» IN
MA
‘m¥ A

A split common fixed point and null point problem
for Lipschitzian J—quasi pseudocontractive
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Abstract

A split common fixed point and null point problem (SCFPNPP) which includes the split common
fixed point problem, the split common null point problem and other problems related to the fixed
point problem and the null point problem is studied. We introduce a Halpern-Ishikawa type algo-
rithm for studying the split common fixed point and null point problem for Lipschitzian J—quasi
pseudocontractive operators and maximal monotone operators in real Banach spaces. Moreover, we
establish a strong convergence results under some suitable conditions and reduce our main result
to the above-mentioned problems. Finally, we applied the study to split feasibility problem (SFP),
split equilibrium problem (SEP), split variational inequality problem (SVIP) and split optimization
problem (SOP).
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1. Introduction

The split feasibility problem (SFP) and the split common null point problem (SNCPP); see, for
instance, [5], [11], 14, B8, 15] 63] have been studied by many researchers. However, we have not found
many results outside Hilbert spaces. The first extension of SFP to Banach spaces appears in [46].
This algorithm was later extended to multiple-sets split feasibility problem (MSSFP) in [59]. A very
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recent contribution for the SFP is [48]. [53] also solves the split common null point problem in
Banach spaces.

Let E be a strictly convex and reflexive Banach space and let C' be a nonempty, closed and convex
subset of . Then we know that for any x € F, there exists a unique element z € C' such that

lz =2l < llz = yll, Yy € C. (1.1)

Putting 2z = Pex, we call such a mapping P¢ the metric projection of E onto C.
Let B be a mapping of E into 2¥.The effective domain of B is denoted by dom(B), that is,
dom(B) = {x € H : Bx # }. A multivalued mapping B is said to be monotone if

(r—y,u—v) >0V x,y € dom(B), u € Bz, v e By (1.2)

There are two iterative methods for approximating fixed points of a nonexpansive mapping. One
is introduced by [36] and the other by [28]. The iteration procedure of Mann’s type for approximating
fixed points of a nonexpansive mapping S is the following: x; € K and

Tpt1 = Ay + (1 — ) STy, (1.3)

where {a,} is a sequence in [0,1]. The iteration procedure of Halpern’s type is the following:
u € K,r1 € K and

Tpt1 = apu+ (1 — ay,) Sz, (1.4)

where {a,} is a sequence in [0, 1].

Iterative method for approximating fixed points of Lipschitz pseudocontractive maps which map
nonempty convex compact subsets K of H into itself was introduced by [30] as follows: The sequence
{z,} generated from an arbitrary z; € K by

>
toir = (1= an)an +anTyn n > 1. (1.5)

where {a,,} and {f,} be real sequences in [0, 1] satisfying the conditions (i) 0 < a,, < 3, < 1, (ii)
lim £, =0, (iii) Y. a8, = oc.
n—oo

n=1
A monotone operator B is said to be maximal if its graph is not properly contained in the graph

of any other monotone operator. For a maximal monotone operator B on E and r > 0, the operator

J,=({+rB)"': H— dom(B) (1.6)

is called the resolvent of B for r. It is known that J,. is J—firmly nonexpansive. Given a positive
constant a, a mapping A : C' — H is said to be a—inverse strongly monotone if

(x —y, Az — Ay) > af|Ax — Ay||* ¥V 2,y € C. (1.7)

An operator h is called averaged if there exists a J—nonexpansive operator N : D — H and a number
a € (0,1) such that

h=(1-a)J+aN (1.8)

where J is the duality map.
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Let E be a real Banach space and E* the dual of F. A mapping T : E — 2F is said to be
J—nonexpansive if

[Tz =Tyl < [|Jz = Jy] (1.9)
Vo, y € K.
A mapping T : E — 2F7 is said to be J—quasi-nonexpansive if F(T) # ) such that

[Tz —pl| < [|Jz = p (1.10)

Ve e K, pe F(T).
A mapping T : E — 2F is said to be strictly J—quasi-nonexpansive if F'(T') # ) such that

[Tz — p|| < ||z —pl| (1.11)

Vo & F(T),p € F(T).
A mapping T : E — 2F" is said to be strongly .J—quasi-nonexpansive if T is J—quasi-
nonexpansive and

Jxy, —Tx, — 0 (1.12)
whenever {z,} is a bounded sequence in H and ||jx, — p|| — ||Tz, — p|| — 0 for some p € F(T)
A mapping T : E — 2¥" is said to be J—firmly nonexpansive if

(Twx — Ty, JTx — JTy) < (Tx — Ty, Jx — Jy) (1.13)

Ve, y € K and n > 1.
A mapping T : E — 2 is said to be J—firmly quasi-nonexpansive if F(T) # () such that

1Tz —pl* < [|J2 —p|* — |J2 — Tz|*, (1.14)

Ve e K,pe€ F(T) and n > 1.
A mapping T : E — 2 is said to be k—strictly pseudocontractive if there exists a k € [0, 1)

1T = Tyl* < |l — ylI* + k(I = T)z = (I = T)yl*, (1.15)

Vr,y e E.
If k =11in (L.15), then T is called a pseudocontractive mapping.
A mapping T : E — 2F" is said to be k—strictly J—pseudocontractive if there exists a k € [0, 1)

1Tz = Ty|* < o —y|* + k(] = Tz — (J = T)yl|”, (1.16)

Vey € E and n > 1.
If K =11in (1.16), then T is called a J—pseudocontractive mapping [20, 21]. Equivalently,

(r —y,Te —Ty) < (v —y,Jr = Jy). (1.17)

Ve,y € E.
A mapping T : E — 2¥" is said to be J—demicontractive if F(T) # () and there exists a k € [0, 1)
such that

(Jo —Tx, Jx —p) > N|Jx — Tx|]?, (1.18)

Ve e K,pe F(T).
A mapping T : E — 2F7 is said to be J—quasi pseudocontractive ) if

(Jr =Tz, Jx —p) >0, (1.19)
Ve e K,pe F(T).
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Remark 1. We easily observe that the class of J—quasi pseudocontractive operators includes the
class of operators defined in equations (1.9) - (1.18).

Let E be a uniformly convex Banach space with a Gateaux differentiable norm and let B be a
maximal monotone operator of E into 2. For all x € E and r > 0, we consider the following
equation

0€ J(z, —x) +rBzx, (1.20)

where J is the duality mapping on E. This equation has a unique solution z,.. We define J, by
z, = Jyx. Such J,., r > 0 are called the metric resolvents of B. [53, [52] extended the result of
SCFPP to Banach spaces. Furthermore, by using the methods of [40, 41, 49] and metric projections,
[53] proved a strong convergence theorem for metric resolvents of maximal monotone operators in two
Banach spaces. Also [55] considered the split common null point problem with generalized resolvents
of maximal monotone operators in two Banach spaces.

The following questions were riased:
Open problem 1 [I6]: It is of interest to define a space E; that is a real Banach space more
general than real Hilbert spaces, Ey as defined in the paper of [57] and an iterative algorithm for
solving split common fixed point problem involving a quasi-strict pseudocontractive mapping and an
asymptotically nonexpansive mapping such that the sequence generated by the algorithm converges
strongly to a solution of the problem.
Open problem 2 [58]: Can we construct a new inertial algorithm for solving the SCNPP for two
set-valued mappings in Banach spaces without prior knowledge of the operator norm || A||?
Open problem 3 The question of how to solve the split common null point problem for generalized
resolvents in two Banach spaces was posed by [29].

Unfortunately, developing algorithms for approximating solutions of inclusions of type 0 € Bu
when B : E — 2F" is of monotone-type has not been very fruitful. Part of the difficulty seems to be
that all efforts made to apply directly the geometric properties of Banach spaces developed from the
mid 1980s to the early 1990s proved abortive. Furthermore, the technique of converting the inclusion
0 € Bu into a fixed point problem for T':= I — B : E — E is not applicable since, in this case when
B is monotone, B maps F into £* and the identity map does not make sense.

Fortunately, [4] (see also, [3]) introduced a Lyapunov functional ® : Ex E' — R which signalled the
beginning of the development of new geometric properties of Banach spaces which are appropriate
for studying iterative methods for approximating solutions of 0 € Bu when B : E — 28" is of
monotone-type. Geometric properties so far obtained have rekindled enormous research interest on
iterative methods for approximating solutions of equation 0 € Bu where B is of the monotone-type,
and other related problems [I} 4 17, 19, 37, 39, 43| 51, 64]). A new class of maps T := (J — B)
is J—quasi pseudocontractive if and only if B is monotone and using the notion of J—fixed points
(which has also been defined as semi-fixed point, duality fixed point, see e.g., [64, 35]) to prove that
if £ is a uniformly convex and uniformly smooth real Banach space with dual E*.

Motivated by the works of [32] 54, 57, [58], we study a split common fixed point and null point
problem which is more general than the problem [54]. Our problem can be reduced to the split com-
mon fixed point problem, the split common null problem and other problems which are connected
with the fixed point problem and the null point problem. We also introduce a Halpern—Ishikawa
type algorithm for studying the split common fixed point and null point problem for Lipschtzian
J—quasi pseudocontractive operators and maximal monotone operators, and prove a strong con-
vergence theorem of the proposed algorithm under some suitable conditions in real Banach spaces.
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Finally, we applied the study to Split Feasibility Problem (FEP), Split Equilibrium Problem (SEP),
Split Variational Inequality Problem (SVIP) and Split Optimization Problem (SOP).

2. Preliminaries

Let E be a real Banach space with norm || - || and let £* be the dual space of E. We denote the
value of y* € F at x € E by (z,y*). When {z,} is a sequence in F, we denote the strong convergence

of {x,} to x € E by z,, — x and the weak convergence by z,, — x. The modulus ¢ of convexity of
E' is defined by

) T+
o0 = int {1 = P20 o <1 < 10— 2 (2.)

for every e with 0 < e < 2. A Banach space E is said to be uniformly convex if §(¢) > 0 for everye > 0.

It is known that a Banach space FE is uniformly convex if and only if for any two sequences {z,} and
{yn} in E such that

lim ||z,|| = lim |ly,]| =1 and lim ||z, + y,|| = 2 (2.2)
n— o0 n— o0 n—oo
lim ||z, — yn|| = 0 holds. A uniformly convex Banach space is strictly convex and reflexive. We
n—oo

also know that a uniformly convex Banach space has the Kadec-Klee property, that is, x,, — u and
|znl| — ||u|| imply z,, — u; see [18, 22].
The duality mapping J from E into 2F7is defined by

Jr={2" € E": (z,2") = ||z]|* = ||"||"} (2:3)

for every x € E. Let U = {z € E : ||z|| = 1}. The norm of F is said to be Gateaux differentiable if
for each x,y € U, the limit

tyll —
ety = el
t—0 t

(2.4)

exists. In the case, E is called smooth. We know that F is smooth if and only if J is a single-valued
mapping of E into E*. The norm of E is said to be Fréchet differentiable if for each x € U, the
limit is attained uniformly for y € U. The norm of FE is said to be uniformly smooth if the
limit is attained uniformly for z,y € U. The classical L, spaces for 1 < p < oo are uniformly
convex and uniformly smooth. We also know that E is reflexive if and only if J is surjective, and
E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly convex and
reflexive Banach space, then J is a single-valued bijection and in this case, the inverse mapping J 1
coincides with the duality mapping J* on E*. For more details, see [18, 22} 33, 50]. We know the
following result:

Lemma 2.1. [50)] Let E be a smooth Banach space and let J be the duality mapping on E. Then,
(x —y,Jx —Jy) >0 for all x,y € E. Furthermore, if E is strictly convex and (v —y, Jx — Jy) =0,
then x =v.

Let E be a smooth Banach space and let J be the duality mapping on E. Define a function
o: Fx E—Rby

O(z,y) = [[z]* = 2{z, Jy) + |y|*, Va,y € E (2.5)



1832 Jim, Igbokwe

Define amap V : E x E* — R by

V(z,z*) = ||z||* — 2(x, z*) + ||2*||?, Yz € E,z* € E* (2.6)
Then, it is easy to see that

V(z,z*) = ®(z, ] (2*)), Vo € E,2* € E¥ (2.7)

Observe that, in a Hilbert space H, ®(z,y) = ||z — y||? for all 2,y € H. Furthermore, we know
that for each z,y, z,w € F,

(lll = lly)* < @(z,y) < (]l + llyl)?* (2.8)
O(z,y) = @(z,2) +0(z,y) + ||z]]* + 2(x — 2, Jz — Jy), (2.9)
20—y, Jz— Jw) = O(z,w)+ P(y,2) — P(z, 2) — O(y, w). (2.10)

If F is additionally assumed to be strictly convex, then
®(z,y) = 0 if and only if z = y. (2.11)
The following lemma was proved by [33].

Lemma 2.2. [33] Let E be a uniformly convexr and smooth Banach space and let {y,}, {z.} be two
sequences of E. If ®(y,, z,) — 0 and either {y,} or {z,} is bounded, then y, — z, — 0.

Let C' be a nonempty, closed and convex subset of a smooth, strictly convex, and reflexive Banach
space F. Then we know that for any x € F, there exists a unique element z € C such that

O (2, z) = min ®(y, x) (2.12)
yeC
The mapping Il : £ — C defined by z = Iz is called the generalized projection of E onto C. For
example, see |2, 4, [33].

Lemma 2.3. [2, [/, [33] Let E be a smooth, strictly convex, and reflexive Banach space. Let C' be a
nonempty, closed, and convexr subset of £ and let 1 € E and z € C. Then, the following conditions
are equivalent:

(i) z =gz,
(ii) (z—y,Jx; — Jz) >0, Vy € C.

The following theorem is due to [8, [44]; see also [[50], Theorem 3.5.4].

Theorem 2.1. [8,[/4)] Let E be a uniformly convex and smooth Banach space and let J be the duality
mapping of E into E*. Let B be a monotone operator of E into 2F" . Then B is mazimal if and only
if for any r > 0,

R(J +rB) = E* (2.13)

where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm and let B be a
maximal monotone operator of E into 26”. For all z € E and r > 0, we consider the following
equation

Jx € Jx, +rBx, (2.14)
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This equation has a unique solution z,. In fact, it is obvious from Theorem that there exists a
solution z, of Jx € Jx, + rBx,. Assume that Jxr € Ju+rBu and Jxr € Jv+ rBv. Then there exist
wy € Au and we € Av such that Jxr = Ju + rw; and Jx = Jv + rw,. So, we have that

0 = (u—v,Jo—Jx)
= (u—v,Ju+rw — (Jv+rws))
(u—wv,Ju — Jv+rw —rws)
(u—wv, Ju— Jv) + (u — v, rw; — rW))
= O(u,v) + P(v,u) + r(u — v, w; — ws)
> d(u,v) + P(v,u) (2.15)

and hence 0 = ®(u,v) = ®(v,u). Since F is strictly convex, we have u = v. We define J, by
x, = Jr.x. Such J., r > 0 are called the generalized resolvents of B.

Definition 2.1. A Banach space E is said to be an opial space (see for example [42]) if for each
sequence {x,}5° in E which converges weakly to a point v € E

liminf ||z, — z| < liminf ||z, — y||, (2.16)

forally e E, y # x.

Lemma 2.4. [12] Let T : H — H be a strictly quasi-nonexpansive operator and S : H — H a quasi-
nonexpansive operator. Suppose that F(T)NF(S) # 0. Then F(TS) = F(ST) = F(T)N F(S).

Lemma 2.5. Let E be a real Banach space, E* the dual of E. Let T : E — 2" be a continuous
pseudocontractive mapping. Then

(i) Fiz(T) is a closed convez subset of C,

(ii) (J - T) is demiclosed at zero.

Lemma 2.6. Let Fy and Ey be Banach spaces. Let A : B4 — Ey be a bounded linear operator and
T : Ey — 282 be a J—quasi-nonexpansive operator such that the equation (J — T)Az = 0 has a
solution. Let V := J + (||A”2)A* (T — J)A, then the following hold:

(i) JAxz € F(T) if and only if Jx € F(V),
(i) If J—T is demiclosed at zero, then J—V is also demiclosed at zero, (iii) V' is quasi-nonexpansive.

Lemma 2.7. (see [0, [62]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 S (1 - an)sn + O‘nﬁn + TYn, T Z 0 (217)
where {an}, {Bn} and {v,} satisfy the following conditions:

(i) {an) C [0,1], 3 an = oo,
n=1
(i) limsup 3, <0,

n—oo
(111) v >0, Y v, < 00.
n=1

Then lim s, = 0.

n—oo
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Lemma 2.8. [3/ Let X be a reflexive strictly convex and smooth Banach space with X* as its dual.
Then,

Ve, 2*) +2(J '2* —2,y") < V(x,2* +y*), Vo € E,2%,y* € X* (2.18)

Lemma 2.9. [3] Let E be a smooth real Banach space with dual E*. Let ® : E X E — R be the
Lyapounov functional. Then,

(y,x) = ®(z,y) — 2(x +y, Jo — Jy) + 2(||z||* — ||y|]*), Vo,y € E (2.19)

Definition 2.2. Let T : E — 28", J — T is called demiclosed at zero, if for any sequence {x,} C E
and x € E, we have x,, — x and (J — T)z,, — 0, then Jx € Fix(T).

Definition 2.3. [20] (J—fized point). Let E be an arbitrary normed space and E* be its dual. Let
T :E — 2F" be any mapping. A point x € E will be called a J—fized point of T if and only if there
erists n € T'x such thatn € Jx.

Definition 2.4. (Lower Semi-continuity). Let f: X — RU {+oo} be a map. Let o € D(f), then
f is lower semicontinuous at o if for each € > 0 there exists 6 > 0 such that f(x¢) —e < f(x) for
all z € B(xy, ).

Proposition 2.1. Let H be a real Hilbert space and identify H* with H, then Jr = {x} for all
x € H, i.e The duality map J s the identity map.

3. Main Results

Lemma 3.1. Let E be an arbitrary real normed space and E* be its dual space. Let A : E —
2E" be any mapping. Then A is monotone if and only if T := (J — A) : E — 2F" is J—quasi
pseudocontractive.

Proof: Let x,y € E be arbitrary. Suppose A := (J — T is monotone, we prove that T := (J — A)
is J—quasi pseudocontractive. Then, for every p, € Ax, 7, € Tx such that 7, = Jx — p,, we have

(x—1p,x—y) = (t—Jr— ),z —y)=(r—Jr+ Azx,z —y)
= (x—Jx,x—y)+ (Az,x — y)
< (x—Jx,x—y) (3.1)

Hence, T is J—quasi pseudocontractive.

Conversely, suppose T := (J — A) is J—quasi pseudocontractive, we prove that A := J — T is
monotone. For x,y € E. Let u, € Az, p, € Ay, 7, € Tx, 7, € Ty such that p, = Jr — 7,
ty = Jy — 7,, we have

(e = oz —y) = (Jo—Tz—(Jy—Ty),z—y)

= (Jr—Tx,x—y)— (Jy—Ty,z —y)
0. (3.2)

v

Hence, A is monotone.
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Lemma 3.2. Let Ey and Es be real Banach spaces. Let By and By be maximal monotone operators
of B, into 2F1 and E, into 272 and Jfl and Jf2 be generalized resolvents of By and By, respectively
for X\ > 0. Let A : E, — Es be a bounded linear operator, and S : E; — 251 be Lipschitzian J—quasi-
pseudocontractive self maps of By and T : By — 2%2 be Lipschitzian J—quasi-pseudocontractive self
maps of Ey such that (J —S) and (J —T) are demiclosed at zero, any sequence {x,}5, generated

by
Tpi1 = ST (T — yA*(J — TJP?) Ax,,) (3.3)
converges weakly to a point Jx* € T = {Jx € F(S) N B;'0,JAx € F(T) N By'0}, provided that

I'#£0,v€(0,1) where L = ||Ax Al|, JJ' == (J+ABy) 7Y, J{? i= (J + ABy) ™! and J is normalized
duality mapping.

Proof: First we prove that the operator yA*(J — T J f 2)A is v—inverse strongly monotone for some
v > % and therefore its complement J —yA*(J —TJ f 2)Ais averaged. T'J§ is J—firmly nonexpansive
and therefore %—averaged, SO

J+N

T = (3.4)
for some nonexpansive operator N : Hy — Hy. Since

Jorip =12 (3.5)
it follows that J — T'JZ is 1—inverse strongly monotone. Hence

(J = TJP)Ax — (J — TJP) Ay, Az — Ay) > ||(J — TJP?) Az — (J — TJP) Ayl (3.6)

Now

|A* (T — TJ)Aw — A*(J = TJ%) Ay|?
= (AY(J = TJP)Ax — A*(J — TIP?) Ay, A*(J — TJIP?) Az — A*(J — TJP?) Ay)
= ((J=TJP)Az — (J — TJP*) Ay, AA*(J — TJP?) Az — AA*(J — TJP?) Ay)
< L|(J =TI Az — (J — TJP?) Ay (3.7)

1
(= TP Az — (] = TIP)Ag|* > A"~ TIP) A — A°(] — T Ayl (3.5)
Substitute equation (3.8]) into (3.6]) to obtain
1
(J =TI Ax — (J — TJP?) Ay, Az — Ay) > ZlAT(T - TJIP) Az — A*(J — TJ2?) Ayl (3.9)

This implies that A*(J—TJ{*)A is L —inverse strongly monotone and yA*(.J —TJ*)A is X —inverse
o

strongly monotone. Since v € (0, %), then %L > £ Thus J — yA*(J — TJ2?)A is averaged. Since

both SJP! |\ and J — yA*(J — TJ?*) A are averaged, so is their composition

SIP(T — yA*(J — TJP?)A)

Therefore, by the Krasnosel’ski-Mann-Opial Theorem ([34} 36} [42]), the sequence {x,,}52, generated
by Algorithm (3.3 converges weakly to a fixed point z* of the operator

SIP(T —yA*(J — TJP?)A).
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It remains to show that Jx* € I'. Let Jz € I'., that is,
Jz € F(S)NB;'0 and Jz € A™Y(F(T) N B;'0) (3.10)
Since

Jz € F(S)N B0 & z € Fiz(SJ") and
Jz € AHF(T)N B;'0) & JAz € F(T)N By'0 < JAz € Fixn(TJ?).

Note that if

JAz € Fiz(TJ?) = JAz=TTJ?Az
JAz —TTJPA2=0 = (J-TTJ?)Az=0
=AY (J - TTIP)Az =0 = Jz—~yA(J -TTJP*)Az = Jz (3.11)

Also note that if

Jz € F(S)N B0 & Jz € Fiz(SJP') from (3.11),
= SJP(Jz —yA (J = TTJP)Az) = Jz. (3.12)

In addition,

(J = A (J = TJIP)A)z = Jz—~yA*(J - TJ?)Az
= Jz—fyA*JAz—l—A*TJfQAz
= Jz—yA*"JAz +yA*JAz
= Jz

we get Jz € Fix(J —yA*(J — TJP?)A). Observe that any Jz € T is a fixed point of the averaged
operator SJPN (I — yA*(I — TJ2*)A). Indeed, by the above equalities we get

SIPU(T —yA*(J = TJIP)A)z = STP(Jz — yA*(J — TJP?)Az)
= SJPz=Jz (3.13)

Since I' # (0, we get from [[? |, Proposition 2.2] (see also [[? |, Lemma 2.1]), with the averaged
operators J — yA*(J — TJ?)A and SJP', that

Fix(SIP) N Fix(J — ~A(J —TJP)A) = Fix(ST2(J — yA*(J — TJP?)A)
= Fiz((J — A (J - TJP*)A)STP) (3.14)
Since Jr* is a fixed point of SJ'(J — yA*(I — TJ{?)A, we have Jr* € Fiz(SJY') and Ja* €
Fix(J — yA*(J — TJP?)A). Now we need to show that JAz* € Fiz(TJP?). Indeed, from Ja* €
Fix(J — yA*(J — TJ?)A), we get
Jo* — yAY(J = TJP)Az* = Ja*
AY(J =TI Az = 0
A JAz* — ATTPAvs = Ja* — ATJP Az =0
ATIPAr = Ja*
TJ?Ax* = JAz*.

This completes the proof.
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Theorem 3.1. Let Ey and Es be real Banach spaces. Let By and By be maximal monotone operators
of B, into 2F1 and E, into 272 and Jfl and Jf2 be generalized resolvents of By and By, respectively
for X\ > 0. Let A : E, — E be a bounded linear operator, and S : E; — 251 be Lipschitzian J—quasi-
pseudocontractive self maps of By and T : By — 2%2 be Lipschitzian J—quasi-pseudocontractive self
maps of Ey such that (J — S) and (J —T) are demiclosed at zero. If the solution set of SCFPNPP
is nonempty (that is, I' = {Jx € F(S)N B;'0,JAx € F(T)N B;'0} #0). Suppose that xq, 11 € E,
be arbitrary, the iterative sequence {x,} generated by

Tpny1 = Jﬁl(ﬂnjw() + (1 - 5n)(]yn)
> 1. .
i = TN andzn + (1= an)STP (Jag — vA(] — TIP)Azy)) "5 1 (3.15)
where the parameter vy and the sequences {an}, {Bn} C (0,1) satisfying the conditions: (i) v €
(0, W), (id) D07y < 00, (it7) lim B, =0 and (iv) > | B, = 0o. Then,

n—oo

(a) lim ®(p,x,) exists for each p € T,
n—o0

(b) lim ||Jz, — SIP (T, — yA*(J — TJP*) Az,)| = lim || Az, — TJP Az, || =0,
then {x,}>2, converges strongly to p € T.

Proof : Applying equations (2.5)), (3.15)) and using Lemma [2.§ we compute as follows:

O(p,wur1) = (p, T (BuJwo + (1= Ba)Tyn))
= |l = 2{p, BuTwo + (1 = Bn) Jyn)
| BaTzo + (1= Ba) Tyull®
= lpl* = 2(p, BuTxo) = 2(1 = Bu){p, Jyn)
[ BnJwo + (1 — Bn>Jyn||2
< el = 2(p, Budwo) — 2(1 = Ba)(p, Jyn) + Bullzol*
(1= Ba)llyall® = Ba(1 = Ba)llyn — zol* + 211> = [I2]®
< Bu®(p, o) + (1= Ba)@(p, yn)- (3.16)
Setting z* = a,Jx, + (1 — an)SJfl(an — yA*(J — Tsz)Axn) and y* = (1 — ayp)Jz, — (1 —
) ST (Jy — YA (J — TJ?)Ax,) in Lemma ﬁ, we have
D(p,yn) = P(p,J oz + (1 — an)SIL (Jay — YA (J — TJ2) Axy)))
V(p, anJz, + (1 — an) ST (Ja, — yA*(J — TJP?) Az,))
V(p, Jon — (1 — ) Jan + (1 — ) ST (o, — yA* (T — TJP?) Axy,)
+(1 = ap)Jz, — (1 — ) ST (T2 — yA*(J — TJ?) Axy,))
—2(J Y anJz, + (1 — a,) ST (Ja, — yA*(J — TJP?) Az,)) — p,
(1 —an)Jzn, — (1 — a,)SIP (Ja, — YA (J — TJ?) Azy,))

IA A
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= V(p,Jr,) — 2(J Nz, + (1 — ) ST (Jw, — yA*(J — TJIP?) Ax,)) — p,
(1 —an)Jo, — (1 —a,) ST (Jo, — yA*(J — TJP?) Azy))
= B(p,zn) — 2(1 — ap)(J anJz, + (1 — ) STP (T,
(]~ TIF) Az,) ~ .
Jx, — STP (Jx, —yA*(J — TJP?)Ax,))
= B(p,zn) — 2(1 — ap)(J anJz, + (1 — ) ST (T,
—y A (J =TI Az,)) — I (Jx,) + T (Jw,) — p,
Jx, — ST (Jx, —yA*(J — TJP?)Ax,))
= B(p,zn) — 2(1 — ap)(J anJz, + (1 — ) STP (T,
AT = TIE) Ay) — T (),
Jx, — ST (Jx, —yA*(J — TJP?)Ax,))
—2(1 — a ) (J 7 (Jz,) = p, Jon — STP (Ja, — YA (J — TJP?) Azy))
= P(p,x,) —2(1 — ap){apJz, + (1 — an)SJfl(J:Un
—yA*(J = TJP)Ax,)) — Jx,,
Jx, — ST (Jxn — yA*(J — TJIP?) Ax,))
—2(1 — ap)n — p, Joy — SIZ (Jw, — yA*(J — TJIP?) Azy))

= O(p,zn) — 2(1 — ap)(—(1 — o) J2p + (1 — @) ST (J
—yA*(J = TJP)Ax,)), Jx, — ST2 (Jx, — yA*(J — TJIP?)Ax,))
—2(1 — ap)xy — p, Jxp, — STP (Jn — yA*(J — TJIP?) Ax,))
= O(p,zn) — 2(1 — an)*(=Jw, + STP (J,
—y A (J = TJP)Ax,)), Jx, — ST2 (Jx, — yA*(J — TJIP?)Ax,))
—2(1 — ap)(xn — p, Jxp — STP (Jp — yA*(J — TJIP?) Ax,))
= ®(p,xn) —2(1 = ay)?|| S, — ijl(‘]xn —yAT(J - T*J)j\BQ)Axn))”Z
—2(1 — ap){xy — p, Jx, — STP (J, — yA*(J — TJIP?)Ax,))
D) — 21— ) — TP (T, — A" (] = TIE) A, )|
—2(1 — ap)xp — p, JIL (J2y — yA*(J — TJP?)Ay,)
—JIP (Jx, — A (J = TIP?)A,) + Jx, — STP (Jx, — yA*(J — TJIP?) Axy,))
D) — 20— ) — TP (T, — A" - TIE) A, )|
—2(1 — ap)xn — p, JIL (T2 — yA*(J — TJ?)Ay,)
~SJP (Jx, — YA (J — TJP?) Az,,))
—2(1 — ap)xn — p, Jxp — JIP (T2 — YA (J — TJ?) Azy,))
— B(p, ) — 21 — )2 — STP (T, — AT — TIE) Az, P
—2(1 — ap)wy — JIP (Jan — YA (J — TJP?) Az,
+J I (Jxn — YA (J — TIP?) An,) — p, JIP (T2, — yAY(J — TJ?) Az,
—SJP (Jx, — YA (J — TJP) Ax,,))
—2(1 — ap)xn — p, Jxp — JIP (T2 — YA (J — TJ?) Axy,))
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= O(p,zn) = 2(1 = n)?| Ty — SIT (T — YA (T = T ) Axy) )|
—2(1 — ap {(JIP (T — yA*(J =TI Any,) — p, JIP (T2, — yA*(J — TJ?) Aw,)
~SJIP (Jx, — YA (J — TJP?) Az,,))
—2(1 — ap)xn — JIP (Jap — YA (J — TI?) Az, JID (Jwn — yA*(J — TJP?) Ax,,)
—SJP (Jx, — A (J — TJP) Ax,,))
—2(1 — ap)xn — p, Jxp — JIP (T2 — YA (J — TJ?) Axy)) (3.17)

Since S is J—quasi pseudocontractive, that is,

(JIP (Jx, — ~FAY(J —TJ?)Ax,) — SIP (Jx, — yA*(J — TJP?) Azy,),
JP (Jx, — yAY(J — TJP)Ax,) —p) >0 (3.18)

we have

O(p,yn) = ®(p,wn) — 2(1 — an)?||Jp — SJfl(an — YA (J - TJ)]\B2)Axn))‘|2
—2(1 — ap)xy — JIP (T2, — YA (J — TIP?) Axy), JI2 (J, — yA*(J — TJP?) Ax,)
~SJP (Jw, — YA (T — TJP?) Az,,))
—2(1 — ap)xn — p, Joy — JIP (J2 — YA (J — TJ?) Ay,))
= ®O(p,zn) — 2(1 — a)?||Jz, — STP (Jwy, — YA (J — TIP?) Ax,)) |
—2(1 — ap)||zn — JIP (T2 — YA (J — TJP?) Az ||
x||JIP (T, — yA*(J — TJIP?)Ax,) — STP (Ja, — yA*(J — TJ2?) Az, ||
—2(1 — ap)xy — p, Jxn — Jp + Jp — JIP (Ju, — yA*(J — TJP?) Ax,))
= () = 2(1 — )’ Tz, — SIP (T — YA (T = T ) Axy))|?
—2(1 — ap)||wn — JIP (T2, — YA (T — TJP?) Az, ||
x||JIP (T — YA (J — TJIP?) Ax,) — STP (Jx, — yA* (T — TJP?) Azy,) ||
—2(1 — ap)(xy — p, Jx, — Jp)
—2(1 — ap)xn — p, Jp — JIP (Jn, — yA*(J — TJIP?)Ax,))
= (p,zn) = 2(1 — )’ Ty — SIP (Jay — YA (T = T2) Axy))|?
—2(1 — ap)||lwn — JIP (Jwy, — yA*(J — TJIP?) Az ||
x||JIP (T, — yA*(J — TJIP?)Ax,) — STP (Ja, — yA*(J — TJP?) Az, ||
—2(1 — ay)(xn — p, Jxn — Jp) +2(1 — ) (xn, — p, J2,, — ID)
—2(1 — ap){n — p, YA (J — TP Az,)
= O(p,zn) — 2(1 — a)?||Jw, — ST (Jwy, — yA*(J — TIP?) Ax,)) |
—2(1 — ap)||zn — JIP (T2 — YA (J — TJP?) Az ||
x||JIP (T, — yA*(J — TJIP?)Ax,) — STP (Ja, — yA*(J — TJ2?) Az,) ||
—2(1 — ap)(x, — p, yA*(J — TJP?) Az,,)



1840

®(p, n) = 2(1 — a)?|[ Ja — ST (T — v A (] = TJ?) Axy)) |

—2(1 — ap)||lwn — JIP (Jwy, — YA (J — TJIP?) Az, ||

x||JIP (T, — yA*(J — TJIP?)Ax,) — STP (Ja, — yA* (T — TJ2?) Azy,) ||
—2(1 — ap)y(Az, — Ap, (J — TJP?) Axz,,)

®(p, n) = 2(1 = a)?|[ T — STV (T — v A (] = TJ(?) Azy)) |

—2(1 — ap)||zn — JIP (T2 — YA (J — TJIP?) Az ||

x||JI (T — YA (J — TIP?) Aw,) — STP (T2, — yA* (T — TJP?) Azy) ||
—2(1 — ap)y(Ax, — TJP? Ax, + TP Ax,, — Ap, (J — TJ?) Ax,)

®(p, n) = 2(1 — a)?|[ Jan — ST (T — v A (] = TJY?) Azy)) |

—2(1 — ap)||lwn — JIP (Jwy, — yA*(J — TIP?) Az ||

x||JIP (T, — yA*(J — TJIP?)Ax,) — STP (Ja, — yA*(J — TJ2?) Azy,) ||
—2(1 — ap)y(Az, — TIP? Az, (J — TJP?) Az,

—2(1 — )T I Ay, — Ap, (J — TJP?) Ax,,)

®(p, ) = 2(1 — a)?|[ T — ST (S — v A (] = TJY?) Axy)) |

—2(1 — ap)||zn — JIP (T2 — YA (J — TJP?) Az ||

x||J I (Jx, — YA (J — TJP?)Awy,) — STP(Jw, — yA*(J — TJIP?) Az, ||
—2(1 — ap)v(Az, — Ap+ Ap — TJfQAxn, JAx, — TJfQAxn>

—2(1 — ap) YT I Az, — Ap, J Az, — TJ? Az,

®(p, ) = 2(1 — a)?|[ Ty — ST (Ja — v A (] = TJY?) Axy)) |

—2(1 — ap)||zn — JIP (T2 — YA (J — TJ?) Az ||

x||JIP (T, — yA*(J — TJIP?)Ax,) — STP (Ja, — yA*(J — TJ2?) Az, ||
—2(1 — an)y(J Az, — TJP? Ax,,, Az, — Ap)

—2(1 — an)y(Az, — TJ? Az, JAp — T I Az,

—2(1 — )Y (TJP? Az, — Ap, JAx,, — TJP? Ax,)

Jim, Igbokwe
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Since T' is J—quasi pseudocontractive, that is, (J Az, — TJfQA:cn, Az, — Ap) > 0, we have

O(p,zn) = P(p,xn) — 2(1 — a)?||Jwp — STP (J, — YA (T — TJIP?) Axy,)) |2
—2(1 — ap)||wn — JIP (T2, — YA (J — TJT2?) Az, ||
X||JIP Ty — YA (J — TJ?)Azy,) — ST (Jx, — yA*(J — TJP?) Az,
—2(1 — ap)y(J Az, — TJfQAa:n, Ap — TJ/{SQA:E“)
—2(1 — ap) (T I Az, — Ap, J Az, — TJP> Ax,)

= O(p,zn) — 2(1 — an)?||Jw, — ST (J iy, — yA* (T — TIP?) Ax,)) |
—2(1 — ap)||wn — JIP (T2, — yA (T — TJTZ?) Az, ||
x||J TP (T — YA (J — TJIP?)Ax,) — STP (Ja, — yA* (T — TJP?) Az, ||
—2(1 — an)y||J Az, — TJP? Az, ||| Ap — TJ,2 Az,||
—2(1 — an)Y||T TP Az, — Apl||| J Az, — T T2 Ay||

= O(p,zn) — 2(1 — a)?||Jz, — ST (Jwy, — YA (J — TIP?) Ax,)) |
—2(1 — o) ||lwn — JIP (Jw, — yA*(J — TJIP?) Az ||
x||JIP (T, — yA (] — TJIP?)Ax,) — STP (Ja, — yA*(J — TJ2?) Azy,) ||
—(1 — a)Y| JAz, — T TP Azp)|? — (1 — an)y||Ap — T I Az, |2
(1 = VI Az — Apll® = (1 — )yl Ay — T A |

= ®B(p,zn) — 2(1 — a)?||Jw, — STP (Jwy, — YA (J — TIP?) Ax,)) |
—2(1 — ap)||zn — JIP (T2 — YA (J — TIP?) Az ||
x| J I (Jxy, — YA (J — TJP?)Awy,) — STP(Jw, — yA*(J — TJIP?) Az ||
—2(1 — ap)y||J Az, — TJP? Az, ||? — 2(1 — a)y||T T2 Az, — Apl|? (3.20)

|2 — JIV (T — YA =TI Azy)|| = ||z —p+p
—JIP (T, — YA (J — TJIP?) Az, ||
< lwn = pll + | Jzn — p — YA*(J = TJ?) Az, |
< Nlwn = pll + |z — pl| + V| A*(J — TJI?) Az, | (3.21)

|JI (T2, — A (J = TJP2)Ax,) — STV (Jx, — yAS(J — TIP) Azy)|| = | JP (T2,
—yAN(J = TJP)Ax,) —p+p

—JSIP (T — YA (J — TJ?) Az, ||

1 TIZ (T — yA*(J = TJ3?) Ay) — |

HIST (g =y A (T = TJ2) Az,) — |

[Tz — pll + VA" (] = TJ?) Azy,) |

ST (T — YA (] = TJ?) Azy) —

[Tz — pll + VI A*(J = TJ) Az

L2 T — pll + v L2 A*(J = TJJ?) Az |

= (1+ L[|z — pll + (v + 7 L) | A*(J = TJ2) Ay | (3.22)

IN

IN

IN
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Substitute and into
O(p,ya) < O(p,xa) —2(1 = an)’|[Jwy — ST (Jwy —yA (] = TJ?) Azy))|?
—2(1 = ap){[en = pll + [[Jn = pll + || A*(J = TIF*) Awn) ||}
<AL+ L) [Tz = pll + (v + A LA (J = TI?) Az}
—2(1 — o)y J Az, — T T2 A2
—2(1 — an)y||T T2 Az, — Apl?

= O(p,z,) —2(1 — an)2||an — SJfl(an —yA*(J — T(]/F?)Agvn))||2

—(1 = an) (A + L)z — plI* — (1 — ) (1 + LP)|| J — pl|?

—2(1 = o) (1 + L) || Jzy — plI”> = (1 — ) (1 + L*)y||A*(J = TJ{2) Az, ||
—(1— )X+ L)Y|n — pII* — (1 — o) (v + L)Y A*(J — T J2) Az, ||
—(1 = an)(y + VLA (J = TT(?) Az, ||
_<1 —an)(y + 'YLQ)”an - sz —2(1 - an)(7 + ')/Lz)HA*(J - Tsz)Al"nHz
—2(1 — ap)v||J Az, — TJ){BQA:10n||2 —-2(1— ozn)7||TJ52Axn — Ap||2

= ®(p,z,) —2(1 — ap,)?|| T — SJBl(J:En —yA*(J — TJi%)fl:vn))H2
—(1 = an)(1+ L*)(3+ y)|[Jzs — plf?
(1= an)(1+ L*)(1 + 7)[lzn — pl?
—(1 = an)(1 4 L) 3y + 29°)[|A*(J = TJ?) Azy,) ||*
—2(1 — ap)y||J Az, — TP Az, ||
—2(1 - an)”YHTJBQAxn - Ap”2

|A*(J — TJP?) Az, |* = (A*(J —TJ?) Az, A*(J — TJP?) Ax,,)
(AA*(J —TJP?) Ax,, (J — TJIP?) Axz,,)
AP T Ay — T A ||?

Substitute ([3.24]) into (3.23))

Cpyn) = PP an) =21 — an)?|[J2n — ST (2 — YA (] = TJ) Axy)) |
—(1 = an)(1+ LB + ) Jzn — p*
—(1 = an)(1+ L) (1 +7)Jan = plI*
—(1 = an)[(1+ L) By + 292 || A2 + 2T I Az, — J A,
=2(1 = an)y|| T Az, — Ap|?
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Substitute (3.25]) into (3.16))

(I)<p7 xn—&-l) S

IN

q)(p7 xn+1) S

n=1

Bnq)(pv wO) + (1 - ﬁn){CD(p, xn)

—2(1 — a)?||Jwp, — STP (Jy, — YA (J — TJIP?) Ax,)) ||
—(1—an) 1+ LB+ )Tz, — pl?

—(1 = an) (1 + L*) (L + )|z — pl?

—(1 = an)[(1 4+ L) (3y + 29°) | A|* + 2| T T2 Ay, — J A ||
—2(1 — an)Y|ITJ}2 Az, — Ap|*}

Bnq)(pa wO) + (1 - ﬁn)Cb(pa xn)

—2(1— B,)(1 — ap)?||Jw, — ST (Jw,, — YA (J — TJP?) Ax,)) ||

n)
—(1=B)(1 = o) (1 + LB + ) |2, — pl”
—(1 = Ba)(1 = an)(1+ L)1 +)l|ln — p*
—(1 = Bu)(1 = a)[(1 + L) (37 + 29| AI]* + 2| T T Az, — J Az

—2(1 — oan)’yHTJfQAwn — ApH2

(1 = Ba)®@(p, x4) + Bu®(p, o)

=21 = Bp)(1 = )| Jwn = SIP (J — yA*(J = TJ?) Azy)) |1°
(1= B)(1 = ) (1 + L) B + )| Tz, — plf?

(1= B)(1 = an) (L + L) (L + )|z — plf?

—(1= 81 = an)[(1+ LBy + 22| Al]* + 2| TJy2 Ay, — J Az |
—2(1 = a,)y[| T Jy2 Az, — Apl[?

By condition (ii) Y. £, = oo and from Lemma that following limit exists

Mm@ (P, zn) =
From equation (3.27))
2(1-8,)(1 -

<

This implies that

0.

)| T2y — ST (T — yA*(J — TJP?) Ax,))|?

(1= B) (1 = o) [(1+ L) (37 + 29°) [ Al* + 2 7> Az — J Az, |®

q)(pa xn) - Bnq)(p> In) + ﬁnq)(f% $0)
—®(p, xny1) — 0 (as n — 00).

lim ||(J — TJP?)Ax,|| =0
n—oo

lim ||SJP (Jx, —yA*(J — TJP?) Az, — Ja,| = 0
n—o0

Also,

lim ®(z,,z,+1) =0,

n—oo

1843
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It follows from equations (3.15))

O(zp, Tpp1) = Pz, J H(Budzo + (1= B,)Jyn))

= |zl = 2(zn, Budzo + (1 = Br) Jyn)

| Bnd 2o + (1 — 6n>JynH2

=zl = 2(p, BuJ o) — 2(1 = Bulzn, Jyn)
HBudzo + (1 = ) Jyal®
[2nll* = 2(zn, Buxo) = 2(1 = Bulwns Jyn) + Ballzoll?
(1= Ba)llyall® = Ba(1 = B)llyn — xol* + l|znl* — [|2n]|?
Bn®(zn, o) + (1 — B1)P(Tn, Yn)
Bul®(2n, p) + (p, x0)] + (1 = 5)[® (20, ) + P(p, Yn)] (3.33)

From equations (3:28), (B:30) and F31), lim @(r,,71) = 0.

By Lemma we have F(S), F(J"), F(T) and F(J;?) are closed and convex, and hence T is
also closed and convex. Let p = Pru. By characterization of the generalised projection, we get

IN

IA A

(u—p,Jz—p) <0, VzeT. (3.34)
Since p € I', we obtain Tp = Jp, Jflp = Jp and JfQAp = JAp.

lim sup(u — p, Jx, — p) < 0.

n—oo

To show this, let {x,,} be a subsequence of {z,} such that

lim (u — p, Jx,, —p) = lim sup(u — p, Jx, — p)

n—oo n—o0
Since {z,,} is bounded, there exists a subsequence {z,, } of {x,,} and z € H; such that Tn,, — J2.
Without loss of generality, we can assume that {z,,} — Jz. Since A is a bounded linear operator,
we have (q, Ax,, — JAz) = (A*q,x,, — Jz) as i — oo, for all ¢ € H,, this implies that Az, —
JAz. By the demiclosedness of J — T and J — Jf > at zero, then J — TJf % is also demiclosed at
zero, and from equation (3.30)), we get JAz € F(TJP*) = F(T) N By'0. Since x,, — Jz and
1SJ2 (Jx,, — yA*(J — TJ?)Ay,) — Ju,| — 0 as n — oo, we have z,, — Jz. Also, by the
demiclosedness of J — S and J — J f ! at zero, then J — S Jf 2 is also demiclosed at zero, and from
equation (3.31)), we get Jz € F(SJy') = F(S) N B '0.

Now let us show that Jz € B '0. Let w, = J{' (Ja, — yA*(J — TJ?)Ax,), then we can easily

prove that

1

Xu%—wfwmu—Tﬁm%@e&%

By the monotonicity of By, we have

1
<wn —Uy (an —w, —YA*(J — TJfQ)Axn) — w>

for all (v, w) € G(By). Thus, we also have

1
<wm —Uy (Jn, — wny — YA (J = TIP?) Axy,) — w> (3.35)
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for all (v,w) € G(By). Since w,, — Jz, ||wn, — JO (Jan, — YA (J — TIP?)Az,)|| — 0. (J —
TJ)\BQ)AZ‘HZ. — 0 as ¢ — oo, then by taking the limit as ¢+ — oo in equation (3.35)) yields

(Jz —v,—w) <0

for all (v, w) € G(B;). By the maximal monotonicity of B, we get 0 € B (Jz), that is, Jz € B 0.
Also, let us show that Jz € B;'0. Let ¢, = JfQAzn, then we can easily prove that

1
X (JAx, —e,) € By,

By the monotonicity of By, we have

1
<8n —0,~ (JAx, —¢,) — 19>
A
for all (o,7) € G(Bz). Thus, we also have

<5n¢ -0, % (JAz,, —e,,) — 19> (3.36)

for all (g,9) € G(By). Since &,, — JAz, |len, — JY?Ax,,,|| — 0, then by taking the limit as i — oo

in equation ((3.36)) yields

for all (9,9) € G(B,). By the maximal monotonicity of By, we get 0 € Bo(JAz), that is, JAz € By 0.
Now we prove that z € F(S). Otherwise, assume that z ¢ Fiz(S), that is, z ¢ Sz. Opial’s
condition that

A

liminf ||z, — Sz||,
= liminf||z,, — Sz,, + Sz,, — Sz,
liminf ||Sz,, — Sz|,

liminf ||z, — 2],

liminf ||z,, — z||

IN

This is a contradiction.Thus, z € F(5).
Again, we prove that Az € F(T'). Otherwise, assume that Az ¢ Fix(T), that is, Az ¢ T Ap.
Opial’s condition that

liminf ||Az,, — JAz|| < liminf |z, — 77|,
= liminf ||Az,, — TAz,, + TAz,, — TJAz|,
= liminf ||TAz,, — TJAz|,
< liminf || Azx,, — JAz]|,

This is a contradiction. Thus, Az € F(T).
Therefore, z € T'. Since z satisfies the inequality (3.34) as

i—00

n—oo

and also satisfies the Opial’s condition in Definition [2.1] it follows from Lemma that {x,} con-
verges strongly to p € T'.
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Corollary 3.1. Let Ei and E5 be real Banach spaces. Let By and By be maximal monotone op-
erators of Ey into 2F1 and E, into 272 and Jfl and JfQ be generalized resolvents of By and Bsy,
respectively for X > 0. Let A : By — E, be a bounded linear operator and T : Ey — 252 be Lips-
chitzian J—quasi-pseudocontractive self maps of Fy such that (J —T') is demiclosed at zero. If the
solution set of SCFPNPP is nonempty (that is, T = {Jz € B{'0,JAx € F(T) N By'0} # 0). Let
{an}, {Bn} C (0,1) be real sequences satisfying the conditions: (i) > oo |y, < 00, (Zl)nh_{l;o Bn =0

and (133) "7, B = 00. Let xg, 1 € Ey be arbitrary, the iterative sequence {x,} generated by (3.15)),
then

(a) lim ®(p,x,) exists for each p € T,
n—oo

(b) lim || JAz, — TJP?Az,| =0,
n—oo
then {x,}°2, converges strongly to p € T.
Corollary 3.2. Let E| and E5 be real Banach spaces. Let By and By be maximal monotone operators
of B, into 2F1 and E, into 272 and Jfl and Jf2 be generalized resolvents of By and Bsy, respectively
for A > 0. Let A: Ey — FEy be a bounded linear operator. If the solution set of SNPP is nonempty
(that is, T = {Jx € B{'0,JAz € By'0} #0). Let {a,}, {8} C (0,1) be real sequences satisfying
the conditions: (1) Y o7 o, < 00, (i) im B, = 0 and (#ii) > .- B, = oco. Let xg, x1 € Ey be
n—oo
arbitrary, the iterative sequence {x,} generated by (3.15)),then
(a) lim ®(p,x,) exists for each p € T,
n—oo

(b) {x,}2, converges strongly to a point p € ', then {x,}52, converges strongly top € T.

Corollary 3.3. Let Ei and E5 be real Banach spaces. Let By and By be maximal monotone op-
erators of Ey into 2F1 and E, into 272 and Jfl and JfQ be generalized resolvents of By and Bsy,
respectively for X\ > 0. Let A : E;, — Ey be a bounded linear operator and T : E; — 2F1 be Lip-

schitzian J— quasi-seudocontractive self maps of Ey such that (J —T) is demiclosed at zero. If the

solution set of SCFPNPP is nonempty (that is, I' = {Jx € F(S)N B;'0,JAx € B;'0} # (). Let

{an}, {Bn} C (0,1) be real sequences satisfying the conditions: (i) > o~ | ay, < oo, (i1) lim 3, = 0 and
n—oo

(idt) Y07, Bn = 00. Let xg, x1 € Ey be arbitrary, the iterative sequence {x,} generated by(3.15)),then
(a) lim ®(p,x,) exists for each p € T,
n—oo

(b) lim ||Jz, — ST (Jx, — yA*(J — J?) Az,,)|| = 0,
n—oo
then {x,}>2, converges strongly to p € T.
Corollary 3.4. Let Ey and E5 be real Banach spaces. Let A : E1 — E5 be a bounded linear operator,
and S : By — 2F1 be Lipschitzian J— quasi-pseudocontractive self maps of By and T : Ey — 22 be
Lipschitzian J—quasi-pseudocontractive self maps of Ey such that (J—S) and (J—T) are demiclosed

at zero. If the solution set of SCFPP is nonempty (that is, T = {Jx € F(S), JAx € F(T)} #0). Let
{an.}, {Bn} C (0,1) be real sequences satisfying the conditions: (i) > .o, < oo, (#i) lim £, = 0
n—oo

and (iii) Y 2 B = oo. Let xg, x1 € Ey be arbitrary, the iterative sequence {x,} generated by
BT then
(a) lim ®(p,x,) exists for each p € T,
n—oo
(b) lim ||Jz, — S(Jzx, —vyA*(J —T)Ax,)| = lim ||JAx, — TAx,| =0,
n—oo n—oo

then {x,}22 | converges strongly top € I'.
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4. Applications

Let f be a bifunction from C' x C' to R, where R is the set of real numbers. The equilibrium
problem is to find z € C such that f(z,y) > 0 for all y € C'. The set of such solutions is denoted by
EP(f). Numerous problems in physics, optimization, and economics reduce to finding a solution to
the equilibrium problem (see [7]).

Lemma 4.1. For solving the equilibrium problem, they assumed that the bifunction f satisfies the
following conditions:

(A1) f(z,x) =0 for all z € C,

(A2) f is monotone, that is, f(z,y) + f(y,x) <0 for all z,y € C,
(A3) for every x,y,z € C, limsup,, f(tz + (1 —t)z,y) < f(2,y),
(A4) f(z,-) is conver and lower semicontinuous for each x € C.

Equilibrium problems have been studied extensively; see [7, (23, [24, [60)].

Lemma 4.2. (see [7]). Let C be a nonempty closed convex subset of H, and let f be a bifunction
from C x C to R satisfying (A1) — (A4). If r >0 and x € H, then there exists z € C' such that

f(z,y)+%(y—z,z—x>20, Yy € C. (4.1)

Lemma 4.3. (see [50]). Let C be a nonempty closed convex subset of E, and let f be a bifunction
from C x C to R satisfying (A1) — (A4). Forr >0, define a mapping T, : E — C as follows:

T.(z) ={z€C: f(z,y) + %(y —z,Jz—Jxy >0, Vy € C}. (4.2)

Then the following hold:

(i) T, is single valued,
(ii) T, is firmly nonexpansive, that is, for any x,y € E
(Jx — Jy, T, — T,y) > ||JTa — JTy|?, (4.3)
(i11) Fix(T,) = EP(f),
(iv) EP(f) is closed and conver.

Lemma 4.4. Let C be a nonempty closed convex subset of E, and let f be a bifunction from C x C
to R satisfying (A1) - (A4). Define Ay as follows:

A(r) = { é{)z e b flzyy) > (y—un,Jz), YyeC}, xififx ;g (4.4)

Then the following hold:

(1) Ay is msximal monotone,
.. oa-1

(i) EP(f) = A;'0,

(ii) T = (J +rA;)~t0, r>0.
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Let C' and ) be nonempty closed convex subsets of F; and FEjy, respectively. Let f; : O x C — R
and fo: Q x Q — R be two bifunctions and A : F; — F5 a bounded linear operator, then the SEP
is to find a point x* € C' such that

fi(z*,z) > 0 Ve € C and (4.5)
y* = Ax* € Q solves fo(y*,y) > 0Vy € Q '
Then above problem is to find a point z* € C' such that
Jx* € EP(f)) and JAxz" € EP(fs) (4.6)

Let E be a real Banach space, and let f be a proper lower semicontinuous convex function of F
into (—oo, +00|. Then the subdifferential Of of f is defined as

of(x)={z€ E: f(y) - f(x) 2 (Jz,y —x), Vy € E} (4.7)

for all x € E. [44] claimed that Of is a maximal monotone operator. Let C' be a nonempty closed
convex subset of E, and let ¢ be the indicator function of C'. That is,

{OxeC

delr) = +oo z¢C

(4.8)

Since d¢ is a proper lower semicontinuous convex function on E, the subdifferential Js. of d¢ is a
maximal monotone operator. The resolvent Jy of 05, for A > 0 is defined by

I = (J+ \0s.) ' Jz, Vx € E. (4.9)
they have

u=(J+\s.,) "Jr & Jr € Ju+ \s.u
Jxr € Ju+ ANcu < Jxr — Ju € ANgu

1
—(Jr—Ju,y—u) <0, Vye C
A

u= Ha: (4.10)
c

where Nou ={z € Fy : (Jz,z —u) <0 Vz € C}.

Let C' and @) be nonempty closed convex subsets of F; and FEs, respectively. Let S : £} — F
and T : E5 — Fs be two Lipschitzian quasi pseudocontractiv mappings and A : E; — F5 a bounded
linear operator from FE; to Es.

The Split Variational Inequality Problem denoted by SVIP is to find a point v* € C' such that

T ¢ 0

(Ju — Ju*, ST (Ju* — yA*(J — TJP?)Au*)) > 0 Yu € C' and
v* = JAx* € () such that (4.11)
(v —v*, A*(J = TJP*)Av*) >0 Vv € Q.

Let D be the solution setof the SVIP given by
D={Ju eVIC,S): JAu € VI(Q,T)} (4.12)

We observe that Ju* € SVIP if and only if Ju* = SJJ' (Ju* — yA*(J — TJ?)Au*) and JAu* =
A*(J — TJP?) Aur.
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Let E; and Fy be real Banach spaces. Let f : F; — (—o00,+00] and g : Ey — (—00,+00] be
proper, lower semicontinuous and convex functions. Let A : E; — FEs be a bounded linear operator,
the Split Optimizatin problem (SOP) is the problem of finding z* € F; such that

Jx* € Argmin f and JAx* € Argmin g. (4.13)

Denote by 0f = B; and dg = By. Since Jx* and JAx* are the minimum of f on F; and g on Fj,
respectively for any A > 0, we have

* = F(S) N (8f)7'0 = Fiz(SJ%) and
Az* = F(T) N (9g) ™10 = Fix(TJY). (4.14)

Also, this implies that the split optimization problem (4.13)) is equivalent to the split common fixed
point and null point problem SCFPNPP.

4.1. Split feasibility Problem (SFP)

Theorem 4.1. Let Ey and FEy be real Banach spaces and C' and () be nonempty closed convex subsets
of By and Ey respectively. Let A : By — Ey be a bounded linear operator, and S : E; — 2Fi be
Lipschitzian J— quasi-pseudocontractive self maps of By and T : Ey — 22 be Lipschitzian J— quasi-
pseudocontractive self maps of Ey such that (J — S) and (J —T) are demiclosed at zero. If the
solution set of SFP is nonempty (that is, I = {Jx € F(S)NC : JAz € F(T)NQ} #0). Suppose
that xo, x1 € Ey be arbitrary, the iterative sequence {x,} generated by

Tn = Jﬁl(ﬁnx + (1= Bn)yn)
yZI = J*l(an:pi + (1= )8 [[o(Jan — vA*(J — T[Ip) Azy)) " = L. (4.15)

where the parameter v and the sequences {a,}, {fn} C (0,1) satisfying the conditions: (i) v €
(07 ﬁ) (i) S°°°, an < 00, (idi) lim B, = 0 and (iv) S2°, B, = co. Then,
n—oo

(a) lim ®(p,x,) exists for each p € T,
n—oQ

(b) li_>m [Jzn — STlo(Jon —yA*(J = T'T]g) Azn) |l = li_>m |J Az, — T ]y Az =0,
then {x,}>2 | converges strongly to p € I

Proof: Set By := ddc and B, := 9dg. Then By and B, are maximal monotone such that Jfl =11¢
and sz = [[, for A > 0. We also have B;{'0 = C and B,'0 = Q. Hence the result is obtained
directly by Theorem [3.1}

4.2. Split Equilibrium Problem (SEP)

Theorem 4.2. Let C' and Q) be nonempty closed convex subsets of Ey and Es, respectively. fi :
CxC — Rand fo : Q@ x Q — R be bifunctions satisfying (A1) — (A4) and let T7f11 and Trf;
be resolvents of Ay, and Ay, in Lemma respectively for ri, ro > 0. Let A : B — FEy be a
bounded linear operator, and S : By — 281 be Lipschitzian J—quasi-pseudocontractive self maps
of H and T : Ey — 2% be Lipschitzian J— quasi-pseudocontractive self maps of E, such that
(J—8) and (J —T) are demiclosed at zero. If the solution set of SEP is nonempty (that is,
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I'={Jz e F(S)YNEP(f1),JAx € F(T)NEP(f5)} # 0). Suppose that xo, x1 € Ey be arbitrary, the
iterative sequence {x,} generated by

Tp+1 = Jﬁl(ﬁnjx() + (1 - /Bn)Jyn)
Y = J N owJz, + (1 — an) ST (T, — yA*(J — TT2)Axy,)) nzl (4.16)

where the parameter v and the sequences {an}, {fn} C (0,1) satisfying the conditions: (i) v €
<0, W), (i) D07y, < 00, (i) lim B, =0 and (iv) > | B, = co. Then,
n—o0

(a) lim ®(p,x,) exists for each p € T,
n—oo

(b) lim || Jw, = STI (Jay — yA*(J = TT) Ax,)|| = lim [|J Az, — TTS Az, || = 0,
then {x,}>° | converges strongly to p € I.

Proof : We set By := Ay, and B, := Ay,. By Lemmaﬂ, we know that B; and By are maximal
monotone, EP(f1) = B;'0, EP(f;) = By'0, Th = JJ" and T2 = J, so the result is obtained
directly by Theorem (3.1}

4.8. Split Variational inequality Problem (SVIP)

Theorem 4.3. Let E; and Ey be Banach spaces, A : E1 — FEy be a bounded linear operator, and
S : By — 2F1 be Lipschitzian J—quasi-pseudocontractive self maps of By and T : Ey — 22 be
Lipschitzian J—quasi-pseudocontractive self maps of Ey such that (J—S) and (J—T) are demiclosed
at zero. Let A* denotes the adjoint ofA. Let By : By — 251 and By : Ey — 272 be two set valued
maximal monotone mappings and v, X > 0. Given any x* € Fy,

(i) if Jr* is a solution of SVIP, then ST (Jx, — yA*(J — TJ?)Axy) = Ja*,

(ii) Suppose that ST (Jx, —yA*(J—TJP?)Ax,) = Jo* and the solution set of SVIP is not empty,
then Jx* is a solution of SVIP.

Proof : (i) Suppose that z* € E; is a solution of SVIP, then z* € F(S) N B;'0 and Az* €
F(T)N By'0. By Lemma , it can be seen that SJ' (Jo* — yA*(J — TJP?)Az*) = J*.

(ii) Suppose that Jw* is the solution of SVIP and SJ, (Ja* — yA*(J — TJ?)Ar*) = Ja* by Lemma
3.2, we have

(Jo* —yA*(J = TIP)Ax* — Ja*, Ja* — Jw*) > 0
for each Jw* € F(S) N B0, that is,

(A*(J — TJP)Az*, Ja* — Juw*) <0
for each Jw* € F(S) N B0,

(JAz* — TJP? Ax*, JAz* — JAw*) <0

Jw* is the solution of SVIP.
We set By := Ay, and By := Ay,. By Lemma we know that B; and B, are maximal monotone,
S =1, T =1, so the result is obtained directly by Theorem [3.1}
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4.4. Split Optimization Problem (SOP)

Theorem 4.4. Let E; and E5 be real Banach spaces. Let f : Fi — R and g : E5 — R be proper
lower semicontinuous convex function of E into (—oo,+00]. Let A : Ey — Ey be a bounded linear
operator. Let A : Ey — E, be a bounded linear operator, and S : By — 2F1 be Lipschitzian J—quasi
pseudocontractive self maps of By and T : Ey — 272 be Lipschitzian J— quasi pseudocontractive self
maps of Hy such that (J —S) and (J —T) are demiclosed at zero. If the solution set of SOP (4.13)
is nonempty (that is, T = {Jx € F(S)N B;'0,JAx € F(T)N By'0} # (). Suppose that xq, 71 € E;
be arbitrary, the iterative sequence {x,} generated by

Tn+1 = J_l(ﬁnJZUO -+ (1 — ﬁn)Jyn)
> 1. .
gn = T Mandw+ (1= an) ST (Jan — 7 AT =TI Az,)) "7 (4.17)

where the parameter v and the sequences {a,}, {fn} C (0,1) satisfying the conditions: (i) v €
(0, ﬁ) (i) 5 g < 00, (idd) lim By = 0 and (iv) S3°°, B = 0o. Then,
n—oo

(a) lim ®(p,x,) exists for each p € T,
n—o0

(b) lim ||.Jz, ST (T, — A (J = TIY) Ax,)| = lim | J Az, — TJ Az,| =0,
then {x,}>2, converges strongly to p € T.

Proof: Set B; := 0f and B, := 0g. Hence the result is obtained directly by Theorem [3.1]

Conclusion

We study the split common fixed point and null point problem between Banach spaces outside
Hilbert spaces. We propose a Halpern-type algorithm with self-adaptive stepsize and prove a strong
convergence theorem without imposing demi-compactness condition the nonlinear mappings. We
apply our main results to split feasibility problem (SFP), split equilibrium problem (SEP), split
variational inequality problem (SVIP) and split optimization problem (SOP). Some existing results
are derived from our main results and their proofs are given. Lastly, our results resolved some of the
open problems in literature.
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