics gives optimal solutions for some problems
and their main characteristics are summarized in Table 1.

Solving multi-objectives function problem using branch and... 1653

Table 1: Dispatch rules used in upper bounding procedures.

.
Rule Description

SPT

Smith or the Shortest Processing Time rule, that is, sequencing the jobs in
non-decreasing order of their processing time. This rule solves the 1//

∑
Cj

problem [13]. More general is the SWPT rule, that is, sequencing the jobs in
non-decreasing order of their processing time to weight ratio which solves the
problem 1//

∑
WjCj.

MDD
the Modified Due Date (MDD) heuristic the due date of each job j is modified
to max{t+pj,dj}[14].

ATC

the Apparent Tardiness Cost (ATC) heuristic selects, whenever the ma-
chine becomes available, the unscheduled job with the highest priority index
1
pj

exp{−max(0, dj−t−pj)
ϕp

}, where p the average processing time, t is the current

time and ϕ is look ahead empirical parameter [14].

EDD
The earliest due date rule, that is, sequencing the jobs in non-decreasing order
of their due date, which solves the 1//Tmax problem [15].

MST
The minimum slack time rule, that is, sequencing the jobs in non-decreasing
order of their slack time dj − pj , which solves the 1//Emax problem [16].

MA Described in section (3)

LA Described in section (3)

5. Exact Solution Methods

There are many methods are developed to give an exact solution. The focus in our paper will be
on the complete enumeration, and branch and bound methods

5.1. Complete Enumeration Method

Complete enumeration method (CEM) generates all the feasible solutions and then pick the best
one. For example, for a single machine problem with n jobs there are n! different alternatives. Hence
for the corresponding m machines problem, there are (n!)m different sequences. This method may
take considerable time as the number (n!)m is very large even for relatively small values of n and m.

5.2. Using Branch and Bound Method for Solving P-problem

Branch and bound (BAB) method represents implicit enumeration technique aim to find an
optimal solution by testing the subsets of the feasible solutions systematically. BAB is usually
described as a search tree with nodes corresponding to its subsets. This technique is applied and
used in many optimization problems (see [17, 18]).

In this work, we propose the BAB algorithm which described below:
Algorithm (3): Branch and Bound (BAB) Method
Step(1): INPUT: n, pj and dj , j = 1, 2, . . . , n for P-problem.
Step (2): Let Z (σi) =

∑n
j=1 (Eσij + Tσij + Cσij + Uσij + Vσij), let σi be the sequence of jobs or-

dered according to the rules R(i), where: R = {SPT,MDD,ATC,EDD,MST,MA,LA} and UBi =
Z (σi) , i = 1, 2, . . . , 7.
Step (3): Set the upper bound UB = min{UB1, UB2, UB3, UB4, UB5, UB6, UB7} at first level of
BAB.

1654 M. H. Ibrahim, F. H. Ali, H. A. Chachan

Step (4): For each node IN , compute the lower bound LB(IN) =cost of sequencing jobs+cost of
unsequencing jobs, where the cost of unsequencing jobs is obtained by the procedure described in
section (3).
Step (5): Branch each node IN with LB(IN)<UB .
Step (6): At last level of BAB applying Backtracking to improve the UB.
Step (7): If LB ≤ the best UB, then LB is the optimal solution.
Step (8): Stop.

6. Local Search Algorithms: The Basic Notation

Local Search Methods (LSMs) share the following feature:

• Initialization : The initial solution is the point from which the local search procedure is
started, this could be a solution obtained from a heuristic or generated randomly, since a
random solution may not satisfy the minimum of objective function [19].

• Neighborhood generation: A ”move” is made through the solution space S from one neigh-
bor to another to select a neighbor s’ of s.

• Acceptance test: Each LSM has its own acceptance test to decide whether s’ replace s as
the current solution.

• Stopping criteria: The stopping criterion is the method used to terminate the search process.

LSMs are widely to obtain approximate solutions to compatibility problems. Neighborhood re-
search is a kind of LSMs from which one can study the method of changing adjacent pairs we will
also study the approximate method of the search tree. Clearly, if the algorithm selects always the
best or at least a better-cost neighbor, the algorithm will end up in a local minimum [4]. In this
paper, we propose to use two LSM’s (SA and GA) to solve problem (P) in order to obtain near
optimal solutions for the large sized instances in a small consuming time.

6.1. Simulated Annealing

Simulated annealing (SA) is an algorithmic method that is able to escape from local minima.
It is a randomized LSM for two reasons: First, from the neighborhood of a solution a neighbor is
randomly selected. Secondly, in addition to better-cost neighbors, which are always accepted if they
are selected, worse-cost neighbors are also accepted, although with a probability that is gradually
decreased in the course of the algorithm’s execution. For more information see. The main steps of
SA are as follows [20]:
Algorithm (4): Simulated Annealing (SA)
Step(1): Select an initial solution s ∈ S , s∗ = s; select an initial temperature to > 0 ; k = 0,G = 1;
Step (2): Define B; choose s′ ∈ N∗(s); ∆ = f(s′) − f(s); p(∆, tk) = exp(−∆/tk); If ∆ ≤ 0, then
s = s′, and if f(s) < f(s∗), then s∗ = s; else (∆ > 0) ; If a random number of [0, 1] ≤ p(∆, tk), then
s = s′; G = G+ 1,
Step (3): If G ≤ B return to step (2),
Step (4): Update temperature; k = k + 1; return to step (2) until some Stopping criteria are met.

Solving multi-objectives function problem using branch and... 1655

6.2. Genetic Algorithms

Genetic Algorithms (GA) are invented by Holland (1975). The algorithms have been used for a
wild variety of problems including machine learning, game Playing, and combinatorial optimization.
GAs use a population of possible solutions to conduct a robust search of search space. The main
steps of GA are as follows [21]:
Algorithm (5): Genetic Algorithms (GA)
Step (1): Create an initial population of m parents.
Step (2): Compute and save the fitness value f(i) for each individual (i).
Step (3): Define selection probabilities p(i) for each parent i so that p(i) is proportional to f(i).
Step (4): Generate m offspring by probabilistically selecting parents to produce offspring.
Step (5): Select only the offspring to survive.
Step (6): Repeat step (2) until a stopping criterion has been met.

7. Computational Results and Comparison Results for Solving P-problem

7.1. Computational Experiments with Exact Solution

The exact solution (CEM and BAB) were test on P-problem with n = 6, . . ., 17 jobs. Num-
ber of jobs refers to the problem size. Job i become available for processing at a time zero,
requires integers processing times pi , i = 1, . . . , n were generated from the uniform distribution
[1,100], and requires due dates di , i = 1, . . . , n , were generated from the uniform distribu-
tion [

(
1− T − RDD

2

)
TP,

(
1 + T + RDD

2

)
TP] as it has been showed in the literature [22], where

T =
∑n

j=1 pj depending on the relative range of due date (RDD) and on the average tardiness
(T). For both parameters, the values 0.2, 0.4, 0.6, 0.8 and 1 are considered. These yields (10) test
problems, for each value of (n).

7.2. Test Problems for the Suggested LSM’s

To introduced LSM (SA and GA) we generated in section 7.1 were tested on the problem (P)
with five functions for generating best solution. These algorithms were tested on problem (P) with
(50, 100, 250, 500, 750, 1000, 2500, 5000, 10000).

In our computational, we use the condition that: if the solution of an example with ”n” jobs for
any algorithm is not appear after (600) seconds.

Shows for each algorithm, how many it can catch the optimal value for each value of n (problem
size). where n∈{6, 7, . . ., 17}. The optimal solution for examples of small size n∈{6, 7, . . ., 17}, was
found by using BAB algorithm, and for problems of large size n ∈ {50, 100, 250, 500, 1000, 2000, 10000}
to get near optimal solution using LSMs.

7.3. Computational results

In our computational results are given in tables, Table 2, shows the comparison between CEM
and BAB with the discussed LSM (SA and GA). . These results that the value average for n = 6 : 10
Tables3 shows the comparison between BAB and SA and GA for n = 11 : 17. Table 4, shows the
comparison between BAB and the discussed LSM for the study problem for n = 50, 100, . . ., 10000.

1656 M. H. Ibrahim, F. H. Ali, H. A. Chachan

Table 2: Comparison between CEM and BAB with SA and GA for n = 6 : 10.

.
n CEM BAB SA GA

AV of Z AT AV of Z AT AV of Z AT AV of Z AT

6 194.2 R 194.2 R 194.2 R 194.2 R

7 249.9 R 249.9 R 249.9 R 249.9 R

8 271.4 R 271.4 R 271.4 R 271.4 R

9 274.6 R 274.6 R 274.6 1.0 274.6 R

10 428.5 60.2 428.5 R 428.5 R 428.5 R

AV 283.7 12.3 283.7 R 283.7 R 283.7 R

Table 3: shows the comparison between BAB and SA and GA for n=11:17.

.
n BAB SA GA

AV of Z AT AV of Z AT AV of Z AT

11 518.5 1.5 520.1 1.6 518.5 R

12 577.3 3.6 582.7 1.1 577.3 R

13 640.8 10.8 650.2 1.2 642.8 R

14 782.7 48.9 796.4 1.1 693.6 R

15 846.5 118.5 870.3 1.1 847.1 R

16 871.0 820.1 892.6 1.1 873.2 R

17 1.089.1 1220.9 1118 1.2 1091.0 R

AV 606.8 466.9 775.8 1.2 749.1 R

Table 4: Comparison results between SA and GA for n = 50, 100, . . ., 10000.

.
n SA GA

AV of Z AT AV of Z AT

50 8924.3 2.5 8549.1 R

100 34257.5 4.1 33057.4 R

250 211651.3 8.7 206944.5 3.7

500 825408.2 13.8 804246.6 11.2

750 1759259.6 18.0 1722926 21.4

1000 3318071.8 22.9 3242985.7 37.5

2500 20348052 59.7 20027327 237.5

AV. 3786517.8 18.5 3720862.3 44.5

5000 79082191.9 133.4 - -

10000 152935237 275.1 - -

Solving multi-objectives function problem using branch and... 1657

Note: The symbols which used in the tables are:
n: no. of jobs
AV of Z: The optimal value of the function using[(BAB), (CEM)].
AV of Z: The best value of the function using LSMs [(SA, GA)].
AV of Z (CEM): The optimal value of the function using (CEM)
AT: The average of the execution time of the problem (by second).
R: 0 ≤ R ≤ 1
sign (-) refers to the unsolved examples.

8. Conclusion and Future Extensions

In this work we propose to study the single MSP in order to minimize the objective function of
problem (P). We proposed and discussed the exact and some LSM to solve the NP-hard problem.
The proposed algorithms more tested and compared with the problem (P) for small instance sizes
greater than 17. The computational results show that the SA and GA are very efficient both in term
of quality of the objective function values and computational time.

In Future Extensions, it will be extension of the problem (P) by driving a good LB and generate
more instances or using the Dominances rule in BAB method. Also, using the LSM should be
explored for finding an improvement potential of various polynomially bounded scheduling algorithms
(Heuristic).

References

[1] M. Rajabzadeh, H. Vahdani, Z. Arabasadi, Single machine scheduling with different types of transportation fa-
cilities in batch delivery system, CIE44 & IMSS14 Proceedings, 14-16 October 2014, Istanbul / Turkey, Pages:
1441-1450.

[2] C. A. C. Coello, G. B. Lamont, Applications of multi-objective evolutionary algorithms, Vol.1, World Scientific,
2004.

[3] S. Garcia, C. T. Trinh, Comparison of multi-objective evolutionary algorithms to solve the modular cell design
problem for novel biocatalysis, Processes, 7(6) (2019) 361.

[4] K. Steinhöfel, A. Albrecht, C. K. Wong, An experimental analysis of local minima to improve neighbourhood
search, Computers & Operations Research, 30(14)(2003) 2157-2173.

[5] H. A. Mohammed , Exact and Heuristic Algorithms for Solving Combinatorial Optimization Problems, Ph.D.
Thesis, Mustansiriyah University, College of Science, Dept. of Mathematics 2017.

[6] H. A. Chachan, A. S. Hameed, Exact Methods for Solving Multi-Objective Problem on Single Machine Scheduling,
Iraqi Journal of Science, (2019) 1802-1813. .

[7] T. S. Abdul-Razaq, A. O. Akram, Local Search Algorithms for Multi-Criteria Single Machine Scheduling Prob-
lem, Ibn AL-Haitham Journal for Pure and Applied Science, (2018) 436-451.

[8] T. S. Abdul-Razaq, F. H. Ali, Algorithms for Scheduling a Single Machine to Minimize Total Completion Time
and Total Tardiness. Basrah Journal of Science, 34(A (2)) (2016) 113-132.

[9] T.S. Abdul-Razaq, H. M. Motair, Solving Composite Multi-objective Single Machine Scheduling Problem Using
Branch and Bound and Local Search Algorithms. Al-Mustansiriyah Journal of Science, 28(3) (2018) 200-208.

[10] L. P. Michael, Scheduling: theory, algorithms, and systems, Springer 2018 .
[11] E. L. Lawler, Optimal sequencing of a single machine subject to precedence constraints. Management sci-

ence, 19(5)(1973) 544-546.
[12] A. A. Mahmood, Solution procedures for scheduling job families with setups and due dates, Doctoral dissertation,

M. Sc. Thesis, University of AL-Mustansiriyah, College of Science, Dept. of Mathematics 2001.
[13] W. E. Smith, Various optimizer for single-stage production, Naval Research Logistics Quarterly, 3(1-2) (1956)

59-66.
[14] I. M. Alharkan, Algorithms for sequencing and scheduling, Industrial Engineering Department, King Saud Uni-

versity, Riyadh, Saudi Arabia 2005.
[15] J. R. Jackson, Scheduling a production line to minimize maximum tardiness, management science research project

1955.

1658 M. H. Ibrahim, F. H. Ali, H. A. Chachan

[16] J. A. Hoogeveen, S. L. van deVelde, Polynomial-time algorithms for single-machine multicriteria scheduling,
Department of Operations Research, Statistics, and System Theory [BS], (R 9008) (1990).

[17] C. P. Tomazella, M. S. Nagano, A comprehensive review of Branch-and-Bound algorithms: Guidelines and di-
rections for further research on the flowshop scheduling problem. Expert Systems with Applications, 158 (2020)
113556.

[18] H. He, H. Daume III, J. M. Eisner, Learning to search in branch and bound algorithms. Advances in neural
information processing systems, 27(2014) 3293-3301.

[19] J. N. Gupta, K. Hennig, F. Werner, Local search heuristics for two-stage flow shop problems with secondary
criterion. Computers & Operations Research, 29(2) (2002) 123-149.

[20] X. J. Wang, C. Y. Zhang, L. Gao, P. G. Li, A survey and future trend of study on multi-objective scheduling,
In 2008 Fourth International Conference on Natural Computation (Vol. 6, pp. 382-391)(2008, October), IEEE.

[21] S. M. Jasim, F. H. Ali, Exact and local search methods for solving travelling salesman problem with practical
application, Iraqi Journal of Science, 60(5)(2019) 1138-1153. https://doi.org/10.24996/ijs.2019.60.5.22

[22] S. Stöppler, C. Bierwirth, The application of a parallel genetic algorithm to the n/m/P/C max flowshop problem,
In New Directions for Operations Research in Manufacturing (pp. 161-175) (1992), Springer, Berlin, Heidelberg.

https://doi.org/10.24996/ijs.2019.60.5.22

	 Introduction
	Problem Formulation
	 Derivation of Lower Bound
	 Dispatch Rules and Heuristic Methods
	 Exact Solution Methods
	 Complete Enumeration Method
	 Using Branch and Bound Method for Solving P-problem

	 Local Search Algorithms: The Basic Notation
	 Simulated Annealing
	 Genetic Algorithms

	 Computational Results and Comparison Results for Solving P-problem
	 Computational Experiments with Exact Solution
	 Test Problems for the Suggested LSM's
	 Computational results

	 Conclusion and Future Extensions

