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Abstract

We introduce Ćirić type ZR-contraction to investigate the existence of a single fixed point under
a binary relation. In the sequel, we demonstrate that a variety of contractions are obtained as con-
sequences of our contraction. Also, we provide illustrative examples to demonstrate the significance
of Ćirić type ZR-contraction in the existence of a fixed point for a discontinuous map via binary re-
lation. The paper is concluded by applications to solve an integral equation and a nonlinear matrix
equation.
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1. Introduction and preliminaries

The Banach contraction principle is the original and eminent outcome of the metric fixed point
theory formulated by S. Banach [6]. It confirms the existence and uniqueness of a contraction on a
complete metric space thereby providing an effective method to find a fixed point. Fixed point theory
plays a significant role in analysis to solve differential equation, integral equation, nonlinear matrix
equation and so on (for instance, [4], [5], [12], [16], [18], [21], [25], [27], [28] and so on). Motivated
by the fact that on utilizing a simulation function, different contractive conditions are expressible in
a simple and unified way, Khojasteha et al. [13] familiarized a simulation function to study the fixed
point for Z-contraction type operators. On the other hand, Turinici [29] instigated the perception of
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order-theoretic fixed point and Ran and Reurings [21] rediscovered an order-theoretic variant of the
Banach contraction principle. Recently Tomar et al. [27] established a fixed of a set-valued map in
a partial Pompeiu-Hausdorff metric space for a relation theoretic contractions and provided a novel
answer to the open question posed by Rhoades [22] on continuity at a fixed point.

In this paper, we familiarize Ćirić type ZR-contraction under an arbitrary binary relation to
examine the existence and uniqueness of a fixed point of a discontinuous single valued mapping in
a noncomplete metric space. In the sequel, with the help of examples and remarks, we demonstrate
that Ćirić type ZR-contraction includes, extends, unifies, and improves a large number of non-linear
contractions existing in the literature and marks supremacy over all those contractions wherein the
continuity of mapping and completeness (or closedness) of the whole space/subspaces are assumed
for the existence of a fixed point. Lastly, we utilize our contraction to solve an integral equation and
a nonlinear matrix equation to demonstrate the effectiveness of our result. The solution of a matrix
equation is also validated by a numerical example in which the matrix is assumed to be Hermitian.
However in most of the examples existing in the literature authors have considered a symmetric
matrix (For instance: Long et al. [16], Sawangsup and Sintunavarat [26]). It is worth mentioning
here that the symmetric matrix is a Hermitian matrix but the Hermitian matrix is not a symmetric
matrix thereby revealing the prominence of our results over others existing in the literature.

Definition 1.1. [13] A mapping ζ : [0,∞)× [0,∞) → R is a simulation function if:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t, s, t > 0;
(ζ3) {tn} and {sn} are sequences in (0,∞) satisfying limn→∞ tn = limn→∞ sn > 0, then

lim supn→∞ ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z.

Example 1.2. [13] If ϕ, ψ : [0,∞) → [0,∞) are two continuous functions and t, s ∈ [0,∞) such
that ζ : [0,∞)× [0,∞) → R, satisfy

(i) ζ(t, s) = ψ(s)− ϕ(t), where ψ(t) = ϕ(t) = 0 iff t = 0 and ψ(t) < t ≤ ϕ(t).

(ii) ζ(t, s) = s− ϕ(t, s)

ψ(t, s)
t, where ϕ(t, s) > ψ(t, s).

(iii) ζ(t, s) = s− ϕ(s)− t, where ϕ(t) = 0 iff t = 0.

Then in (i)-(iii), ζ is a simulation function.

In what follows (X , d), R, N, and N0 respectively, stand for a metric space, a non-empty binary
relation defined on a non-empty set X , the set of natural numbers, and the set of whole numbers.

Definition 1.3. [15] A binary relation R on a non-empty set X is defined as a subset of X × X .
We say that “υ is R-related to ω” iff (υ, ω) ∈ R.

Definition 1.4. [17] R is complete if either (υ, ω) ∈ R or (ω, υ) ∈ R (i.e. [υ, ω] ∈ R), ∀ υ, ω ∈ X .

Definition 1.5. [1] Let T be a self-mapping defined on a non-empty set X . Then R is T -closed if

(υ, ω) ∈ R ⇒ (T υ, T ω) ∈ R, υ, ω ∈ X .
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Definition 1.6. [15] The symmetric closure Rs is the smallest symmetric relation containing R,
i.e., Rs = R∪R−1.

Proposition 1.7. [1] If R is T -closed, then Rs is also T -closed.

Definition 1.8. [1] A sequence {υn} in X is R-preserving if

(υn, υn+1) ∈ R, n ∈ N0.

Definition 1.9. [14] R is transitive if (υ, ω) ∈ R and (ω, ρ) ∈ R implies that (υ, ρ) ∈ R

Definition 1.10. [1] R is d-self-closed if {υn} is an R-preserving sequence and if

υn
d−→ υ as n→ ∞,

then there exists a subsequence {υnk
} of {υn} with [υnk

, υ] ∈ R, k ∈ N.

Definition 1.11. [2] (X , d) is R-complete if every R-preserving Cauchy sequence in X converges
to a point in X .

Remark 1.12. [2] A complete metric space is R-complete. However, the reverse is not essentially
true. Further, if R is universal relation, then completeness coincides with R-completeness.

Definition 1.13. [2] A mapping T : X → X is R-continuous at υ if for any R-preserving sequence

{υn} with υn
d−→ υ, T (υn)

d−→ T (υ). Further, T is R-continuous if it is R-continuous at every point
of X .

Remark 1.14. [2] Every continuous mapping is R-continuous. However, the reverse is not essen-
tially true. Further, if R is universal relation, then continuity coincides with R-continuity.

Definition 1.15. [25] A subset D of X is R-directed if for each pair of points υ, ω ∈ D, there exists
ρ ∈ X satisfying (υ, ρ) ∈ R and (ω, ρ) ∈ R.

Definition 1.16. [14] Let X be a nonempty set, Y ⊆ X . Then, R|Y , the restriction of R to Y, is
the set R∩ Y2 (i.e. R|Y := R∩ Y2). In fact, R|Y is a relation on Y induced by R.

Definition 1.17. [3] R is locally transitive if for each (effectively) R-preserving sequence {υn} ⊂ X
(range Y := υn : n ∈ N0), the binary relation R|Y is transitive (R|Y : the restriction of R to Y).

Definition 1.18. [14] For υ, ω ∈ X , a path of length k in R from υ to ω is a finite sequence
{ρ0, ρ1, ρ2, ..., ρk} ⊂ X satisfying:
(i) ρ0 = υ and ρk = ω,
(ii) (ρi, ρi+1) ∈ R for each i (0 ≤ i ≤ k − 1) (k is a natural number).
Clearly, a path of length k necessitates k + 1 elements of X , which are not essentially distinct.

In the following

X (T ;R) := {υ ∈ X : (υ, T υ) ∈ R}, where T : X → X and γ(υ, ω,R) is the class of all paths in R
from υ to ω.
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2. Main result

We introduce Ćirić type ZR-contraction mapping under an arbitrary binary relation R.

Definition 2.1. Let T : X → X be a mapping of a metric space (X , d) equipped with a binary
relation R and ζ ∈ Z. If

ζ(d(T υ, T ω),MT (υ, ω)) ≥ 0, υ, ω ∈ X , (υ, ω) ∈ R, (2.1)

where

MT (υ, ω) = max
{
d(υ, ω), d(υ, T υ), d(ω, T ω), d(υ, T ω) + d(ω, T υ)

2

}
then T is called a Ćirić type ZR-contraction.

Proposition 2.2. If (X , d) is a metric space equipped with a binary relation R and T : X → X a
Ćirić type ZR-contraction with respect to ζ ∈ Z, then the following complement each other
(i) ζ(d(T υ, T ω),MT (υ, ω)) ≥ 0, ∀ υ, ω ∈ X with (υ, ω) ∈ R,
(ii) ζ(d(T υ, T ω),MT (υ, ω)) ≥ 0, ∀ υ, ω ∈ X with [υ, ω] ∈ R.

Proof . Clearly, (ii) ⇒ (i) is trivial.
Conversely, let (i) be true. Taking υ, ω ∈ X and [υ, ω] ∈ R. In case (υ, ω) ∈ R, then (ii) follows
from (i).

Now let (ω, υ) ∈ R, then using (i) and the symmetry of the metric d,

ζ(d(T υ, T ω),MT (υ, ω)) = ζ(d(T ω, T υ),MT (ω, υ)) ≥ 0

where

MT (υ, ω) = max
{
d(υ, ω), d(υ, T υ), d(ω, T ω), d(υ, T ω) + d(ω, T υ)

2

}
= max

{
d(ω, υ), d(ω, T ω), d(υ, T υ), d(ω, T υ) + d(υ, T ω)

2

}
= MT (ω, υ)

this shows that (i) ⇒ (ii). □

Now we utilize Ćirić type ZR-contraction to establish the fixed-point.

Theorem 2.3. Let (X , d) be a metric space equipped with a binary relation R and T be a self-
mapping on X . Let the following hypotheses hold:

(a) there exist Y ⊆ X , T X ⊆ Y ⊆ X so that (Y , d) is R- complete,
(b) X (T ;R) ̸= ϕ ,
(c) R is T -closed and R is transitive.
(d) T is a Ćirić type ZR-contraction,
(e) either R|Y is d-self-closed or T is R-continuous.

Then T has a fixed point.
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Proof . Since X (T ;R) ̸= ϕ. Let υ0 ∈ X (T ;R). Construct a Picard sequence {υn} as υn+1 = T υn,
∀ n ∈ N0. Since (υ0, Tυ0) ∈ R and R is T -closed,

(T υ0, T 2υ0), (T 2υ0, T 3υ0), ..., (T nυ0, T n+1υ0), ... ∈ R.

Thus

(υn, υn+1) ∈ R, (2.2)

and the sequence {υn} is R-preserving. Since T is Ćirić type ZR-contraction, we have

ζ(d(T υn−1, T υn),MT (υn−1, υn)) ≥ 0, (2.3)

where

MT (υn−1, υn) = max
{
d(υn−1, υn), d(υn−1, T υn−1), d(υn, T υn),

d(υn, T υn−1) + d(υn−1, T υn)
2

}
= max

{
d(υn−1, υn), d(υn−1, υn), d(υn, υn+1),

d(υn, υn) + d(υn−1, υn+1)

2

}
= max

{
d(υn−1, υn), d(υn, υn+1),

d(υn−1, υn+1)

2

}
= max

{
d(υn−1, υn), d(υn, υn+1)

}
.

From (2.3) we get

0 ≤ ζ
(
d(υn, υn+1),MT (υn−1, υn)

)
= ζ

(
d(υn, υn+1),max(d(υn−1, υn), d(υn, υn+1)

)
.

Suppose that d(υn, υn+1) > d(υn−1, υn) for some n ∈ N0, then from (2.1)

0 ≤ ζ
(
d(υn, υn+1), d(υn, υn+1)

)
,

a contradiction. Thus d(υn, υn+1) < d(υn−1, υn), n ∈ N0 and

0 ≤ ζ
(
d(υn, υn+1), d(υn−1, υn)

)
.

So {d(υn, υn+1)} is a decreasing sequence of non-negative real numbers. Therefore, it is convergent.
Suppose

lim
n→∞

d(υn, υn+1) = r ≥ 0.

If r > 0 then from (2.2) and (ζ3)

0 ≤ lim sup
n→∞

ζ
(
d(υn, υn+1), d(υn−1, υn

)
< 0,

a contradiction. So r = 0, i.e.,

lim
n→∞

d(υn, υn+1) = 0. (2.4)
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Now we shall show that {υn} is a Cauchy sequence. If possible, let {υn} be not a Cauchy sequence.
Then by Lemma 4 [20], there exist ϵ > 0 and subsequences {nk} and {mk} of positive integers such
that the sequences

{d(υmk
, υnk

), d(υmk
, υnk+1), d(υmk−1, υnk

), d(υmk−1, υnk+1), d(υmk+1, υnk+1)}
→ ϵ as k → +∞.

Thus

lim
k→∞

MT (υmk
, υnk

) = lim
k→∞

max
{
d(υmk

, υnk
), d(υmk

, T υmk
), d(υnk

, T υnk
),

d(υmk
, T υnk

) + d(υnk
, T υmk

)

2

}
= ϵ.

Thus applying (d) with υ = υmk
and ω = υnk

, we get

0 ≤ lim sup
n→∞

(d(υmk+1, υnk+1),MT (υmk
, υnk

)) < 0,

a contradiction. Thus {υn} is a Cauchy sequence in X .
Since {υn} ⊆ T X ⊆ Y , therefore {υn} is R-preserving Cauchy sequence in Y . Since (Y , d) is

R-complete, there exists p ∈ Y satisfying υn
d−→ p. If T is R-continuous,

p = lim
n→∞

υn+1 = lim
n→∞

T υn = T lim
n→∞

υn = T p.

Hence p is a fixed point of T .
On the other hand, if R is d-self-closed. Since {υn} is an R-preserving sequence and

υn
d−→ υ,

there exists a subsequence {υnk
} of {υn} with

[υnk
, υ] ∈ R|Y , ∀ k ∈ N0.

Using (d) and Proposition 2.2, [υnk
, υ] ∈ R and υnk

d−→ υ, we have

0 ≤ ζ(d(υnk+1, T υ),MT (υnk
, υ)) = ζ(d(T υnk

, T υ),MT (υnk
, υ))

< MT (υnk
, x)− d(T υnk

, T υ)

=⇒ d(T υnk
, T υ) ≤MT (υnk

, υ),

where

MT (υnk
, υ) = max

{
d(υnk

, υ), d(υnk
, υnk+1), d(υ, T υ),

d(υnk
, T υ) + d(υ, υnk+1)

2

}
.

By (2.4) and taking limit k → ∞

lim
k→∞

d(υnk+1, T υ) = lim
k→∞

MT (υnk
, υ) = d(υ, T υ) > 0.

From the condition (ζ3)

0 ≤ lim sup
k→∞

ζ(d(υnk+1, T υ),MT (υnk
, υ)) < 0,

a contradiction and hence d(υ, T υ) = 0, i.e., T υ = υ, i.e., υ is a fixed point of T . □
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Theorem 2.4. In addition to the hypotheses of Theorem 2.3, if

(f) γ(υ, ω,R) ̸= ϕ.

Then T has a unique fixed point.

Proof . Let υ∗, ω∗ be two fixed points of T so that υ∗ ̸= ω∗. Since γ(υ∗, ω∗,R) ̸= ϕ, there exists a
path {ρ0, ρ1, ρ2, ..., ρk} of some finite length k in R from υ to ω so that

ρ0 = υ∗, ρk = ω∗, (ρi, ρi+1) ∈ R, i = 0, 1, 2, ..., k − 1.

Since R is transitive,

(ρ0, ρk) ∈ R.

Therefore,

0 ≤ ζ(d(T ρ0, T ρk),MT (ρ0, ρk)) < MT (ρ0, ρk)− d(T ρ0, T ρk)
= MT (υ

∗, ω∗)− d(υ∗, ω∗) = 0,

a contradiction. Thus T has a unique fixed point. □

The following examples are given to appreciate the effectiveness of Theorem 2.4 and to validate the
result proved herein.

Example 2.5. Let X = [0, 4) equipped with a usual metric and a binary relation R =
{
(0, 0), (0, 1),

(0, 2), (0, 3), (1, 1), (1, 3), (2, 2)}. Let a self-mapping T : X → X be defined by

T (υ) =

{
0, υ ∈ [0, 1],

1, υ ∈ (1, 4).

Let Y = [0, 1], then clearly T υ = {0, 1} ⊂ Y and Y is R-complete. Evidently, T is not continuous
but R is T -closed and transitive. For υ = 0, T υ = 0, (υ, T υ) ∈ R, i.e., X (T ,R) ̸= ϕ. If we take
any R-preserving sequence {υn} with

υn
d−→ υ and (υn, υn+1) ∈ R, ∀ n ∈ N0,

(υn, υn+1) ∈ R|Y , ∀ n ∈ N0 and there exists N ∈ N0 such that υn = υ ∈ {0, 1}, ∀ n ≥ N . A
subsequence {υnk

} = {υ}, ∀ k ∈ N0, in such a way that (υnk
, υ) ∈ R|Y , ∀ k ∈ N0. Therefore, R|Y is

d-self-closed.
Let ζ : [0,∞) × [0,∞) → R be defined by ζ(t, s) = 4

5
s − t, s, t ∈ [0,∞). Now, with a view

to check that T is Ćirić type ZR-contraction, let (υ, ω) = {(0, 2), (0, 3), (1, 3)} (as in rest of cases
d(T υ, T ω) = 0), we have

ζ
(
d(T υ, T ω),MT (υ, ω)

)
=

4

5
MT (υ, ω)− d(T υ, T ω) ≥ 0

=⇒
d(T υ, T ω) ≤ 4

5
MT (υ, ω). (2.5)

If (υ, ω) = {(0, 2), (0, 3), (1, 3)}, then from (2.5)

d(T υ, T ω) = d(0, 1) = 1 ≤ 4

5
MT (υ, ω).

Thus all the hypotheses of Theorem 2.4 (Theorem 2.3) are verified and 0 is the only fixed point of T .
Noticeably, neither (X , d) is complete nor R-complete.
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Example 2.6. Let X = [0, 4] be equipped with a usual metric and a binary relation R =
{
(1, 1), (3, 3),

(4, 4), (1, 2), (1, 4), (3, 4)}. Let a self-mapping T : X → X be defined by

T (υ) =


1, υ ∈ [0, 1),

3, υ ∈ [1, 2),

4, υ ∈ [2, 4]

Let Y = [1, 4]. Clearly, T υ = {1, 3, 4} ⊂ Y ⊂ X where Y is R-complete, T is not continuous but
R is T -closed and transitive. For υ = 3, T υ = 4, (υ, T υ) ∈ R, i.e., X (T ,R) ̸= ϕ. If we take any
R-preserving sequence {υn} with

υn
d−→ υ and (υn, υn+1) ∈ R,∀ n ∈ N0.

Here, one may notice that (υn, υn+1) ∈ R|Y , ∀ n ∈ N0 and there exists N ∈ N0 such that υn = υ ∈
{1, 3, 4}, ∀ n ≥ N . Choose a subsequence {υnk

} = {υ}, ∀ k ∈ N0, in such a way that (υnk
, υ) ∈ R|Y ,

∀ k ∈ N0. Therefore, R|Y is d-self closed.
Let ζ : [0,∞)× [0,∞) → R be defined by ζ(t, s) = 6

7
s− t, s, t ∈ [0,∞). Now, with a view to check

that T is Ćirić type ZR-contraction, let (υ, ω) = {(1, 2), (1, 4)} (as in rest of cases d(T υ, T ω) = 0),
we have

ζ
(
d(T υ, T ω),MT (υ, ω)

)
=

6

7
MT (υ, ω)− d(T υ, T ω) ≥ 0

=⇒
d(T υ, T ω) ≤ 6

7
MT (υ, ω). (2.6)

Case (i): If (υ, ω) = (1, 2), then from (2.6)

d(T 1, T 2) = d(3, 4) = 1 ≤ 6

7
MT (1, 2) = 1.71.

Case (ii): If (υ, ω) = (1, 4), then from (2.6)

d(T 1, T 4) = d(3, 4) = 1 ≤ 6

7
MT (1, 4) = 2.57.

shows that condition (d) is verified. Thus, all the hypotheses of Theorem 2.4 (Theorem 2.3) are true
and υ = 4 is the only fixed point of T .

Remark 2.7. In Example 2.6, observe that at (υ, ω) = (1, 2),

d(T 1, T 2) = d(3, 4) = 1 > k = kd(1, 2),

for any k ∈ [0, 1). Thus neither the result of Alam and Imdad [1] nor the result of Sawangsup et al.
[26] is applicable in the present example.

Remark 2.8. It is worth mentioning that Theorem 2.4 is a genuine extension and improvement of
Alam and Imdad [1] in a metric space, in view of the fact that we have neither used the completeness
of whole space nor its subspace. Rather, we used a relatively weaker notion like: R completeness
of any subspace of the whole space. Further, we replaced continuity of an involved map by its R-
continuity or d-self closedness of restriction of R to Y (One may check by a simple calculation that in
Examples 2.5 and 2.6 involved map is not even R-continuous. However, restriction of R to Y is d-self
closed). Moreover, Ćirić type ZR-contraction is a significant generalization of Banach contraction
used by Alam and Imdad [1]. In fact, binary relation R is a near-order and it is nonreflexive and
nonsymmetric. Consequently, it is none of tolerance, preorder, strict order, or partial order. Further,
it is never a symmetric closure of a binary relation R.
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Remark 2.9. Theorem 2.3 is true if the transitivity of R is substituted by local transitivity [3].

In particular, on taking Y = X in Theorem 2.4, we have:

Corollary 2.10. Theorem 2.3 is true if (a) is replaced by
(a′) (X , d) is R-complete.

In view of Remark 1.12 and Remark 1.14, the following natural result is obtained:

Corollary 2.11. Theorem 2.3 remains true if R-completeness of (Y , d) is replaced by completeness
in (a) and R-continuity is replaced by continuity in (e).

Remark 2.12. Noticeably, Theorem 2.4 , Corollary 2.10, and 2.11 are relation theoretic variants of
Olgun et al. [19]. It interesting to see( Examples 2.5 and 2.6) that T is neither a Z-contraction [13]
nor a generalized Z-contraction [19] and consequently does not satisfy the hypotheses of [13], [15]
and related results ([1], [6], [8] - [10], [23] and so on).

Corollary 2.13. Conclusions of the Theorem 2.3, Corollaries 2.10 and 2.11 remain true if the
condition (d) is replaced by

ζ(d(T υ, T ω), d(υ, ω)) ≥ 0, υ, ω ∈ X with (υ, ω) ∈ R.

It is interesting to see here that Corollary 2.13 is an improved relation theoretic version of Khojasteh
et al. [13].

Remark 2.14. A variety of extensions and improvements of known contractions are obtained on
varying the elements of ZR. For instance :

(i) Relation Theoretic version of Banach Contraction [6] is obtained on taking
ζ : [0,∞)× [0,∞) → R as ζB(t, s) = λs− t, s, t ∈ [0,∞).

(ii) Relation Theoretic version of Rhoades type contraction [23] is obtained on taking
ζ : [0,∞)× [0,∞) → R as ζR(t, s) = s− ϕ(s)− t, s, t ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is lower
semi continuous function and ϕ−1(0) = {0}.

(iii) Relation Theoretic version of Geraghty contraction [10] is obtained on taking
ζ : [0,∞)× [0,∞) → R as ζG(t, s) = sϕ(s)− t, s, t ∈ [0,∞), where ϕ : [0,+∞) → [0, 1) be a
mapping such that lim supt→r+ ϕ(t) < 1, r > 0.

(iv) Relation Theoretic version of Boyd and Wong contraction [7] is obtained on taking
ζ : [0,∞)× [0,∞) → R as ζBW (t, s) = η(s)− t, s, t ∈ [0,∞), where η : [0,+∞) → [0,+∞) is an
upper semi continuous mapping, η(t) < t, t > 0 and η(0) = 0.

(v) Relation Theoretic version of Branciari contraction [8] is obtained on taking
ζ : [0,∞)× [0,∞) → R as ζB(t, s) = s−

∫ t

0
ϕ(u)du, s, t ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is such

that
∫ ϵ

0
ϕ(t)dt exists and

∫ ϵ

0
ϕ(t)dt > ϵ, ϵ > 0.

(vi) Relation Theoretic version of Hierro et al. [24] is obtained on taking ζ : [0,∞)× [0,∞) → R
as ζU(t, s) = sh(t, s)− t, s, t ∈ [0,∞), where h : [0,+∞) → [0,+∞) is a mapping, such that
h(t, s) < 1 and lim supn→∞ h(tn, sn) < 1 provided that {tn} and {sn} ⊂ (0,+∞) are sequences
satisfying limn→∞ tn = limn→∞ sn.
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Remark 2.15. (i) It is interesting to mention that relation-theoretic contractions are
comparatively weaker than standard contractions since these hold only for the elements in the
relation under consideration (see, in Examples 2.5, 2.6) and in the established results Ćirić type
ZR-contraction is assumed to hold only for transitive relation. Consequently, we are able to
particularize the existing results to a variety of situations.

(ii) Noticeably, in Rhoades [23], ϕ is taken to be continuous, nondecreasing, and limt→∞ ϕ(t) = ∞.
However, in view of Remark 2.14 (ii) we may replace it with a lower semicontinuity of ϕ.
Consequently, our version is improved and extended than Rhoades [23].

3. Applications

3.1. Application to an integral equation

We solve an integral equation under some binary relation using Theorem 2.3. Let

υ(t) = q(t) + α

∫ b

a

k(s, t)f(s, υ(s))dt, t ∈ I = [a, b] (3.1)

where υ is an unknown function on I = [a, b], q : I → R, k : I × I → R and f : I × R → R, α > 0
a parameter and X := C(I,R).

Theorem 3.1. Consider (3.1), such that

(i) supt∈I
∫ b

a
k(s, t)ds ≤ 1

α(b− a)
, t, s ∈ I

(ii) |f(s, υ(s))− f(s, ω(s))| ≤ |υ(s)− ω(s)|, ∀ υ, ω ∈ R.
Then equation (3.1) has a solution in X .

Proof . Define T : C(I,R) → C(I,R) by

T υ(t) = q(t) + α

∫ b

a

k(s, t)f(s, υ(s))ds, t ∈ I = [a, b]

and a binary relation

R = {(υ, ω) ∈ C(I,R)× C(I,R)|υ(t) ≤ ω(t),∀ t ∈ I}.

Here C(I,R) is equipped with

d(υ, ω) = supt∈I |υ(t)− ω(t)|, υ, ω ∈ C(I,R)

and (C(I,R), d) is R-complete.

Take R-preserving sequence {υn} as υn
d−→ υ. Then,

υ0(t) ≤ υ1(t) ≤ υ2(t) ≤ ... ≤ υn(t) ≤ υn+1(t) ≤ ..., t ∈ I.
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and convergence to υ(t) implies that υn(t) ≤ υ(t), n ∈ N0, i.e., we can choose a subsequence {υnk
}

of {υn} such that [υnk
, υ] ∈ R, n ∈ N0. Hence, R is d-self-closed.

If (υ, ω) ∈ R, i.e., υ(t) ≤ ω(t), α > 0 and k(t, s) ≥ 0, we get

(T υ)(t) = q(t) +

∫ b

a

k(s, t)f(s, υ(s))ds

≤ q(t) +

∫ b

a

k(s, t)f(s, ω(s))ds

= (T ω)(t),

which shows that (T υ, T ω) ∈ R, i.e., R is T -closed.
Now for (υ, ω) ∈ R,

d(T υ, T ω) = supt∈I |T υ(t)− T ω(t)|

= supt∈I |α|
∫ b

a

|k(s, t)||f(s, υ(s))− f(s, ω(t))|ds

= αsupt∈I

{∫ b

a

|k(s, t)|ds
}{∫ b

a

|f(s, υ(s))− f(s, ω(s))|ds
}

≤ 1

b− a

{∫ b

a

|f(s, υ(s))− f(s, ω(s))|ds
}

≤ 1

b− a

∫ b

a

|υ(s)− ω(s)|ds

≤ 1

b− a

∫ b

a

d(υ, ω)ds

= d(υ, ω) ≤MT (υ, ω).

This proves that T satisfies hypothesis (d) of Theorem 2.3. Now let p ∈ C(I,R) be a solution of
(3.1), i.e.,

p(t) ≤ q(t) + α

∫ b

a

k(s, t)f(s, p(t))ds = (T p)(t)

=⇒ (p, T p) ∈ R, i.e., X(T ,R) ̸= ϕ.

Now, let ρ = max{υ, ω}. Then υ(t) ≤ ρ(t) and ω(t) ≤ ρ(t), i.e., (υ, ρ) ∈ R and (ω, ρ) ∈ R.
So, the sequence {υ, ρ, ω} describes a path joining υ to ω in R. Consequently, all the hypotheses of
Theorem 2.4 are verified and we conclude that T has a unique fixed point, i.e., the integral equation
has a solution. □

3.2. Application to a nonlinear matrix equation

Now we utilize Corollary 2.13 to solve the nonlinear matrix equation. Let C(n) be the set of
all complex matrices of order n. In the following, the symbol ∥.∥ denotes the spectral norm of a
matrix A, i.e., ∥A∥ =

√
λ+(A∗A), λ+(A∗A) is the largest eigenvalue of (A∗A), where A∗ is the

conjugate transpose of A. Further, ∥.∥tr denotes the trace norm of A and ∥A∥tr =
∑n

j=1 sj(A),
sj(A), j = 1, 2, 3, ..., n, are the singular values of A ∈ C(n). The set of all Hermitian matrices of order
n, H(n) ⊂ C(n), induced by this trace norm, is a Banach space. Clearly, (H(n),⪯) is a partially
ordered set.
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Theorem 3.2. Consider the nonlinear matrix equation

X = Q+
m∑
i=1

A∗
iG(X )Ai, (3.2)

where Ai is an arbitrary matrix of order n, i = 1, 2, ...,m and G : H(n) → P(n) is a continuous
order-preserving mapping satisfying G(0) = 0. Here P(n) is the positive definite matrix of order n.
Let there exists a positive real number M satisfying

(i) |tr(G(Y)− G(X )| ≤ 1
M [ψ|tr(Y − X )|], X ,Y ∈ H(n), (X ,Y) ∈⪯ and ψ : [0,∞) → [0,∞) is a

continuous function so that ψ(t) < t, ∀ t > 0.

(ii)
∑m

i=1AiA∗
i ≺ MIn, In is the identity matrix of order n.

(iii)
∑m

i=1A∗
iG(Q)Ai ≻ 0.

Then the matrix equation (3.2) has a unique Hermitian solution.
Further, the iteration

Xn = Q+
n∑

i=1

A∗
iG(Xn−1)Ai, (3.3)

X0 ∈ H(n) such that X0 ⪯ Q +
∑n

i=1A∗
iG(X0)Ai, converges in the sense of trace norm ∥.∥tr, to the

solution of the nonlinear matrix equation (3.2).

Proof . Define T : H(n) → H(n) as

T (X ) = Q+
m∑
i=1

A∗
iG(X )Ai, ∀X ∈ H(n). (3.4)

Clearly, T is well defined and ⪯ on H(n) is T -closed. The fixed point of T is the solution of (3.2).
Here, we assert that T is a ZR⪯-contraction mapping with respect to ζ, ζ : [0,∞) × [0,∞) → R
be defined by ζ(t, s) = ψ(s) − t, s, t ∈ [0,∞). By (i) (X ,Y) ⪯, i.e., X ⪯ Y implies G(X ) ⪯ G(Y).
Therefore

∥T (Y)− T (X )∥tr = tr(T (Y)− T (X ))

= tr
( m∑

i=1

A∗
i (G(Y)− G(X ))Ai

)
=

m∑
i=1

tr(A∗
i (G(Y)− G(X ))Ai)

=
m∑
i=1

tr(AiA∗
i (G(Y)− G(X )))

= tr
(( m∑

i=1

AiA∗
i

)
(G(Y)− G(X ))

)
≤

(
∥

m∑
i=1

AiA∗
i ∥
)
∥G(Y)− G(X ))∥tr



Relation theoretic results via simulation function with applications 1781

(since 0 ≤ tr(AB) ≤ ∥A∥tr(B), A ⪰ 0 and B ⪰ 0, by Lemma 3.1 [21]).

≤ ∥
∑m

i=1 AiA∗
i ∥

M
[ψ(∥Y − X∥tr)]

< ψ(∥Y − X∥tr)

(since A ≺ In, implies ∥A∥ < 1, A ∈ H(n), by Lemma 2.2 [16]),
i.e.,

0 < ψ(∥Y − X∥tr)− ∥T (Y)− T (X )∥tr

Hence,

0 ≤ ζ(∥T (Y)− T (X )∥tr, ∥Y − X∥tr). (3.5)

This proves that T is a ZR⪯-contraction. Since
∑m

i=1A∗
iG(Q)Ai ≻ 0, Q ⪯ T (Q) and hence

H(n)(T ;⪯) ̸= ϕ. So, there exists Q ∈ H(n)(T ;⪯). Thus, all the hypotheses of Corollary 2.13
are verified and there exists χ ∈ H(n) so that T (χ) = χ, i.e., the matrix equation (3.2) has a
solution.

Since X ,Y ∈ H(n), there exists a greatest lower bound and a least upper bound, γ(υ, ω,R) ̸= ϕ,
υ, ω ∈ H(n). Using Corollary 2.13, T has a unique fixed point in H(n) and consequently, Equation
(3.2) has a solution in H(n). □

Next, we give a numerical example with an appropriate graph to validate the authenticity and
visualize the related concepts of Theorem 3.2.

Example 3.3. Let, in Equation (3.2) , for i = 3,

Q =


3 1.5i 0 0

−1.5i 3 1.5i 0
0 −1.5i 3 1.5i
0 0 −1.5i 3

 is a Hermitian positive definite matrix of order 4,

A1 =


0.0010 0.2100 0.0231 0
0.1200 0.2110 0 0.3120
0.0110 0.5010 0.0020 0.1210
0.0090 0.0100 0.1212 0.1800

, A2 =


0 0.3100 0.0140 0.2150

0.0020 0.0100 0.3120 0
0.1410 0.0500 0.0690 0.0120

0 0.1210 0.0020 0.0910

 and

A3 =


0.1210 0.1201 0.0141 0.0090

0 0.1290 0.0250 0.0295
0.0030 0 0.2190 0
0.2190 0.1540 0.0030 0.0010

 are matrices of order 4.

Define ψ : [0,∞) → [0,∞) as ψ(t) = t
2
, t ∈ [0,∞). Define a continuous order preserving mapping

G : H(n) → P(n) as G(X ) = X . Clearly , G(0) = 0. So, using Equation (3.2)

X = Q+A∗
1(X )A1 +A∗

2(X )A2 +A∗
3(X )A3. (3.6)

One may verify that all the hypotheses of Theorem 3.2 are true for M = 1
2
.

Now, consider the iteration (3.3) for G(X ) = Xn−1 and i = 3

Xn = Q+A∗
1(Xn−1)A1 +A∗

2(Xn−1)A2 +A∗
3(Xn−1)A3, (3.7)

X0 = Q and the error E0 = ∥Xn − Xn−1∥tr. After fourteen iterations, we approximate a solution of
equation (3.6) as:
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Figure 1:

X̃ ≈ X14 =
3.4128 0.4581 + 1.6030i 0.1065− 0.1415i 0.2639 + 0.0476i

0.4581− 1.6030i 5.1871 0.2644 + 1.6940i 1.0585 + 0.0116i
0.1065 + 0.1415i 0.2644− 1.6940i 3.7938 0.2235 + 1.3899i
0.2639− 0.0476i 1.0585− 0.0116i 0.2235− 1.3899i 4.0485


with E14 = 1.8488e− 05.

The error of the iteration process (3.7) for Equation (3.6) is shown in Figure 1.

Conclusion

We have proved the existence of a single fixed point for relation theoretic variants of Ćirić type
contraction [9] via simulation function. Our theorems and corollaries are sharpened versions of the
well-known results, wherein completeness and continuity are replaced by theirR analogues, which are
comparatively weaker notions. Examples and applications to find the solution of an integral equation
and a nonlinear matrix equation substantiate the utility of these extensions. It is interesting to see
that a matrix equation solved is similar to discrete-time algebraic Riccati equation [11] arising in the
infinite-horizon optimal control problems.
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