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Abstract

Uncertainty exists in many real-life engineering and mechanical problems. Here, we assume that
uncertainties are caused by intervals of real numbers. In this paper, we consider the interval non-
linear programming (INLP) problems where the objective function and constraints include interval
coefficients. So that the variables are deterministic and sign-restricted. Additionally, the constraints
are considered in the form of inequalities. A basic task in INLP is calculating the optimal values
range of objective function, which may be computationally very expensive. However, if the boundary
functions are available, the problems become much easier to solve. By making these assumptions,
an efficient method is proposed to compute the optimal values range using two classic nonlinear
problems. Then, the optimal values range are obtained by direct inspection for a special kind of
interval polynomial programming (IPP) problems. Two numerical examples are given to verify the
effectiveness of the proposed method.

Keywords: interval uncertainty, interval nonlinear programming, optimal values range, interval
polynomial, boundary functions
2010 MSC: 90C30

1. Introduction

In practical structures, there always exists many kinds of uncertainties. Some of these uncertain-
ties have a physical origin, resulting from loading conditions, material properties, or other predeter-
mined characteristics and cannot be influenced by the designer. Other uncertainties are caused by
people, with typical examples including manufacturing and measurement deviations. These types
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of parameters are generally estimated from historical data using probability theory or fuzzy set the-
ory. But it is difficult to identify suitable probability distribution function or membership function.
Some researchers have started to represent uncertain parameters as intervals to avoid the need for
selection of probability distribution function and membership function. In the literature of interval
optimization, may researchers have tried to address the interval uncertainties in different ways.

Solving interval linear and nonlinear programming problems has become an interesting area of
research in recent years. Hlad́ık et al. [1] discussed the optimal value range in interval linear
programming (ILP). Mostafaee and Hlad́ık [10] computed the exact range of the optimal value
function in interval fractional linear programming.

Hlad́ık [2] proposed a method to determine the optimal values range for convex quadratic and
posynomial geometric programming problems. Jiang et al. [3, 4] have developed the efficient nonlin-
ear interval number programming methods. Kumar and Panda [5] studied a general INLP model in
which intervals are considered as random variables. Levin [6, 7] proposed a algorithm to determine
the set of solutions of INLP problems. Liu et al. [8] developed a multi-objective optimization method
for uncertain structures based on nonlinear interval number programming method. Li and Xu [9]
investigated a different approach to the application of interval analysis which represents the range of
a function on interval variables.

The aim of this paper is to determine the optimal values range for other classes of the INLP
problems.

The remainder of this paper is organized as follows: section 2 includes the definitions and pre-
liminaries. section 3 presents a general INLP problem and by some assumptions formulates a new
method to obtain the optimal values range of the general INLP problem. section 4 introduces a
special class of INLP problems, namely IPP problems and obtains the optimal values range by di-
rect calculation. section 5 analyzes two numerical examples; and the conclusions are summarized in
section 6.

Since the economical parameters of the real life problems (including the mentioned applications)
are often imprecise, the results developed in this paper form a useful and efficient tool in decision
making and analysis.

2. Definitions and preliminaries

In this section, we state some definitions of interval analysis.

Definition 2.1. [11] A closed, real interval (or briefly an interval) is represented by cI = [a, b].
That is, the set {c | a ⩽ c ⩽ b} of all real numbers between and including the boundary points a and
b.

Definition 2.2. [11] For two intervals aI = [a, a] and bI = [b, b], operations of addition, subtraction,
multiplication and scalar multiplication are defined as follows:

aI + bI = [ a+ b, a+ b ],

aI − bI = [ a− b, a− b ],

aI × bI = [min{a b, ab, ab, a b},max{a b, ab, ab, a b} ],

and

k aI = k [a, a] =

{
[ka, ka] , k ⩾ 0,

[ka, ka] , k ⩽ 0.
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In this paper, we suppose that the variables are sign-restricted. Also, let Xsi be the set of sign-
restricted variables. Furthermore, we display the vector (x1, ..., xn)

t as x = (x1, ..., xn)
t.

Definition 2.3. Consider the sign-restricted variable of xj and an interval aI = [a, a]. We define
multiplication of interval aI in variable xj as

aI xj = [a, a]xj =

{
[a xj, a xj] , xj ⩾ 0,

[a xj, a xj] , xj ⩽ 0,

Now, we define the interval function.

Definition 2.4. [6] An interval function is an interval whose upper and lower bounds are real
function in the domain definition of G ⊆ Rn and is represented as f I(x) = [h(x), l(x)]. That is,
the set {f(x) | h(x) ⩽ f(x) ⩽ l(x), x ∈ G} of all real value functions between and including the
boundary functions h(x) and l(x).

Definition 2.5. For two interval functions f I(x) = [f(x), f(x)] and gI(x) = [g(x), g(x)] in the
definition domain of G ⊆ Rn, operations of addition and subtraction are defined as follows:

f I(x) + gI(x) = [ f(x) + g(x), f(x) + g(x) ],

f I(x)− gI(x) = [ f(x)− g(x), f(x)− g(x) ].

3. Interval nonlinear programming problems

Amethod for finding the optimal values range for some particular subclasses of the INLP problems
such as convex quadratic programming and posynomial geometric programming is proposed by Hlad́ık
[2].

In this section, First, we mention the general form of an INLP problem that can be found in
Levin [6, 7]. Then, we assume a situation where the associated intervals of the objective function
and constraints are available for the general INLP problem and determine the optimal values range
for the objective function.

Let an arbitrary nonlinear continuous function of n variables be as,

y = f(x1, ..., xn), (3.1)

We will consider function (3.1) in the limited domain determined by the system of constraints:

gi(x1, ..., xn) ⩾ bi, i = 1, ...,m, (3.2)

where all gi, i = 1, ...,m are arbitrary nonlinear continuous functions. Then, the determined opti-
mization problem can be stated as follows:

min f(x1, ..., xn)
s.t. gi(x1, ..., xn) ⩾ bi, i = 1, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(3.3)

There are a lot of methods for solving nonlinear programming (NLP) problem (3.3) in the classic
mathematical programming.
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In NLP problem (3.3), assume that variable coefficients in the objective function, at the left and
right side of constraints are shows with ck, k = 1, ..., l, ais, s = 1, ..., t and bi, i = 1, ...,m parameters,
respectively. Now, let ck, ais, and bi coefficients are in the form of intervals:

cIk = [ck, ck], k = 1, ..., l, aIis = [ais, ais], s = 1, ..., t, bIi = [bi, bi], i = 1, ...,m.

Then, the real functions f and gi, i = 1, ...,m become interval functions (i.e., take the form f I and
gIi , i = 1, ...,m ). Furthermore, the parameters bi, i = 1, ...,m become intervals (take the form
bIi , i = 1, ...,m).

Thus, noninterval NLP problem (3.3) is converted to a general INLP problem:

min f I(x)
s.t. gIi (x) ⩾ bIi , i = 1, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n.

(3.4)

We state general INLP problem (3.4) as characteristic problem

min f(x)

s.t. gi(x) ⩾ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(3.5)

where f, gi : Rn −→ R, such that the coefficients of the their variables are belonging to the corre-
sponding interval coefficients in the interval functions of f I(x) and gIi (x).

Let f ⋆ and x⋆ be the optimal value of the objective function and the optimal solution for char-
acteristic problem with the form of (3.5), respectively. Note that, we represent f(x⋆) as f ⋆.

In Hlad́ık [2], lower and upper bound of f ⋆ are defined as infimum and supremum on the optimal
value of all characteristic problems, which we represent by f ⋆ and f

⋆
.

Now, we assume a situation where the associated intervals of the objective function and constraints
are available for general INLP problem (3.4):

f I(x) = [ f(x), f(x) ],

gIi (x) = [ g
i
(x), gi(x) ], i = 1, 2, ...,m,

bIi = [bi, bi], i = 1, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

After the corresponding replacements, general INLP problem (3.4) can take the following interval
form:

min [ f(x), f(x) ]

s.t. [ g
i
(x), gi(x) ] ⩾ [bi, bi], i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(3.6)

where, f(x), f(x), g
i
(x), and gi(x) for all i = 1, 2, ...,m, are called the boundary functions for INLP

problem (3.6).
Note that, each characteristic problem of (3.6) has the same form (3.5) such that f(x) ∈

[ f(x), f(x) ], gi(x) ∈ [ g
i
(x), gi(x) ] and bi ∈ [bi, bi] for i = 1, 2, ...,m.
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In the remainder of this section, we propose a method for finding the optimal values range of the
objective function of INLP problem (3.6).

The idea to compute the optimal values range [f ⋆, f
⋆
] for INLP problem (3.6) is by solving two

characteristic problems of INLP problem (3.6).
First, the following theorem is required.

Theorem 3.1. In INLP problem (3.6), consider the interval inequality constraint:

[ g
i
(x), gi(x) ] ⩾ [bi, bi], (3.7)

the largest and the smallest feasible regions have the following forms, respectively:

gi(x) ⩾ bi, (3.8)

and
g
i
(x) ⩾ bi. (3.9)

Proof . Consider characteristic inequality constraint from interval inequality constraint (3.7) as

gi(x) ⩾ bi, (3.10)

where gi : Rn −→ R, such that the coefficients of the its variables are belonging to the corresponding
interval coefficients in the interval function of gIi (x). Also, we have gi(x) ∈ [ g

i
(x), gi(x) ] and

bi ∈ [ bi, bi ].

1. (The largest feasible region) Every solution of (3.10) is also a solution of (3.8). Since gi(x) ⩾
gi(x) ⩾ bi ⩾ bi. Hence, the feasible region (3.8) contains all the other feasible regions. Namely,
(3.8) is the largest feasible region of the interval inequality constraint (3.7).

2. (The smallest feasible region) Let the classic inequality constraint (3.9) holds. Every solution
of (3.9) is also a solution of (3.10). Since gi(x) ⩾ g

i
(x) ⩾ bi ⩾ bi. So, the feasible region (3.9)

is the intersection of all other feasible regions. Namely, (3.9) is the smallest feasible region of
the interval inequality constraint (3.7).

□

We now explain how to calculate the optimal values f ⋆ and f
⋆
of the objective function of INLP

problem (3.6).

Theorem 3.2. Consider INLP problem (3.6). The optimal values range for the objective function
are obtained by solving two classic nonlinear problems:

min f(x)

s.t. gi(x) ⩾ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n.

(3.11)

and
min f(x)

s.t. g
i
(x) ⩾ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n.

(3.12)

Proof . Let f ⋆ be the optimal value of the objective function for characteristic problem (3.5). Fur-
thermore, suppose f ⋆ and f

⋆
are the optimal values of objective functions for classic nonlinear pro-

gramming problems (3.11) and (3.12) respectively. We have to prove that f ⋆ ⩽ f ⋆ ⩽ f
⋆
. Suppose x′,

x′′, and x⋆ are the optimal solutions of the problems (3.11), (3.12), and (3.5), respectively.
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1. (The lower bound) According to Theorem 3.1, the constraints of problem (3.11) form the largest
feasible region, any feasible solution of problem (3.5) is a feasible solution of problem (3.11).
Now since x⋆ is the optimal solution of problem (3.5), therefore x⋆ is a feasible solution of
problem (3.11). We conclude that f ⋆ ⩽ f(x⋆). f(x⋆) ⩽ f(x⋆) = f ⋆ results f ⋆ ⩽ f ⋆.

2. (The upper bound) According to Theorem 3.1, the constraints of problem (3.12) form the small-
est feasible region, any feasible solution of problem (3.12) is a feasible solution of problem (3.5).
We conclude that f ⋆ ⩽ f(x′′). f(x′′) ⩽ f(x′′) = f

⋆
results f ⋆ ⩽ f

⋆
.

□

Similar to problem (3.6), for ⩽ interval inequality constraints, we have the following problem:

min [ f(x), f(x) ]

s.t. [ g
i
(x), gi(x) ] ⩽ [bi, bi], i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(3.13)

So, similar to the theorems 3.1 and 3.2, we have the theorems 3.3 and 3.4, respectively.

Theorem 3.3. In INLP problem (3.13), consider the interval inequality constraint:

[ g
i
(x), gi(x) ] ⩽ [bi, bi],

the largest and the smallest feasible regions have the following forms, respectively:

g
i
(x) ⩽ bi,

and
gi(x) ⩽ bi.

Theorem 3.4. Consider INLP problem (3.13). The optimal values range for the objective function
are obtained by solving two nonlinear classical problems (3.14) and (3.15):

min f(x)

s.t. g
i
(x) ⩽ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n.

(3.14)

min f(x)

s.t. gi(x) ⩽ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n.

(3.15)

Without loss of generality, we will only deal with INLP problem (3.6) with minimize objective
function and ⩾ inequal constraints.
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4. Interval polynomial programming problems

In this section, we introduce a special class of INLP problems, namely IPP problems. We then
obtain the boundary functions and optimal values range of the objective function for these problems.

We defined an IPP problem as

min f I(x) =
n∑

j=1

[cj, cj]x
nj

j

s.t. gIi (x) =
n∑

j=1

[aij, aij]x
nij

j ⩾ [bi, bi], i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(4.1)

where the powers of nj and nij are the non-negative integer numbers.
We state IPP problem (4.1) as the characteristic version

min f(x) =
n∑

j=1

cjx
nj

j

s.t. gi(x) =
n∑

j=1

aijx
nij

j ⩾ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(4.2)

where cj ∈ [cj, cj], aij ∈ [aij, aij] and bi ∈ [bi, bi] for i = 1, 2, ...,m and j = 1, 2, ..., n.
Let f ⋆ be the optimal value of the objective function for characteristic problem with the form

of (4.2). Our aim is to find lower and upper bounds for f ⋆. In other words, we want to compute
the optimal values range for the objective function of IPP problem (4.1) by the method presented in
previous section.

First, the following theorem is required.

Theorem 4.1. For an interval inequality constraint

n∑
j=1

[aij, aij]x
nij

j ⩾ [bi, bi], (4.3)

where for all j, xj ∈ Xsi, the largest and the smallest feasible regions are take the following forms,
respectively:

n∑
j=1

a′ijx
nij

j ⩾ bi, (4.4)

and
n∑

j=1

a′′ijx
nij

j ⩾ bi, (4.5)

where

a′ij =


aij, xj ⩾ 0

aij, xj ⩽ 0
, a′′ij =


aij, xj ⩾ 0

aij, xj ⩽ 0
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Proof . Let A1 = {j | xj ⩾ 0}, A2 = {j | xj ⩽ 0}. Also, let
n∑

j=1

aijx
nij

j ⩾ bi be the characteristic

formula of the interval inequality constraint (4.3).

1. (The largest feasible region) For all j ∈ A1;∑
j∈A1

aij x
nij

j ⩾
∑
j∈A1

aijx
nij

j ,

and for all j ∈ A2; ∑
j∈A2

aij x
nij

j ⩾
∑
j∈A2

aijx
nij

j ,

by adding the two above inequalities, we have

n∑
j=1

a′ijx
nij

j ⩾
n∑

j=1

aijx
nij

j , (4.6)

On the other hand,
n∑

j=1

aijx
nij

j ⩾ bi ⩾ bi,

therefore
n∑

j=1

a′ijx
nij

j ⩾
n∑

j=1

aijx
nij

j ⩾ bi ⩾ bi,

Namely, any solution which satisfies in characteristic formula of the interval inequality con-
straint (4.3) will also be satisfied in classic inequality constraint (4.4). So, the relation (4.4) is
the largest feasible region.

2. (The smallest feasible region) Let the classic inequality constraint (4.5) holds. For all j ∈ A1;∑
j∈A1

aij x
nij

j ⩽
∑
j∈A1

aijx
nij

j ,

and for all j ∈ A2; ∑
j∈A2

aij x
nij

j ⩽
∑
j∈A2

aijx
nij

j ,

by adding two above inequalities, we have

n∑
j=1

a′′ijx
nij

j ⩽
n∑

j=1

aijx
nij

j , (4.7)

On the other hand, we assumed that the classic inequality constraint (4.5) holds. We also have
bi ⩽ bi, hence

bi ⩽ bi ⩽
n∑

j=1

a′′ijx
nij

j ⩽
n∑

j=1

aijx
nij

j ,

Therefore, any solution which satisfies in classic inequality constraint (4.5) will also be sat-
isfied in all possible characteristics of the interval inequality constraint (4.3) simultaneously.
Consequently, the relation (4.5) is the smallest feasible region.
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□

Similarly, for ⩽ interval inequality constraints exists a similar theorem.
Now, we compute f ⋆ and f

⋆
for IPP problem (4.1).

Theorem 4.2. Consider IPP problem (4.1). The optimal values range for the objective function are
obtained by solving the following two classic nonlinear problems, respectively:

min f(x) =
n∑

j=1

c′′jx
nj

j

s.t. gi(x) =
n∑

j=1

a′ijx
nij

j ⩾ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(4.8)

and

min f(x) =
n∑

j=1

c′jx
nj

j

s.t. g
i
(x) =

n∑
j=1

a′′ijx
nij

j ⩾ bi, i = 1, 2, ...,m,

xj ∈ Xsi, j = 1, 2, ..., n,

(4.9)

where a′ij and a′′ij have been defined in the Theorem 4.1, and

c′′j =


cj, xj ⩾ 0

cj, xj ⩽ 0
, c′j =


cj, xj ⩾ 0

cj, xj ⩽ 0

Proof . Let f ⋆ be the optimal value of the objective function for characteristic problem (4.2). Fur-
thermore, let f ⋆ and f

⋆
be the optimal values of objective function for classic nonlinear programming

problems (4.8) and (4.9) respectively. We have to prove that f ⋆ ⩽ f ⋆ ⩽ f
⋆
. Suppose x′, x′′, and x⋆

are the optimal solutions of problems (4.8), (4.9), and (4.2), respectively.

1. (The lower bound) According to Theorem 4.1, the constraints of problem (4.8) form the largest
feasible region, any feasible solution of problem (4.2) is a feasible solution of problem (4.8).
Now since x⋆ is the optimal solution of problem (4.2), therefore x⋆ is a feasible solution of
problem (4.8). We conclude that

f ⋆ ⩽
n∑

j=1

c′′j (x
⋆
j)

nj . (4.10)

Now, since for all j, cj ⩽ cj therefore∑
j∈A1

cj (x
⋆
j)

nj ⩽
∑
j∈A1

cj(x
⋆
j)

nj ,

and since for all j, cj ⩾ cj therefore∑
j∈A2

cj (x
⋆
j)

nj ⩽
∑
j∈A2

cj(x
⋆
j)

nj ,
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by adding two above inequalities, we obtain

n∑
j=1

c′′j (x
⋆
j)

nj ⩽
n∑

j=1

cj(x
⋆
j)

nj , (4.11)

But, we have
n∑

j=1

cj(x
⋆
j)

nj = f ⋆,

therefore
n∑

j=1

c′′j (x
⋆
j)

nj ⩽ f ⋆, (4.12)

On the other hand, according to relations (4.10) and (4.12) we obtain f ⋆ ⩽ f ⋆.
2. (The upper bound) According to Theorem 4.1, the constraints of problem (4.9) form the smallest

feasible region, any feasible solution of problem (4.9) is a feasible solution of problem (4.2).
Hence

f ⋆ ⩽
n∑

j=1

cj(x
′′
j )

nj , (4.13)

If we prove that
n∑

j=1

cj(x
′′
j )

nj ⩽ f
⋆
, (4.14)

Therefore, the second part of theorem will be proven. We know that for all j, cj ⩽ cj and
cj ⩾ cj, we can obtain the following relations respectively:∑

j∈A1

cj(x
′′
j )

nj ⩽
∑
j∈A1

cj (x
′′
j )

nj ,

∑
j∈A2

cj(x
′′
j )

nj ⩽
∑
j∈A2

cj (x
′′
j )

nj ,

by adding two above inequalities, we obtain

n∑
j=1

cj(x
′′
j )

nj ⩽
n∑

j=1

c′j(x
′′
j )

nj , (4.15)

But, we have
n∑

j=1

c′j(x
′′
j )

nj = f
⋆
,

therefore
n∑

j=1

cj(x
′′
j )

nj ⩽ f
⋆
,

Namely, the relationship (4.14) holds. So, the proof of second part is now complete.

□

Similarly, for ⩽ interval inequality constraints exists a similar theorem.
Without loss of generality, we will deal only with IPP problem (4.1) with minimize objective

function and ⩾ inequal constraints.
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5. Numerical examples

In this section, we will illustrate the method presented in this paper by giving two examples. Re-
member that in these examples, we solve the classic nonlinear programming problems using MATLAB
software.

Example 5.1. Consider the following INLP problem:

min f I(x) =
(
[1, 2]e[1,2]x1

)
×
(
[2, 3]e[4,5]x2

)
s.t. gI(x) = [0.8, 1]x3

1 + [1, 2]x2 ⩾ [1, 3],

x1, x2 ⩾ 0.

(5.1)

We compute the optimal values range for the objective function.
We can rewrite f I(x) =

(
[1, 2]e[1,2]x1

)
×

(
[2, 3]e[4,5]x2

)
as follows

f I(x) = ([1, 2]× [2, 3])
(
e[1,2]x1 × e[4,5]x2

)
= [2, 6]× e[1,2]x1+[4,5]x2

= [2, 6]× e[x1+4x2,2x1+5x2]

= [2ex1+4x2 , 6e2x1+5x2 ]

After the corresponding replacement, INLP problem (5.1) can take the following interval form:

min [f(x), f(x)] = [2ex1+4x2 , 6e2x1+5x2 ]

s.t. [g(x), g(x)] = [0.8x3
1 + x2, x

3
1 + 2x2] ⩾ [1, 3],

x1, x2 ⩾ 0.

(5.2)

Using Theorem 3.2, we obtain the optimal values range for INLP problem (5.2) by solving following
two classic nonlinear problems:

min f(x) = 2ex1+4x2

s.t. g(x) = x3
1 + 2x2 ⩾ 1,

x1, x2 ⩾ 0,

and
min f(x) = 6e2x1+5x2

s.t. g(x) = 0.8x3
1 + x2 ⩾ 3,

x1, x2 ⩾ 0,

The former has an optimal value f ⋆ = 5.44 and the latter f
⋆
= 134.15, which yields [f ⋆, f

⋆
] =

[5.44, 134.15]. Namely, the optimal value f ⋆ for each characteristic problem from INLP problem
(5.1) is in the optimal interval [5.44, 134.15]. For instance

min f(x) = (2ex1)× (2e4.5x2)

s.t. g(x) = 0.8x3
1 + 2x2 ⩾ 1.5,

x1, x2 ⩾ 0,

which has the optimal value f ⋆ = 13.73 ∈ [5.44, 134.15].
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Example 5.2. Consider the following IPP problem:

min f I(x) = [2, 3]x1 + [5, 6]x3
2 − [2, 3]x3

3

s.t. gI1(x) = [1, 2]x2
1 + [2, 3]x2

2 + [−1, 5]x3 ⩾ [4, 6],

gI2(x) = [2, 3]x5
1 + [2, 4]x2 + [−3,−2]x2

3 ⩾ [−26,−20],

x1, x3 ⩽ 0, x2 ⩾ 0.

(5.3)

We compute the optimal values range for the objective function.
We can rewrite IPP problem (5.3) as follows

min [f(x), f(x)] = [3x1 + 5x3
2 − 2x2

3, x1 + 6x3
2 − 3x3

3]

s.t. [g
1
(x), g1(x)] = [x2

1 + 2x2
2 + 5x3, 2x

2
1 + 3x2

2 − x3] ⩾ [4, 6],

[g
2
(x), g2(x)] = [3x5

1 + 2x2 − 3x2
3, 2x

5
1 + 4x2 − 2x2

3] ⩾ [−26,−20],

x1, x3 ⩽ 0, x2 ⩾ 0.

(5.4)

Using Theorem 4.2, we obtain the optimal values range for IPP problem (5.4) by solving following
two classic nonlinear problems:

min f(x) = 3x1 + 5x3
2 − 2x2

3

s.t. g1(x) = 2x2
1 + 3x2

2 − x3 ⩾ 4,

g2(x) = 2x5
1 + 4x2 − 2x2

3 ⩾ −26,

x1, x3 ⩽ 0, x2 ⩾ 0,

and
min f(x) = 2x1 + 6x3

2 − 3x3
3

s.t. g
1
(x) = x2

1 + 2x2
2 + 5x3 ⩾ 6,

g
2
(x) = 3x5

1 + 2x2 − 3x2
3 ⩾ −20,

x1, x3 ⩽ 0, x2 ⩾ 0,

The former has an optimal value f ⋆ = −5.02 and the latter f
⋆
= 12.42, which yields [f ⋆, f

⋆
] =

[−5.02, 12.42]. Namely, the optimal value f ⋆ for each characteristic problem from IPP problem (5.3)
is in the optimal interval [−5.02, 12.42]. For instance

min f(x) = 3x1 + 5x3
2 − 2x2

3

s.t. g
1
(x) = x2

1 + 2x2
2 + 5x3 ⩾ 6,

g
2
(x) = 3x5

1 + 2x2 − 3x2
3 ⩾ −20,

x1, x3 ⩽ 0, x2 ⩾ 0,

which has the optimal value f ⋆ = 8.35 ∈ [−5.02, 12.42].

6. Conclusion

The proposed method measures the optimal values range for the objective function in INLP and
IPP problems. Which is important and applied, because it solves the INLP (and also IPP) problems
using two deterministic problems.

In [2] the optimal values range of the objective function for two special formats of INLP problems
was obtained based on duality theory. In this paper, first we calculate the optimal values range
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for general INLP problems in a case where the associated intervals of the objective function and
constraints are available. Then, we directly calculate the optimal values range of objective function
for IPP problems.

Knowing the optimal values range for the objective function (where the objective function includes
the total cost or final profit) is important in INLP problems because the decision maker can easily
have the maximum and minimum values for the objective function and thus make more suitable
decisions.

In fact,two approaches can be used when dealing with INLP problems. First is to determine the
optimal values range while the second one is finding the set of optimal solutions for INLP problems.
We used the first approach in the current study.

The application of the proposed method was also illustrated using two examples.
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