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Abstract

The objective of this research is to design and implement a computational model to determine DNA
barcodes by utilizing the Particle Swarm Optimization (PSO) algorithms implemented on Big Data
Platforms, namely Apache Hadoop and Apache Spark. The steps are as follows: (i) inputting DNA
sequences to Hadoop Distributed File System (HDFS) in Apache Hadoop, (ii) pre-processing data,
(iii) implementing PSO by utilizing the User Defined Function (UDF) in Apache Spark, (iv) collecting
results and saving to HDFS. After obtaining the computational model, two following simulations have
been done: the first scenario is using 4 cores and several worker nodes, meanwhile, the second one
consists of a cluster with 2 worker nodes and several cores. In terms of computational time, the results
show a significant acceleration between standalone and big data platforms with both experimental
scenarios. This study proves that the computational model built on the big data platform shows the
development of features and acceleration of previous research.

Keywords: Big data, Algorithm, Particle swarm optimization, Similarity check, Motif discovery,
DNA barcoding

1. Introduction

Reading on DNA barcoding [2] is one of the problems of concern in molecular information on the
taxonomic aspects of biology. DNA barcoding intends to provide an efficient approach to identifying
individuals at the species level, and consequently, greatly contribute to taxonomic investigations [8].
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This DNA barcoding method is easy to popularize and standardize by building a unified database
and identification platform [15]. The identification efficiency of the DNA barcoding method will not
be affected by experience or environmental factors [14]. Diagnosis on a molecular scale through DNA
barcoding provides an alternative for plant identification that is fast, accurate, and unambiguous in
the identification process. DNA barcoding can be used for two purposes, which are as a new tool
to help taxonomists who are accustomed to working hard on hard-to-identify specimens and as an
innovative tool for non-taxonomists and to quickly identify plants [6].

The amount of biological data of living things that exist, both animals and plants that we can
collect today is very limitless. This huge amount of data is a challenge for the world of bioinformatics,
which is the application of computational system techniques to analyze and manage natural data,
namely biological information [3]. There are two challenges faced by the DNA motif detection
approach, which are DNA transcription factors and weak DNA motifs. DNA transcription factors
where proteins bind to DNA sequences and structural motifs which are usually located upstream of
the target gene, usually have a short structure. Weak DNA motifs to conserve due to evolution and
mutation are also challenges of this DNA motif detection approach. Therefore, using either a simple
string comparison method or an exhaustive search of all combinations of several methods cannot
effectively provide accurate identification of transcription factors [26].

The Particle Swarm Optimization Algorithm [12, 25, 11, 7] has undergone many changes since
its introduction in 1995. As researchers have learned about this technique, they have created new
versions, developed new applications, and published theoretical studies on the effects of various
parameters and aspects of the algorithm [16]. Research from [9] on DNA motifs discovery using Par-
ticle Swarm Optimization (PSO) and using Expectation Maximization (EM) can be concluded that
PSO/EM tends to have a consistent offset from the actual known motif locations. Only in this study,
it is stated that even though using environmental topology, particle swarm optimization/Expectation-
Maximization stops at a local optimum.

Apache Spark performs memory computations using a Resilient Distributed Dataset (RDD).
Apache Spark could let the scientists to process large amounts of data at once in a short amount
of time up to 100 times faster than Apache Hadoop in memory and 10 times faster than Apache
Hadoop on disk. Apache spark also allows user programs to load data into cluster memory and
makes it possible to perform iterative queries, which is great for machine-learning algorithms [5].

Research on DNA barcoding motif discovery has been done a lot. Following are some studies
on DNA barcodes such as in [19] using a spiral dynamic optimization algorithm, also in [27] which
used ant colony optimization and expectation-maximization, and [23] which used bacterial foraging
optimization. The use of the particle swarm optimization algorithm has also been used in [9] which
uses particle swarm optimization and expectation maximization.

This research is aimed on using the PSO algorithm which will then add the concept of big data
analysis to the computation which is expected to speed up the time required for computing with
large data. Two big data platforms are used in this research as follows: Apache Hadoop and Apache
Spark. In the other words, in this case we implement PSO into Apache Spark by utilizing the UDF
function, so that it can run parallel along available nodes. Moreover, the DNA sequence datasets
need to be saved in Hadoop Distributed File System (HDFS) that is available in Apache Hadoop.

2. Research methodology

The computational model in this study can be seen in Figure 1. The first step is to enter the
input data in the form of DNA sequence data which is uploaded first to Google Cloud Storage.
Google Cloud Storage itself provides a connector that connects Google Cloud Storage with HDFS
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which makes Google Cloud Storage directly accessible without having to use HDFS first. After the
file was uploaded, the next step was to import it into Apache Spark with the data type used in the
form of a data frame containing RDD which has been partitioned into several parts in each block file
in Google Cloud Storage.

Figure 1: Research Computational Model

The next stage was data preprocessing. This stage was the first stage carried out in the Apache
Spark environment. The process carried out at this stage was to separate the sample name and DNA
sequence from the sample and also perform sequence trimming on the sequences obtained. After the
clean data was obtained, we start to implement the PSO algorithm in Apache Spark as illustrated
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in Figure 2.

Input:

� Objective function F(x), with x = x1, x2, x3, . . . , xdim where dim is numbers
of variables/dimensions

� Numbers of particles in population (numPopulation)

� Maximum Numbers of iterations (maxIter)

� Learning Coefficients c1 and c2

� Weight inersia w

� Maximum speed Vmax

Output: Best particle Gbest
Process:

1. Generate population
−→
X i (i = 1, 2, 3, . . . ,numPopulation)

2. Find best local solution
−→
L best

3. Update global best
−→
G best if

−→
L best is better

4. Generate initial speed on each particle V0

5. while t <maxIter do

for i = 1: numPopulation do
Pick random numbers −→r 1 dan −→r 2

Update particles’ speed with

−→
V i(t+ 1) = w ∗

−→
V i(t) + c1 ∗ −→r 1(

−→
L best −

−→
X i(t)) + cg ∗ −→r 2(

−→
G best −

−→
X i(t))

Update particles’ position with

−→
X i(t+ 1) =

−→
X i(t) +

−→
V i(t)

Check and update particles’ position according to

if F (
−→
X i) < F (

−→
L best) then

Update local best:
−→
L best ←

−→
X i

if F (
−→
L best) < F (

−→
G best) then

Update global best:
−→
G best ←

−→
L best

end if
end if

end for
end while
6. return Gbest
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First, we generate a random population index as the initial index of sequence checking. Before
generating population, we define an index sequence in numeric as in Figure 2. It can be seen in
the DNA sequence DNA-A, we have index 1, 2, and 3 for “G”, “A”, “C”, etc. The same way is
done on the DNA sequence to compare: DNA-B, DNA-C. Based on the numerical index sequence,
we randomly generate a population as a collection of initial indexes. For example, in Figure 3, on
the second row/individual, we have two initial indexes: 2 and 6. It means if we define the length of
pattern is 3 then there are two short DNA sequences: “A C A” and “G A C”.

Figure 2: Numerical index Representation on DNA Sequence

Figure 3: An example of a population generated randomly on the sequence DNA-A



1566 Riza, Nurfathiya, Kusnendar, Samah

After obtaining a population, we calculate fitness function, which is by using Hamming Distance.
Hamming distance is done by taking the first sequence and then comparing it with the following
sequences. Then the flow that will be carried out to make comparisons is to compare DNA-A with
DNA-B then DNA-A with DNA-C as illustrated in Figure 4. After the value of the fitness function
was obtained, the next step was to update the particle position and update the velocity by evaluating
the new particle position and velocity which is the learning stage of the particle swarm optimization
algorithm as can be seen in Figure 2.

Figure 4: An example of calculation of Hamming Distance on DNA-A, DNA-B, and DNA-C

Since we are working on Big Data Platforms, basically all computational steps explained pre-
viously are done in Apache Spark by utilizing the UDF function. In running this program, it is
necessary to initiate SparkSession first which is a library to run applications on Apache Spark.
SparkSession will use the master set up by the dataproc on the Google Cloud Platform. Some other
required spark libraries include types, udf, lit, and length. Meanwhile, the libraries for running the
particle swarm optimization algorithm are pandas and numpy, as illustrated in Figure 5.

Figure 5: Initialization and import library in SparkSession

After importing the software library and running SparkSession, the next step is to generate code
for user data input. In addition, we also include information about the cluster such as the number
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of masters, the number of nodes, the number of cores, and the number of experiments which will be
used for the output file name. For the number of nodes and the number of cores, it is also necessary
to repartition data according to the number of cores and the number of existing nodes.

Then, we perform a main computation in PSO, which is to calculate fitness function by using
Hamming Distance in Apache Spark. In this Big Data Platform computing model, the calculation
of the hamming distance will be made into a UDF so that the function can run on partitions on each
existing node. The program code for this stage can be seen in Figure 6. The program code for UDF
computing Hamming Distance.

Figure 6: Calculation of Fitness Function involving Hamming Distance by using UDF in Apache Spark

After the results were obtained, the next step was to create a barcode from the index obtained
for the sequence data that is on the RDD in the data frame with the default function of the data
frame itself. After the barcode results were obtained in the form of the data frame, the results were
combined first using coalesce because the data was still divided into several partitions. The result
file was saved directly into Google Cloud Storage and in this environment the data is not split into
several parts.

3. Experimental study

There is a process in DNA barcoding that still uses conventional methods such as similarity
check or motif discovery. The process currently used is by looking at the DNA sequence and then
marking areas that are potential used as barcodes, which results in a low level of accuracy and
requires a long time [18] coupled with the currently very large amount of biological data [3]. In
bioinformatics, motifs discovery is very important because it represents conserved sequences that
can be biologically meaningful. Motif Discovery is an important step towards understanding gene
regulatory mechanisms. Motifs can represent patterns that activate or inhibit the transcriptional
process and are responsible for regulating gene expression [17].

DNA Barcoding assists taxonomists in the identification, discovery, and genetic study of spec-
imens to achieve certain goals, namely knowledge of species diversity and the degree of variation
among species [10]. DNA Barcoding translates taxonomist knowledge of morphological diagnostic
characters into a widely accessible format, DNA sequences, enabling more people to identify spec-
imens. In addition to assigning specimens to known species, DNA barcoding can speed up the
discovery of new species, as large sequence differences in animal DNA generally signify species status
[13, 4].
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3.1. Data collection

The data used in this study is a collection of RNA sequence data from Coronavirus-19 (SARS-
CoV-2) obtained from online databases such as GISAID (https://www.gisaid.org/). In data collec-
tion, filtering was carried out only for sequence data that had more than 29000 base pairs with N
entries less than or equal to 5%. The collected data were also grouped based on several continents for
DNA Barcode searches, which are Asia, America, Europe, and Oceania. As of May 9, 2020, 15.929
RNA samples from the SARS-CoV-2 virus had been obtained. The data obtained can be seen in
Table 1.

Table 1: SARS-CoV-2 Virus RNA Data
File Name Number of Base Pairs Number of Sequences File Size
asia hcov-19 2020 05 09.fasta ≤ 30.643 1.150 43.627
europe hcov-19 2020 05 09.fasta ≤ 29.977 8.773 332.845
america hcov-19 2020 05 09.fasta ≤ 29.977 4.598 174.458
oceania hcov-19 2020 05 09.fasta ≤ 30.442 1.285 48.753
Total 15.806 599.683

3.2. Experiment scenario

In this experiment, we perform a scenario on a cluster with several worker nodes, each of which has
4 CPU cores. Worker nodes that will be used are 1, 2, 5, 10, 15, and 20 worker nodes. This scenario
will be run on Dataproc Google Cloud Platform which is one of the cloud computing providers
[24]. In the Dataproc, we could create several clusters with various specifications that we can use to
perform computing via the cloud.

In running this scenario, the following parameters are needed:

� barcodeLength = 400. The barcodeLength parameter serves as an input parameter for the
number of barcodes to be searched.

� maxIter = 100. This parameter serves to determine the maximum number of iterations to be
performed by the particle swarm optimization algorithm.

� numPopulation = 50. This parameter serves to determine the number of populations to be
generated as a matrix containing a random population index.

� numVar = 2. This parameter is used to determine the number of barcode results sought. This
parameter will also determine the dimensions of the matrix containing the random population
index.

� trim = 360. This parameter serves to determine how many base pairs will be cut at the
beginning and end of the sequence or can be referred to as sequence trimming.

The data used in this study used all the files that previously mentioned with a total of 4 files that
have a total size of 599,683 KB with the standard for finding barcodes using RNA sequences from
severe acute respiratory syndrome-related coronavirus which has been aligned to adjust RNA from
SARS-CoV-2.
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4. Result and discussion

Based on the previously designed scenario, Table 2 shows the results of the experiments that have
been carried out. There are 4 columns, which are file, file size, number of worker nodes used, and time
required to complete the computation. It shows the results of the summary result which contains
4 columns, which are the initial index of the barcode found, the barcode similarity percentage, the
status of the founded barcode, and the time required for the computation. After that, the change in
the efficiency of each experiment in this scenario was compared.

Table 2: Computational cost as experimental Result

No File File Size (KB) Number of Worker Nodes Time (second)

1 asia hcov-19 2020 05 09.fasta 43.627

1 892.92
2 459.14
5 306.18
10 315.07
15 328.84
20 378.94

2 europe hcov-19 2020 05 09.fasta 332.845

1 4,217.23
2 2,776.63
5 2,275.57
10 491.96
15 344.92
20 285.55

3 america hcov-19 2020 05 09.fasta 174.458

1 2,366.65
2 1,468.71
5 903.52
10 289.21
15 216.96
20 188.07

4 oceania hcov-19 2020 05 09.fasta 48.753

1 945.24
2 449.57
5 216.71
10 128.33
15 113.14
20 106.44

From Table 2, it can be seen that as the number of cores used in the cluster increases, the
computing process itself will also accelerate. This shows that the number of cores will affect the
length of time required for computing. The total time required for each file of each experiment is
shown in Figure 7.

From the picture above, it can be seen that with the increase in the number of cores used, the
increase in speed also varies. It can be seen that the line of increasing speed of the number of cores
used 12, 16, and 32 for each worker node are smoother than the lines of increasing the number of
cores used of 2, 4, and 8 for each worker node. It can be proven by looking at the efficiency value of
each experiment carried out using the previously described formula. The calculation results can be
seen in Table 3.
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Figure 7: Comparison of the Speed of the Number of Cores against Time

Table 3: Speedup and Efficiency Calculation Results per Worker Nodes

No Number of Worker Nodes Time (second) Speedup Efficiency
1 1 8.472.48 1.00 1.00
2 2 5,154.08 1.64 0.82
3 5 3,760.19 2.25 0.45
4 10 1,276.07 6.64 0.66
5 15 1,039.73 8.15 0.54
6 20 950.48 8.91 0.45

From the table above, it can be seen that the number of worker nodes used will affect the length
of time required for computing itself. The fastest time required to perform this computation is 950.48
seconds which is equivalent to 15.48 minutes which shows the speedup value or speed increase of 8.91
times faster than the first experiment that using only one worker node.

However, what is interesting is that increasing the number of worker nodes does not guarantee
computational efficiency. This can be seen in the ’efficiency’ column where the efficiency of 1 worker
nodes to 2 worker nodes decreases from 1 to 0.82 and the efficiency of 2 worker nodes to 5 worker
nodes also decreases from 0.82 to 0.45. Although the efficiency value has shown an increase as seen
from the change in efficiency of 5 worker nodes to 10 worker nodes which increased from 0.45 to 0.66,
the change in efficiency value decreased after that, as in the number of 10 worker nodes to 15 worker
nodes and also to 20 worker nodes, which is from 0.66 to 0.54 and then to 0.45.

Based on the explanation above, it can be concluded that with the increase in the number of
worker nodes used, the computational process will experience a significant acceleration. However,
increasing the number of worker nodes used does not guarantee an increase in the efficiency of using
these worker nodes. As shown in Figure 8 above, the acceleration of the time required for the
computational process does not move linearly with the increase in the number of worker nodes used.

5. Conclusion

After researching DNA barcodes with particle swarm optimization algorithms using Apache Spark
SQL, several conclusions were obtained that showed the main contributions of this research. Firstly,
this study succeeded in designing a computational model on standalone using Python language to
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Figure 8: Computing Speed Details for Each File

search for DNA barcodes using particle swarm optimization algorithm using Apache Spark SQL with
several stages, which are preprocessing, particle swarm optimization algorithm, hamming distance
calculation, and result validation. Moreover, it succeeded in modifying the computing model on
standalone using the Python language so that it can be run on a cluster on a big data platform
using Apache Hadoop and Apache Spark SQL which involves several environments, which are the
user’s computer, Google Cloud Platform, Google Cloud Storage, and Apache Spark. This research
has conducted 12 experiments that were divided into 2 scenarios, which are experiments with 4 cores
with different number of worker nodes and experiments with 2 worker nodes with different number of
cores. From the experimental results, it can be concluded that the more worker nodes or cores used
will not guarantee the increase in efficiency from the use of resources in the form of worker nodes
and cores in computing.

There are several suggestions that researchers can convey to be carried out in the future. Future
research could result in much better programs in terms of speed by using the following methods:
Knuth-Morris-Pratt algorithm [20] and machine learning methods [1, 21, 22].
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