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Abstract

A third-order fractional ordinary differential equation (FrODE) is very important in the mathemat-
ical modelling of physical problems. Generally, the third-order ODE is solved by converting the
differential equation to a system of first-order ODEs. However, it is a lot more efficient in terms
of accuracy, a number of function evaluations as well as computational time if the problem can be
solved directly using numerical methods. In this paper, we are focused on the derivation of the direct
numerical methods which are one, two and three-stage methods for solving third-order FrODEs.
The RKD methods with two- and three stages for solving third-order ODEs are adapted for solving
special third-order FrDEs. Numerical examples have been evaluated to show the effectiveness of
the new methods compared with the analytical method. Numerical experiments are carried out to
verify the accuracy and efficiency of the proposed methods. Applications of proposed methods are
also presented which yield impressive results for the proposed and modified methods. The numerical
solutions of the test problems using proposed methods agree well with the analytical solutions. From
the numerical results obtained using proposed methods, we can conclude that the proposed methods
in which derived or modified in this paper are very efficient.
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1. Introduction

Differential equation (DE) is one of the most important branches of applied mathematics and its
applications in the fields of science and engineering. Most of mathematical modelling in science and
engineering involving different types of DEs. Also, DEs have significate rule in the various fields of
applied mathematics such as physics, engineering, biology, medicine, chemistry and economic. The
mathematical models of the real problems in applied science and engineering are modelled by using
the tools of DEs especially, fractional differential equations (FrDEs). In the 20th century, important
research in fractional calculus was published in the engineering and science literature. Progress of
fractional calculus is reported in various applications in the field of integral equations, fluid mechanics,
viscoelastic models, biological models, and electrochemistry. Many classical or modern analytical and
numerical methods for solving DEs have been studied during long time [10]. However, Finding the
solutions of different types of DEs, analytically or numerically, had been challenged the ingenuity
of mathematicians. At present, several powerful classical and modern numerical and analytical
methods are be available to use for scientists and engineers. The literature review of different
modern methods for finding the solutions of mathematical models which contains DEs are listed as
follows: [39] developed second-, fourth-, sixth- and eighth-orders finite-difference methods for solving
IVPs while [33]-[38] developed a second-order method for solving IVPs, [1] solved boundary value
problems (BVPs) using the technique of non-polynomial spline and [21] developed new integrator
for solving ODEs of seventh-order. The analytical methods for solving DEs are not always able to
solve all types of DEs directly or indirectly. This propose make us to study the derivation of direct
numerical methods. Many researchers like: [29]-[26] have derived one-step numerical methods for
solving IVPs of ODEs of different orders while other authors derived multistep numerical methods
for solving this problem [3]-[34]

Undoubtedly, fractional calculus is an efficient mathematical tool to solve various problems in
mathematics, engineering, and sciences. Recently, the tool of fractional calculus has been used
to analyze the nonlinear dynamics of different problems [37]-[6]. Mostly, the analytical solutions
cannot be obtained for fractional differential equations, so that there is a need of semi analytical
and numerical methods to understand the effects of the solutions to the nonlinear problems [32]. In
the recent decades, different approximated methods have been implemented to solve the linear as
well as the nonlinear dynamical systems, such as the Adomian decomposition method (ADM) [43],
variational iteration method (VIM) [40], Homotopy perturbation method (HPM) [41], Homotopy
perturbation method in association with the Laplace transform method [42], Homotopy analysis
method (HAM) [9], Sumudu transform method and Homotopy analysis transform method (HATM)
[7]. Also, Odibat and Momani developed the new method with the connection of fractional Euler
method and modified trapezoidal rule by using the generalized Taylor series expansion [31]. Lastly
[28] and [27] solved FRODEs used collection and least square methods while [5] studied the numerical
solutions of first-order FrODEs using developed Euler method and they derived 2-stage fractional
Runge-Kutta (FRK) method.

In this work, Euler and Runge-Kutta methods have been derived or developed to be consistent
with solving third-order FrDEs. Firstly, one-stage Euler method and two-stage RKD method for
solving third-order FrDEs have been derived using the generalized Taylor series expansion. Secondly,
we developed the two- and three-stage RKD methods for solving third-order ODEs to be consistent
with solving third-order FrDEs. Afterwards, we applied the proposed numerical methods on different
cases of fractional differential equations implementations.
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2. Preliminary

2.1. A Class of Quasi Linear Third Order Fractional ODEs

Consider the following quasi linear third-order fractional differential equation:

D3αu(t) = Φ(t, u(t)); t > 0, 0 < α ≤ l (2.1)

with the condition

u(0) = β0;u
α(0) = β1, u

2α(0) = β2. (2.2)

2.2. RKD and RKT Methods for Solving Third-Order ODEs

Many researchers used to solve the ODEs of order more than order two by converting the ODE
into a system of first-order equations with the dimension equal to this order. However, [44] and [29]
derived direct numerical methods for solving special third-order ODE. The general form of RKD and
RKT methods with s-stage for solving special third-order ODEs can be written as

un+1 = un + hu
′

n +
h2

2
u

′′

n + h3

s∑
i=1

biki, (2.3)

u
′

n+1 = u
′

n + hu
′′

n + h2

s∑
i=1

b
′

iki, (2.4)

u
′′

n+1 = u
′′

n + h
s∑

i=1

b
′′

i ki, (2.5)

where,

k1 = f(xn, yn), (2.6)

ki = f

(
xn + cih, yn + hciy

′

n +
h2

2
c2i y

′′

n + h3

i−1∑
j=1

aijkj

)
, (2.7)

for i = 2, 3, . . . , s.
The parameters of the numerical method are ci, aij, bi, b

′
i, and b

′′
i for i = 1, 2, . . . , s and,

j = 1, 2, . . . , s are assumed to be real. If aij = 0 for i ≤ j, it is an explicit method and implicit
otherwise. The two-stage, third-order and three-stages, fourth-order RKD methods which can be
expressed in the Table 1 and Table 2.

3. Analysis of Proposed Methods for Solving Third-order FrDEs

In this section, we have constructed two numerical methods and modify another two numerical
methods for solving third-order FrODEs which belong to class of quasi linear in Equation (2.1) with
initial conditions in Equation (2.2).



1740 Mechee, Aidi

3.1. Derivation of Generalized Euler Method

The generalized Taylor expansion of u(t+ h) is

u(t+ h) = u(t) +
hα

Γ(α + 1)
Dαu(t) +

h2α

Γ(2α + 1)
D2αu(t) +

h3α

Γ(3α + 1)
D3αu(t) + . . . . . . (3.1)

For the very small step size, we neglect the higher terms involving D4αu(t) in Equation (3.1) and
substituting the value of D3αy(t) from Equation (2.1), we obtain the following formula:

un+1 = un +
hα

Γ(α + 1)
uα
n +

h2α

Γ(α + 2)
u2α
n +

h3α

Γ(α + 3)
Φ(tn, un(tn)). (3.2)

By derivation Equation (3.2) once and twice, we obtain the following:

uα
n+1 = uα

n +
hα

Γ(α + 1)
u2α
n +

h2α

Γ(2α + 1)
Φ(tn, un(tn)), (3.3)

and

u2α
n+1 = u2α

n +
hα

Γ(α + 1)
Φ(t, un(t)). (3.4)

The formulas in equations (3.2)-(3.4) can used to generate convergent sequence for solving the the
Equation (2.1) with initial conditions (3.1).

3.2. Derivation of Two-Stage RKD Method

Using the chain rule, we obtain the following:

D4αu(t) = Dα(D3αu(t)) = Dα(Φ(t, u(t))) = Dα
t Φ(t, u(t)) + Φ(t, u(t))Dα

uΦ(t, u(t))

(3.5)

For the very small step size, we neglect the higher terms involving D5αu(t) in Equation (3.1) and
substituting the value of D3αu(t) from Equation (2.1). By substituting Equation (3.5) in Taylor
expansion serious u(t+ h) in Equation (3.1), we obtain the following formulas

un+1 = un +
hα

Γ(α + 1)
uα
n +

h2α

Γ(2α + 1)
u2α
n +

h3α

Γ(3α + 1)
Φ(tn, un(tn))

+
h4α

Γ(4α + 1)
(Dα

t Φ(t, u(t)) + Φ(t, u(t))Dα
uΦ(t, u(t))), (3.6)

= un +
hα

Γ(α + 1)
uα
n +

h2α

Γ(2α + 1)
u2α
n +

h3α

2Γ(3α + 1)
Φ(tn, un(tn))

+
h3α

2Γ(3α + 1)
Φ(t+

2h3αΓ(3α + 1)

Γ(4α + 1)
, u(t) +

2h3αΓ(3α + 1)

Γ(4α + 1)
Φ(tn, un(tn))). (3.7)

By derivation Equation (3.7) once and twice, we obtain the following:

uα
n+1 = uα

n +
hα

Γ(α + 1)
u2α
n +

h2α

Γ(α + 2)
Φ(tn, un(tn)), (3.8)

u2α
n+1 = u2α

n +
hα

Γ(α + 1)
Φ(tn, un(tn)). (3.9)

Hence, the formulas in equations (3.7)-(3.9) used to generate convergent sequence for solving the the
Equation (2.1) with initial conditions (2.2).



Generalized Euler and Runge-Kutta methods ... 1741

3.3. Developed RKD Method for Solving 3th-Order FrODEs

We improve equations (2.3)-(2.7) for solving 3th-order ODEs to be suitable for solving 3th-order
FrODEs, we suppose the following formula for numerical solutions of the Equation (2.1) with initial
conditions in Equation (2.2):

un+1(tn) = un(tn) +
hα

Γ(α + 1)
uα
n(tn) +

h2α

Γ(2α + 1)
u2α
n (tn) + h3α

s∑
i=1

biki. (3.10)

uα
n+1(tn) = uα

n(tn) +
hα

Γ(α + 1)
u2α
n (tn) + h2α

s∑
i=1

b
′

iki, (3.11)

u2α
n+1(tn) = u2α

n (tn) + hα

s∑
i=1

b
′′

i ki. (3.12)

k1 = f(tn, un(tn)), (3.13)

k2 = f(tn + hc2, un(tn) + ha21k1), (3.14)

end

k3 = f(tn + hc3, un(tn) + ha31k1 + ha32k2). (3.15)

Table 1: The Butcher Tableau RKD3 Method of Third-Order

0

2
3

11
200

1
8

1
24

1
4

1
4

1
4

3
4

4. Implementations

In this section, we prove the efficiency of the proposed method by some numerical examples

Example 4.1. Consider the following third-order FrODE

D3αy(t) = a3αy(t); 0 < α < 1 (4.1)

with initial conditions y(0) = 1; Dαy(0) = aα; D2αy(0) = a2α.
The exact solution is y(t) = eat

Example 4.2. Consider the following third-order FrODE

D3αy(t) = a3αsin(at+
3Π

2
α); 0 < α < 1 (4.2)

with initial conditions y(0) = 0; Dαy(0) = aαsin(Πα
2
); D2αy(0) = a2αsin(Πα

2
).

The exact solution is y(t) = sin(at)
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Table 2: The Butcher Tableau RKD4 Method of Fourth-Order

0

1
2

1
48

1 1
12

1
12

1
12

1
12 0

1
6

1
3 0

1
6

2
3

1
6

5. Discussion of the Numerical Results

To discuss the numerical results which shown in Figure 1 for the implementations of this paper,
we have a comparisons on approximated solutions for the improved and proposed methods versus
analytical solutions for N=number of grids in the interval of definition of differential equation=50
and α = 0.96 for solving Example 4.1 for five cases. In case (1) a=-2 using modified Euler method,
case (2) a=-2 using the proposed two-stage method, case (3) a=-2 using modified two-stage RKD
Method, case (4) a=-2 using modified three-stage RKD method and case (5) a=-1.5 using proposed
two-stage method while case (6) for solving Example 4.2 using modified two-stage RKD method.
The main contribution of this paper is the establishment of direct methods for solving third-order
FrODEs, which are the derivation of new explicit method or develop explicit RKD method for solving
third-order FrODEs. The method of RKD and Euler methods are modified to be a suitable method
for directly solving some third order FrODEs. The proposed technique of this direct or development
methods require less computational work in addition to great features such as fast and effective
computation. The numerical solutions are compared with exact solutions to establish the validity of
the method. The numerical results of the methods show that the methods are applicable to FrODEs
and have a good agreement with exact solutions. The new methods provide encouraging results and
efficiency. Also, we studied the developed Euler method and proposed two-stage and three-stages
methods by using various cases of examples of third-order FrODEs to compare the efficiency of
the developed and proposed methods with analytical solutions. The numerical results in Figure 1
indicate that the new numerical methods showed good agreement with the exact solutions and these
methods provide encouraging results. To adapt the RKD methods for solving FrODEs. The adaption
for RKD methods have been studied and implemented. These methods are more cost effective in
terms of computation time than other existing methods. Furthermore, the function evaluations of
the modified RKD methods are few. Overall, the implementations of the numerical methods show
that the new methods are agree well with analytical solutions and require less function evaluations.

6. Conclusion

In this paper, we established direct numerical methods for solving third-order FrODEs. RKD
methods have been improved to be consistent for solving FrODEs. Various examples of third-order
FrODEs prove the efficiency of the proposed methods. The numerical results in Figures 1 indicate that
the new numerical methods showed good agreement with exact solutions. The new methods provide



Generalized Euler and Runge-Kutta methods ... 1743

(1)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  x

  
y

(x
),

w
(x

)

 

 

 Numerical Solution(Modified Euler Method )

 Analytical Solution

(2)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  x

  
y

(x
),

w
(x

)

 

 

 Numerical Solution (Proposed 2−Stage Method )

 Analytical Solution

(3)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  x

  
y

(x
),

w
(x

)

 

 

 Numerical Solution (Modified 2−Stage RKM Method )

 Analytical Solution

(4)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  x

  
y

(x
),

w
(x

)

 

 

 Numerical Solution (Modified 3−Stage RKM Method )

 Analytical Solution

(5)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  x

  
y

(x
),

w
(x

)

 

 

 Numerical Solution (Modified 2−Stage RKM Method )

 Analytical Solution

(6)
0 0.5 1 1.5 2 2.5 3 3.5 4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

  x

  
y

(x
),

w
(x

)

 

 

 Numerical Solution (Modified 3−Stage RKM Method )

 Analytical Solution

Figure 1: Comparisons on Approximated Solutions versus Analytical Solutions for N=50 and α =
0.96 for Solving Example 4.1 Using (1) Modified Euler Method and a=-2 (2) Proposed two-stage
method and a=-2 (3) Modified two-stage RKD Method and a=-2 (4) Modified three-stage RKD
Method and a=-2 and (5) Proposed two-stage method while (6) for Solving Example 4.2 Using
Modified two-stage RKD Method
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encouraging results and are efficient. The main contribution of this paper is the establishment of
direct methods for solving third-order FrODEs. The derivation of new one-stage explicit method and
two-stages, three-stage explicit RKD methods with constant step sizes for solving third-order FrODEs
have been introduced. The implementation of the numerical methods show that the new methods
agree well with analytical solutions and require less function evaluations. Modified Euler method
and modified RKD method are efficient because they are direct methods; hence, we save considerable
computational times. These methods are more cost effective in terms of computation time than other
existing methods. The proposed technique of these direct methods require less computational work
in addition to great features such as fast and effective computation. The numerical solutions are
compared with known exact solutions to establish the validity of the method. The numerical results
of the methods show that the methods are applicable to FrODEs.
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