Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 1909–1915 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.24082.2666

Counting of conjugacy classes in partial transformation semigroups

Aftab Hussain Shah^a, Mohd Rafiq Parray^a, Dilawar Juneed Mir^{a,*}

^aDepartment of Mathematics, Central University of Kashmir, Ganderbal-191201, India

(Communicated by Abasalt Bodaghi)

Abstract

J.Koneiczny in [8] introduced the new notion \sim_n notion of conjugacy in semigroups. In this paper, we count the number of conjugacy classes in Partial Transformation semigroup $\mathcal{P}(A)$ for an infinite set A with respect to \sim_n notion of conjugacy.

Keywords: Conjugacy; Diagraph; Double Ray; Cycle set; Chain. 2010 MSC: 20M07; 20M15; 20M20.

1. Introduction and Preliminaries

Let S is a semigroup and let $a, b \in S$. Then,

 $a \sim_n b \Leftrightarrow \exists u, v \in S^1$ such that au = ub, bv = va, a = ubv and b = vau.

This relation is an equivalence relation in any semigroup and in a semigroup with zero it is not a universal relation. J. Konieczny in [7] introduced the \sim_n notion of conjugacy in semigroups.

A digraph (or a directed graph) is a pair $\Pi = (A, R)$, where A is a non-empty set(finite or infinite) and R is a binary relation on A.

If $\sigma \in \mathcal{P}(A)$, then it can be represented by the digraph $\Pi(\sigma) = (A, R_{\sigma})$, where for all $u, v \in t, (u, v) \in R_{\sigma}$ if and only if $u \in \operatorname{dom}(\sigma)$ and $u\sigma = v$.

Let $\Pi_1 = (A_1, R_1)$ and $\Pi_2 = (A_2, R_2)$ be digraphs. A mapping α from A_1 to A_2 is called a homomorphism from Π_1 to Π_2 if for all $u, v \in A_1, (u, v) \in R_1$ implies $(u\alpha, v\alpha) \in R_2$. A partial

^{*}Corresponding author

Email addresses: aftab@cukashmir.ac.in (Aftab Hussain Shah), parrayrafiq@cukashmir.ac.in (Mohd Rafiq Parray), mirjunaid@cukashmir.ac.in (Dilawar Juneed Mir)

mapping α from A_1 to A_2 is called a *partial homomorphism* from Π_1 to Π_2 if for all $u, v \in \text{dom}(\alpha)$, $(u, v) \in R_1$ implies $(u\alpha, v\alpha) \in R_2$.

A vertex $p \in A$ for which there exists no q in A such that $(p,q) \in R$ is called a *terminal vertex* of Γ . A vertex $p \in A$ is said to be initial vertex if there is no $q \in A$ for which $(q,p) \in R$ while as a vertex $p \in A$ is said to be a non initial vertex if $(q,p) \in R$ for some $q \in A$.

Let $\Pi_1 = (A_1, R_1)$ and $\Pi_2 = (A_2, R_2)$ be digraphs. A partial homomorphism α from A_1 to A_2 is called a *restrictive partial homomorphism* (or an *rp-homomorphism*) from Π_1 to Π_2 if it satisfies the following conditions:

- (a) If $(u, v) \in R_1$, then $u, v \in \text{dom}(\alpha)$ and $(u\alpha, v\alpha) \in R_2$.
- (b) If u is a terminal vertex in Π_1 and $u \in \text{dom}(\alpha)$, then $u\alpha$ is a terminal vertex in Π_2 .

We say that Π_1 is *rp-homomorphic* to Π_2 if there is an rp-homomorphism from Π_1 to Π_2 .

Throughout this paper by an rp-hom we shall mean an rp-homomorphism between any two digraphs and by hom we shall mean a homomorphism.

The next theorem provides a necessary and sufficient condition for two elements of $\mathcal{P}(A)$ to be \sim_n related.

Theorem 1.1: [1, Theorem 2.1] Let $S \leq \mathcal{P}(A)$ and $\sigma, \tau \in S$. Then $\sigma \sim_n \tau$ if and only if there are $\alpha, \beta \in S^1$ for which α is an rp-hom from $\Pi(\sigma)$ to $\Pi(\tau)$ and β is an rp-hom from $\Pi(\tau)$ to $\Pi(\sigma)$ with $q\alpha\beta = q$ for every non initial vertex q of $\Pi(\sigma)$ and $k\beta\alpha = k$ for every non initial vertex k of $\Pi(\tau)$.

Definition 1.2: Let $\dots, a_{-2}, a_{-1}, a_0, a_1, a_2, \dots$ be pairwise distinct elements of A. Then,

(1) A $\sigma \in \mathcal{P}(A)$ is called a *cycle* of length k if $\sigma = (a_0 a_1 a_2 \cdots a_{k-1})$ where $(k \ge 1)$ i.e., $a_j = a_{j-1}\sigma$, $j = 1, 2, \cdots, k$ and $a_0 = a_{k-1}\sigma$ and we write it as

 $a_0 \to a_1 \to a_2 \to \cdots \to a_{k-1} \to a_0.$

(2) A $\sigma \in \mathcal{P}(A)$ is called a *right ray* if $\sigma = [a_0 \ a_1 \ a_2 \cdots > i, e \ a_j = a_{j-1}\sigma, j \ge 1$ and we write it as

 $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \cdots$.

(3) A $\sigma \in \mathcal{P}(A)$ is called a *double ray* if $\sigma = \langle \cdots a_{-1} a_0 a_1 \cdots \rangle$ i.e., $a_j = a_{j-1}\sigma$, $j \in \mathbb{Z}$ and we write it as

 $\cdots \rightarrow a_{-1} \rightarrow a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \cdots$

(4) A $\sigma \in \mathcal{P}(A)$ is called a *left ray*, if $\sigma = \langle \cdots a_2 a_1 a_0]$ i.e., $a_j \sigma = a_{j-1}, j \ge 1$ and we write it as

$$\cdots \rightarrow a_2 \rightarrow a_1 \rightarrow a_0.$$

(5) A $\sigma \in \mathcal{P}(A)$ is called a *chain* of length k if $\sigma = [a_0 \ a_1 \ a_2 \ \cdots \ a_k]$ i.e., $a_j = a_{j-1}\sigma$, $j = 1, 2, \cdots, k$ and we write it as

$$a_0 \to a_1 \to a_2 \to \cdots \to a_k.$$

Notation 1.3: For $\sigma \in \mathcal{P}(A)$, $\operatorname{Span}(\sigma)$ denotes $\operatorname{dom}(\sigma) \cup \operatorname{im}(\sigma)$.

For $\sigma \in \mathcal{P}(A)$ and $a \in A$, we will write $a\sigma = \diamond$ if and only if $a \notin \operatorname{dom}(\sigma)$. We will also assume that $\diamond \sigma = \diamond$. With this notation it makes sense to write $u\sigma = v\tau$ or $u\sigma \neq v\tau$ $(\sigma, \tau \in \mathcal{P}(A), u, v \in A)$ even when $u \notin \operatorname{dom}(\sigma)$ or $v \notin \operatorname{dom}(\tau)$.

Definition 1.4: An element $\theta \in \mathcal{P}(A)$ is called *connected* if $\theta \neq 0$ and for all $a, b \in \text{span}(\theta)$, $a\theta^k = b\theta^m \neq \diamond$ for some $k, m \geq 0$.

Definition 1.5: If (N, |) is a partially ordered subset of the set of positive integers with $m_1 < m_2 < m_3 \cdots$. Then

 $\operatorname{sac}(N) = \{m_n \in N: \text{ for all } i < n, m_n \text{ is not a multiple of } m_i\}.$

Let σ be in P(A) and let N denotes the set of lengths of cycles in σ . The standard anti-chain of (N, |) will be called the *cycle set* of σ and denoted by $cs(\sigma)$.

Definition 1.6: Let $\theta \in \mathcal{P}(A)$ be connected. we will say that θ is of rro type if θ contains a maximal right ray but no cycles or double rays or left rays or maximal chains. We will say that θ is of cho type if θ contains a maximal chain but no cycles or rays.

Let $\theta \in \mathcal{P}(A)$ be connected such that θ has a maximal left ray or is of the type. The unique terminal vertex of θ is called as the root of θ .

Definition 1.7: A unique function π defined on A with ordinals as values and R is a well founded relation such that for every $a \in A$,

$$\pi(a) = \sup\{\pi(b) + 1 : (b, a) \in R\}.$$

The ordinal $\pi(a)$ is called the rank of a in $\langle A, R \rangle$ [10, Theorem 1.27].

Let $\theta \in \mathcal{P}(A)$ be connected of rro type and $\kappa = [x_0 x_1 x_2 \cdots > be a \text{ maximal right ray in } \theta$. We denote by $\langle \kappa_n^{\theta} \rangle_{n \ge 0}$ the sequence of ordinals such that

 $\kappa_n^{\theta} = \pi_{\theta}(u_n)$ for every $n \ge 0$ where $\pi_{\theta}(u_n)$ is the rank of u_n in θ .

Definition 1.8: Let $\langle p_n \rangle_{n \ge 0}$ and $\langle q_n \rangle_{n \ge 0}$ be sequences of ordinals. Then we say that $\langle q_n \rangle$ dominates $\langle p_n \rangle$ if there is $k \ge 0$ such that

$$q_{k+n} \ge p_n$$
 for every $n \ge 0$.

Definition 1.9: Let C be a set of pairwise disjoint elements of $\mathcal{P}(A)$. The *join* of the elements of C denoted $\bigcup \gamma$ is an element of $\mathcal{P}(A)$ defined by

$$x(\bigcup_{\gamma \in C} \gamma) = \begin{cases} x\gamma & \text{if } x \in \operatorname{dom}(\gamma) \text{ for some } \gamma \in C \\ \diamond & \text{otherwise.} \end{cases}$$

Proposition 1.10: [7, Proposition 3.5] Let $\sigma \in \mathcal{P}(A)$ with $\sigma \neq 0$. Then there exists a unique set C of pairwise completely disjoint, connected transformations contained in σ such that $\sigma = \bigcup_{\gamma \in C} \gamma$.

The elements of C in Proposition 1.10 are called as connected component of σ . Throughout this paper by c-component we shall mean connected component.

Theorem 1.11: [1, Theorem 3.23] For any subsemigroup $S \leq \mathcal{P}(A)$, Let $\sigma, \tau \in \mathcal{P}(A)$. Then $\sigma \sim_n \tau$ in $\mathcal{P}(A)$ if and only if $\sigma = \tau = 0$ or $\sigma, \tau \neq 0$ and the following conditions are satisfied:

- (1) $cs(\sigma) = cs(\tau)$.
- (2) σ has a double ray but not a cycle if and only if τ has a double ray but not a cycle.
- (3) If σ has a c-component γ which is of type rro, but no cycles or double rays, then τ has a c-component δ which is of type rro, but no cycles or double rays, and $\langle \zeta_n^{\delta} \rangle$ dominates $\langle \eta_n^{\gamma} \rangle$ for some maximal right rays η in γ and ζ in δ .
- (4) If τ has a c-component δ which is of type rro, but no cycles or double rays, then σ has a c-component γ which is of type rro, but no cycles or double rays, and $\langle \eta_n^{\gamma} \rangle$ dominates $\langle \zeta_n^{\delta} \rangle$ for some maximal right rays ζ in δ and η in γ .
- (5) σ has a maximal left ray if and only if τ has a maximal left ray.
- (6) If σ has a c-component γ which is of cho type with root x_0 , but no maximal left rays, then τ has a c-component δ which is of cho type with root y_0 , but no maximal left rays, and $\pi_{\gamma}(x_0) \leq \pi_{\delta}(y_0)$.
- (7) If τ has a c-component δ which is of cho type with root y_0 , but no maximal left rays, then σ has a c-component γ which is of cho type with root x_0 , but no maximal left rays, and $\pi_{\delta}(y_0) \leq \pi_{\gamma}(x_0)$.
- (8) There is $\alpha, \beta \in S^1$ such that $y\alpha\beta = y$ for every non initial vertex y of $\Pi(\sigma)$ and $z\beta\alpha = z$ for every non initial vertex z of $\Pi(\tau)$

2. Counting of Conjugacy Classes using \sim_n notion of conjugacy

Using Theorem 1.11, we now count the conjugacy classes in $\mathcal{P}(A)$ for an infinite set A for the \sim_n notion of conjugacy.

Notation 2.1: We use \aleph notation for an infinite cardinal, that is, for an ordinal ϵ , we will write \aleph_{ϵ} for the cardinal indexed by ϵ . If \aleph_{ϵ} is viewed as an ordinal, we will consistently write ω_{ϵ} for it.

The next results are from [7] and shall be used to prove the main theorem.

Lemma 2.2: [7, Lemma 3.30] Let $\sigma, \tau \in \mathcal{P}(A)$ be connected of rro type. Let μ be a maximal right ray in σ and κ be a maximal right ray in τ such that $\langle \kappa_p^{\tau} \rangle$ dominates $\langle \mu_p^{\sigma} \rangle$. Then for every maximal right ray μ_1 in σ and every maximal right ray κ_1 in $\tau < (\kappa_1)_p^{\tau} > \text{dominates} < (\mu_1)_p^{\sigma} > \square$

Lemma 2.3: [7, Lemma 5.9] Let $|A| = \aleph_{\epsilon}$ and let $\sigma \in \mathcal{P}(A)$ be of the type with root p_0 . Then $\pi(p_0) < \omega_{\epsilon+1}$.

Lemma 2.4: [7, Lemma 5.10] Let $|A| = \aleph_{\epsilon}$. Then for every non zero ordinal $\nu < \omega_{\epsilon+1}$, there is $\sigma \in \mathcal{P}(A)$ of cho type with root p_0 such that $\pi(p_0) = \nu$.

Lemma 2.5: [7, Lemma 5.11] Let $|A| = \aleph_{\epsilon}$ and let $\langle u_p \rangle$ be an increasing sequence of ordinals $u_p \langle \omega_{\epsilon+1}$ such that $u_0 = 0$. Then there is $\sigma \in \mathcal{T}(A)$ of rro type with a maximal right ray μ such that $\langle \mu_p^{\sigma} \rangle = \langle u_p \rangle$.

Let $\aleph_{\epsilon+1}$ be a successor cardinal. Denote by $IS_{\omega_{\epsilon+1}}$ the set of increasing sequences $\langle p_n \rangle$ of ordinals $p_n \langle \omega_{\epsilon+1}$ such that $u_0 = 0$. Define a relation \approx on $IS_{\omega_{\epsilon+1}}$ is defined as

 $\langle p_n \rangle \approx \langle q_n \rangle$ if $\langle q_n \rangle$ dominates $\langle p_n \rangle$ and $\langle p_n \rangle$ dominates $\langle q_n \rangle$.

 \approx is an equivalence relation on $IS_{\omega_{\epsilon+1}}$. By this $[\langle p_n \rangle]_{\approx}$ we denote the equivalence class of $\langle p_n \rangle$ and by $IS_{\omega_{\epsilon+1}}^{\approx}$ we mean the set of all equivalence classes of \approx .

Lemma 2.6: [7, Lemma 5.15] For any successor cardinal $\aleph_{\epsilon+1}$, $|IS_{\omega_{\epsilon+1}}| = \aleph_{\epsilon+1}^{\aleph_0}$ and $\aleph_{\epsilon+1} \leq |IS_{\omega_{\epsilon+1}}^{\approx}| \leq \aleph_{\epsilon+1}^{\aleph_0}$.

Theorem 2.7: Let A be an infinite set with $|A| = \aleph_{\epsilon}$. Then the number of conjugacy classes with respect to the \sim_n notion of conjugacy in $\mathcal{P}(A)$ are

- (1) $max\{2^{\aleph_0}, \aleph_{\epsilon+1}\}$ containing a representative with a cycle, of which \aleph_0 have a connected representative.
- (2) $2^{\aleph_{\epsilon}}$ containing a representative with a c-component of rro type, but no cycles, of which at least $\aleph_{\epsilon+1}$ and at most $\aleph_{\epsilon+1}^{\aleph_0}$ have a connected representative.
- (3) $\aleph_{\epsilon+1}$ containing a representative with a c-component of cho type, but no cycles or c-components of rro type, of which $\aleph_{\epsilon+1}$ have a connected representative.

In total there are $2^{\aleph_{\epsilon}}$ conjugacy classes in $\mathcal{P}(A)$, of which at least $\aleph_{\epsilon+1}$ and at most $\aleph_{\epsilon+1}^{\aleph_0}$ have a connected representative.

Proof:

(1) Let $\sigma \in \mathcal{P}(A)$ and let $i_{\sigma}, j_{\sigma} \in \{0, 1\}$ be defined by $i_{\sigma} = 1$ if there exists a c-component of σ of cho type with root p_0 so that $\pi_{\kappa}(p_0) = s(\sigma)$, otherwise $i_{\sigma} = 0$ and $j_{\sigma} = 1$ if σ has a double ray, otherwise $j_{\sigma} = 0$.

To prove (1), let $X = \{[\sigma]_n : \sigma \in \mathcal{P}(A) \text{ has a cycle }\}$. Let $X' = \{[\sigma]_n \in X : \sigma \text{ has no maximal left rays}\}$ and $X'' = \{[\sigma]_n \in X : \sigma \text{ has a maximal left rays}\}$. By part (6) of Theorem 1.11, we have $\{X', X''\}$ is a partition of X. Define $f' : X' \to \mathcal{P}(\mathbb{Z}_+) \times (\omega_{\epsilon+1} + 1) \times \{0, 1\}$ by $([\sigma]_n)f' = (cs(\sigma), s(\sigma), i_{\sigma})$. Then by Theorem 1.11, we get f' is well defined and injectivity of f' follows from Lemma 2.3. Similar holds for the mapping $f'' : X'' \to \mathcal{P}(\mathbb{Z}_+) \times (\omega_{\epsilon+1}) \times \{0, 1\}$ defined by $([\sigma]_n)f'' = (cs(\sigma), s(\sigma), i_{\sigma})$. Therefore

$$|X'| \le |\mathcal{P}(Z_+)| \cdot |\omega_{\epsilon+1} + 1| \cdot 2 = 2^{\aleph_0} \cdot \aleph_{\epsilon+1} \cdot 2 = \max\{2^{\aleph_0}, \aleph_{\epsilon+1}\}$$

and the same holds for |X''|. Hence we have

$$\begin{aligned} |X| &= |X'| + |X''| \\ &\leq \max\{2^{\aleph^0}, \aleph_{\epsilon+1}\} + \max\{2^{\aleph^0}, \aleph_{\epsilon+1}\} \\ &= 2 \cdot \max\{2^{\aleph^0}, \aleph_{\epsilon+1}\} \\ &= \max\{2^{\aleph_0}, \aleph_{\epsilon+1}\}. \end{aligned}$$

Let U be the set of prime positive integers and $V \subseteq U$, let $\{\theta_v\}_{v \in V}$ be a collection of completely disjoint cycles θ_v having length v (since X is infinite such a collection exists.) Define $\tau_V \in \mathcal{P}(A)$ by $\tau_V = \bigcup_{v \in V} \theta_v$. For $V_1, V_2 \subseteq U$ with $V_1 \neq V_2$. Now by part (2) of Theorem 1.11, we have $(\tau_{V_1}, \tau_{V_2}) \notin \sim_n$. So, $|X| \geq |\mathcal{P}(U)| = 2^{\aleph_0}$. By Lemma 2.4, for every nonzero ordinal $\nu < \omega_{\epsilon+1}$, there is $\kappa_{\nu} \in \mathcal{P}(A)$ of cho type with root p_0 such that $\pi(p_0) = \nu$. For all non zero ordinals $\delta, \nu < \omega_{\epsilon+1}$ with $\delta \neq \nu$, we have $(\kappa_{\delta}, \kappa_{\nu}) \notin \sim_n$ by Theorem 1.11. It follows that $|X| \geq |\omega_{\epsilon+1}| = \aleph_{\epsilon+1}$. Hence $|X| \geq \max\{2^{\aleph_0}, \aleph_{\epsilon+1}\}$, and so $|X| = \max\{2^{\aleph_0}, \aleph_{\epsilon+1}\}$.

Let $X_1 = \{ [\kappa]_n : \kappa \in \mathcal{P}(A) \text{ has a cycle and } \kappa \text{ is connected } \}$. Fix a subset $A_0 = \{t_0, t_1, \cdots\}$ of A, and for every integer $p \ge 0$, define a cycle $\kappa_p = (t_0 t_1 \cdots t_{p-1}) \in \mathcal{P}(A)$. Then, by Proposition 1.1 and Theorem 1.11, we have $X_1 = \{ [\kappa_0]_n, [\kappa_1]_n, [\kappa_2]_n, \cdots \}$, and so $|X_1| = \aleph_0$.

(2) Let $Q = \{[\sigma]_n : \sigma \in \mathcal{P}(A) \text{ contains a c-component of rro type with no cycles}\}$, and let $Q_1 \subseteq Q$ consisting of all conjugacy classes $[\kappa]_n \in Q$ such that κ is connected. Fix a double ray $\omega = \langle \cdots t_{-1} t_0 t_1 \cdots \rangle \in \mathcal{P}(A)$ and note that

$$Q_1 = \{ [\kappa]_n : \kappa \in \mathcal{P}(A) \text{ of rro type} \} \cup \{ [\omega]_n \}.$$

Let $Q'_1 = \{[\kappa]_n : \kappa \in \mathcal{P}(A) \text{ is of rro type}\}$. For every $\kappa \in \mathcal{P}(A)$ of rro type, we fix a maximal right ray μ^{κ} in κ . Let $g : Q'_1 \to IS_{\omega_{\epsilon+1}}^{\approx}$ be defined by $([\kappa]_n)g = [<\mu_n^{\kappa}>]_{\approx}$. Note that $<\mu_n^{\kappa}>\in IS_{\omega_{\epsilon+1}}$ by the Lemma 2.3. Suppose $[\kappa_1]_n, [\kappa_2] \in Q'_1$ with $[\kappa_1]_n = [\kappa_2]_n$ then by Theorem 1.11 and Lemma 2.2, the sequences $<\mu_n^{\kappa_1}>$ and $\mu_n^{\kappa_2}$ dominate each other, and so $[<\mu^{\kappa_1}>]_{\approx} = [<\mu_n^{\kappa_2}>]_{\approx}$. So, g is well defined. The injectivity of g follows from Part(4) Theorem 1.11 and by Lemma 2.5 g is surjective. Thus $|Q'_1| = IS_{\omega_{\epsilon+1}}^{\approx}$ and so by Lemma 2.6, $\aleph_{\epsilon+1} \leq |Q'_1| \leq \aleph_{\epsilon+1}^{\aleph_0}$. Then $\aleph_{\epsilon+1} \leq |Q'_1| \leq \aleph_{\epsilon+1}^{\aleph_0}$ since $|Q_1| = |Q'_1| + 1$. Clearly $|Q| \leq |\mathcal{P}(A)| = (\aleph_{\epsilon} + 1)^{\aleph_{\epsilon}} = 2^{\aleph_{\epsilon}}$. Let

 $Q' = \{ [\sigma]_n \in Q : \sigma \text{ has no maximal left rays or double rays} \},$ $Q'' = \{ [\sigma]_n \in Q : \sigma \text{ has a maximal left ray but no double rays} \}.$

We will show $|Q'| \ge 2^{\aleph_{\epsilon}}$. Since $|Q'_1| \ge \aleph_{\epsilon+1}$, there is a collection $\{\kappa_{\nu}\}_{\nu < \omega_{\epsilon+1}}$ of transformations $\kappa_{\nu} \in \mathcal{P}(A)$ of rro type such that $(\kappa_{\nu}, \kappa_{\delta}) \notin \sim_n$ if $\nu \neq \delta$. Since $|\omega_{\epsilon}| = \aleph_{\epsilon}$ and $\aleph_{\epsilon} . \aleph_{\epsilon} = \aleph_{\epsilon}$, there is a partition $\{A_{\nu}\}_{\nu < \omega_{\epsilon}}$ of A such that $|A_{\nu}| = |A| = \aleph_{\epsilon}$ for every $\nu < \omega_{\epsilon}$. Let $\nu < \omega_{\epsilon}$. Since $|A_{\nu}| = |A|$, there is a bijection $h_{\nu} : A_{\nu} \to A$. So, we can use h_{ν} to find a "copy" of κ_{ν} in $\mathcal{P}(A_{\nu})$. Let $\kappa'_{\nu} \in \mathcal{P}(A_{\nu})$ be defined by

$$t\kappa'_{\mu} = t' \iff (th_{\nu})\kappa_{\nu} = t'h_{\nu} \text{ for all } t, t' \in A_{\nu}$$

Let $\nu, \delta < \omega_{\epsilon}$ with $\nu \neq \delta$. Then $(\kappa_{\nu}, \kappa_{\delta}) \notin \sim_n$, and so, by part (4) of Theorem 1.11 and Lemma 2.2, $(<\mu_n>, <\kappa_n>) \notin \approx$ for every maximal right ray $\mu \in \kappa_{\nu}$ and every maximal right ray $\kappa \in \kappa_{\delta}$. Therefore

$$(<\mu'_n>,<\kappa'_n>)\notin$$
 \approx (1.1)

for every maximal right ray μ' in κ'_{μ} and every maximal right ray δ' in κ'_{δ} . Let $R \subseteq \omega_{\epsilon}$. Choose $\mu = \mu_R \in R$ and a maximal right ray $[t_0 \ t_1 \ t_2 \ \cdots \ >$ in κ'_{μ} . Let $\sigma_R \in \mathcal{P}(A)$ be defined by $\sigma_R = \bigcup_{\nu \in R} \kappa'_{\nu}$, and note that σ_R does not have a cycle or a double ray. Let R, S be nonempty subsets of ω_{ϵ} such that $R \neq S$. We may assume that there is $\nu \in R$ such that $\nu \notin S$. Consider κ'_{ν} , which is a c-component of σ_R . Let κ'_{δ} be any c-component of σ_S . Then, by equation (1.1), $(<\mu'_n>,<\kappa'_n>)\notin \approx$ for every maximal right ray μ' in κ'_{μ} and every maximal right ray κ' in κ'_{δ} . (Note that, by definition of σ_R , this is also true when $\nu = \mu_k$ or $\delta = \mu_S$.) So $(\sigma_R,\sigma_S)\notin \sim_n$ by Theorem 1.11. Hence any two different transformations from the collection $\{\sigma_K\}_{\emptyset\neq K\subseteq \omega_{\epsilon}}$ are in different equivalence classes of \sim_n . Since there are $2^{\aleph_{\epsilon}}$ transformations in the collection, it follows that $|Q'| \geq 2^{\aleph_{\epsilon}}$. Hence $|Q| = |Q'| + |Q''| + |\{[\omega]_c\}| \geq |Q'| \geq 2^{\aleph_{\epsilon}}$, and so $|Q| = 2^{\aleph_{\epsilon}}$.

(3) Let Z be the set of all $[\sigma]_n$ such that $\sigma \in \mathcal{P}(A)$ has a c-component of cho typewith no cycles or c-components of rro type. Let $Z' = \{[\sigma_n] \in Z : \sigma$ has no maximal left rays $\}$ and $Z'' = \{[\sigma]_n \in Z : \sigma$ has a maximal left ray $\}$. By part (5) of Theorem 1.11, $\{Z', Z''\}$ is a partition of Z. Fix a maximal left ray $\delta = \langle \cdots \langle z_2 z_1 z_0 \rangle \in \mathcal{P}(A)$ and note that $Z'' = \{[\delta]_n\}$. Define $h : Z'' \to (\omega_{\epsilon+1} + 1 \times \{0, 1\} \times \{0, 1\})$ by $([\sigma]_n)h = (s(\sigma), i_\sigma, j_\sigma)$. Then h is well defined and injective by Theorem 1.11 and Lemma 2.3. So $|Z'| \leq \aleph_{\epsilon+1} \cdot 2 \cdot 2 = \aleph_{\epsilon+1}$. Thus $|Z| = |Z'| + |Z''| = |Z''| + 1 \leq \aleph_{\epsilon+1}$. Thus $|Z| = |Z'| + |Z''| = |Z'| + 1 \leq \aleph_{\epsilon+1} + 1 = \aleph_{\epsilon+1}$. Let $Z_1 \subseteq Z$ consisting of all $[\kappa]_n \in Z$ such that κ is connected. Note that $Z_1 = \{[\kappa]_n : \kappa \in \mathcal{P}(A)$ is of cho type $\} \cup \{[\delta]_n\}$. As in the proof of (1), we can construct a collection $\{\kappa_\nu\}_{0 < \nu < \omega_{\epsilon+1}}$ of

connected elements of $\mathcal{P}(A)$ of the type such that $(\kappa_{\delta}, \kappa_{\nu}) \notin \sim_n$ if $\delta \neq \nu$. Thus $|Z_1| \geq \aleph_{\epsilon+1}$, and so $\aleph + 1 \leq |Z_1| = \aleph_{\epsilon+1}$ which contradicts the proof of (3).

The conjugacy classes in (1)-(3) cover all conjugacy classes in $\mathcal{P}(\mathcal{A})$. Thus there are at most $\max\{2^{\aleph_0}, \aleph_{\epsilon+1}\} + 2^{\aleph_{\epsilon}} + \aleph_{\epsilon+1} = 2^{\aleph_{\epsilon}}$ conjugacy classes in $\mathcal{P}(\mathcal{A})$. By (2), there are at least $2^{\aleph_{\epsilon}}$ conjugacy classes, so number of conjugacy classes in $\mathcal{P}(\mathcal{A})$ is $2^{\aleph_{\epsilon}}$ conjugacy classes. By (1)-(3), at least $\aleph_{\epsilon+1}$ and at most $\aleph_0 + \aleph_{\epsilon+1}^{\aleph_0} + \aleph_{\epsilon+1} = \aleph_{\epsilon+1}^{\aleph_0}$ of these conjugacy classes have a connected representative.

References

- [1] A. H. Shah and M. R. Parray, $On \sim_n notion of conjugacy in semigroups, to appear.$
- D. J. Mir, A. H. Shah and S. A. Ahanger, On automorphisms of monotone transformation posemigroups, Asian-Eur. J. Math., https://doi.org/10.1142/S1793557122500322 (2021).
- [3] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum, 29 (1984) 223-240.
- [4] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum, 78 (2009) 14-20.
- [5] G. Lallement, Semigroups and Combinatorial Applications, John Wiley and Sons, New York, 1979.
- [6] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, to appear in Proc. Roy. Soc. Edinburgh Sect. A, preprint (2015), arXiv:1503.00915v2.
- [7] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra, 403 (2014) 93-134.
- [8] J. Koneicny, A new definition of conjugacy for semigroups, J. Algebra and Appl., 17(02)(2018) 185002.
- [9] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
- [10] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.