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Abstract

In this manuscript, we bring into play the essence of a new class of auxiliary functions, C-class
functions, and exhibit some fixed point results. Notably, in this article, we come up with the idea of
modified ZF -contractions and enquire the existence and uniqueness of fixed points of such operators
in the framework of θ-metric spaces. Concerning the interpretation of the achieved results, some
non-trivial examples are also studied. From obtained theorems, we derive several related fixed point
results in usual metric spaces and θ-metric spaces.
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1. Introduction

Mathematical analysis with its innumerable disciplines furnishes effective tools in the study of
various real world problems emerging in applied sciences. Particularly, this assertion is implemented
to the progress of metric fixed point theory. As it happens, the Banach contraction principle [5] is
a theoretical result on the existence and uniqueness of a fixed point in metric spaces, but having
said that, is an iterative algorithm to approximate this fixed point. This wonderful result has been
generalized and extended in numerous abstract spaces using various contractive conditions. Besides,
the fixed point outcomes and techniques have engaged many scientists and hence there are extensive
findings at hand in various metric settings [4, 3, 14, 9, 11, 15, 6].
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In recent past, Khojasteh, Shukla and Radenović [12] put forward the concept of Z-contractions
employing simulation functions. This family of functions includes a large number of non-linear con-
tractions present in fixed point theory. Lately, Ansari [1] introduced the notion of C-class functions
and the motive behind defining this new idea is to generalize many fixed point theorems in the lit-
erature. Afterwards, Liu et al. [13] made use of these functions to generalize the idea of simulation
functions, namely CF -simulation functions and explored the existence and uniqueness of coincidence
points for two non-linear operators.

Driven by the notion of fuzzy metric, in a recent research article Khojasteh et al. [10] coined
θ-metric by introducing a more generalized triangle inequality. Later on, Chanda et al. [7] attained
some fixed point results via simulation functions on the θ-metric spaces.

The purpose of this paper is to employ ZF -contractions to derive the results on existence and
uniqueness of fixed points of some self-maps in θ-metric spaces. Besides, we originate the idea of a
modified ZF -contraction and achieve a fixed point theorem employing this notion on the said spaces.
Examples are furnished which illustrate our results and their applicability.

In this article, first of all we look back on some requisite definitions, examples and noteworthy
results in the preliminaries section. In the main results section, we define ZF -contractions and
modified ZF -contractions in the setting of θ-metric spaces and derive some fixed point results. Indeed,
these results complement, extend and enrich many a number of results in the existing literature.
Moreover, several non-trivial examples are equipped to evoke the relevancy of the obtained theorems.
As consequences of this study, we infer a few related fixed point results in usual metric spaces and
θ-metric spaces.

2. Preliminaries

Before all else, we look back on some definitions and auxiliary notions that can be found in
[7, 8, 12, 10]. Precisely, all through this paper, N will represent the set of all naturals and R will
mean the set of all reals.

Firstly, we put down the ideas of B-actions and θ-metrics here. As a proper generalization of a
metric, Khojasteh et al. [10] offered the concept of a θ-metric.

Definition 2.1. [10] Suppose θ : [0,∞)2 → [0,∞) be a continuous map in both variables. Let
Im(θ) = {θ(m,n) : m ≥ 0, n ≥ 0}. The map θ is said to be an B-action iff the following conditions
hold:

(B1) θ(0, 0) = 0 and θ(m,n) = θ(n,m) for all m,n ≥ 0,

(B2)

θ(m,n) < θ(x, y) ⇒

{
either m < x, n ≤ y

or m ≤ x, n < y,

(B3) for each r1 ∈ Im(θ) and for each m ∈ [0, r1], there exists n ∈ [0, r1] such that θ(n,m) = r1,

(B4) θ(m, 0) ≤ m, for all m > 0.

Example 2.2. [10] We give some examples from the existing literature.

1. θ1(s, t) =
ts

1+ts
.

2. θ2(s, t) =
√
ts+ t+ s.
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Y denotes the set of all B-actions.
The notion of B-action has been handy to conceive the idea of θ-metric spaces [10]. We here

recollect the definition of the said spaces.

Definition 2.3. [10] Let Y be a non-empty set. A mapping dθ : Y ×Y → [0,∞) is called a θ-metric
on Y with respect to B-action θ ∈ Y if dθ satisfies the following:

(θ1) dθ(u, v) = 0 if and only if u = v for all u, v ∈ Y,

(θ2) dθ(u, v) = dθ(v, u) for all u, v ∈ Y,

(θ3) dθ(u, v) ≤ θ(dθ(u,w), dθ(w, v)) for all u, v, w ∈ Y.

Then the pair (Y, dθ) is called a θ-metric space.

Example 2.4. [10] Here we provide a non-trivial example of θ-metric space.
Let Y = {a, b, c} and dθ : Y × Y → [0,∞) is defined as:

dθ(a, b) = 5, dθ(b, c) = 12, dθ(c, a) = 13, dθ(a, b) = dθ(b, a),

dθ(b, c) = dθ(c, b), dθ(c, a) = dθ(a, c), dθ(a, a) = dθ(b, b) = dθ(c, c) = 0.

Considering θ(s, t) =
√
s2 + t2, the mapping dθ forms a θ-metric. And so the pair (Y, dθ) is a θ-metric

space.

Remark 2.5 (cf. [10]). If (Y, dθ) is a θ-metric space and θ(s, t) = t+ s, for all s, t ∈ [0,∞), then
(Y, dθ) is a metric space.

For more diction and attained results, see [10].
Ansari [1] considered the concept of C-class functions as the following:

Definition 2.6. [1] A mapping F : [0,∞)2 → R is said to be a C-class function if it is continuous
and satisfies following conditions:

1. F (s, t) ≤ s,

2. F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

Note that for some F , we have F (0, 0) = 0. We denote the family of C-class functions as C. For
additional examples of C-class functions, see [1, 2].

Definition 2.7. [13] A mapping F : [0,∞)2 → R has the property CF , if there exists a CF ≥ 0
such that

1. F (s, t) > CF =⇒ s > t,

2. F (t, t) ≤ CF , for all t ∈ [0,∞).

Example 2.8. [13] The following functions Fi : [0,∞)2 → R are some elements of C having the
property CF , for all s, t ∈ [0,∞).

1. F1(s, t) = s− t, CF = r, r ∈ [0,∞).

2. F2(s, t) =
s

(1+t)r
, r ∈ (0,∞), CF = 1.

Now we define a CF -simulation function using C-class functions with property CF .



2028 Chanda, Dey, Ansari

Definition 2.9. [13] A CF -simulation function is a mapping ξ : [0,∞)2 → R satisfying the follow-
ing axioms:

(ξ1) ξ(0, 0) = 0,

(ξ2) ξ(t, s) < F (s, t) for all t, s > 0, where F ∈ C satisfying property CF ,

(ξ3) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then
lim sup
n→∞

ξ(tn, sn) < CF .

The third condition is symmetric in both the arguments of ξ. But, in the proofs, this property
is not at all necessary. Practically, the arguments of ξ stand for different meanings and represent
different roles. So the authors slightly modified the previous definition with a view to underline this
feature and to expand the family of CF -simulation functions.

Definition 2.10. [13] A CF -simulation function is a mapping ξ : [0,∞)2 → R satisfying the fol-
lowing conditions:

(ξa) ξ(0, 0) = 0,

(ξb) ξ(t, s) < F (s, t) for all t, s > 0, where F ∈ C satisfying property CF ,

(ξc) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

and tn < sn, then
lim sup
n→∞

ξ(tn, sn) < CF .

Let ZF be the family of CF -simulation functions. Every simulation function is also a CF -
simulation function. But the converse is not true, in general. The following example illustrates
the claim.

Example 2.11. [13] Let ξ : [0,∞)2 → R be a function defined by ξ(t, s) = kF (s, t), where t, s ∈
[0,∞) and k ∈ R be such that k < 1 and for all t, s ∈ [0,∞). We consider CF = 1.

Here, using Definitions 2.6 and 2.7, we have

ξ(t, s) = kF (s, t)

≤ ks

< s

and

ξ(t, t) = kF (t, t)

< 1.

One can easily check that, ξ satisfies (ξa) and (ξb). Now if {tn}, {sn} are sequences in (0,∞)
such that

lim
n→∞

tn = lim
n→∞

sn = δ > 0
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and tn < sn for all n ∈ N, then by Definition 2.7,

lim sup
n→∞

ξ(tn, sn) = lim sup
n→∞

kF (sn, tn)

≤ kF (δ, δ)

< 1.

Therefore ξ is a CF -simulation function. Also, if we take F (s, t) = s
1+t

, then also ξ(t, s) = ks
1+t

is a
CF -simulation function. In fact, we can check that the aforementioned ξ is not a simulation function.

Example 2.12. [13] Let F : [0,∞)2 → R be a C-class function such that

F (ψ(s), φ(t))− t < F (s, t), ψ(t) < t,

and let ξ : [0,∞)2 → R be the function defined as

ξ(t, s) = F (ψ(s), φ(t))− t.

Then ξ(t, s) is a CF -simulation function with CF = 0.

The subsequent example is also an example of a CF -simulation function.

Example 2.13. Let ξ : [0,∞)2 → R be a function defined by ξ(t, s) = s − 2t, for all t, s ∈ [0,∞).
We consider F (s, t) = s− t and CF = 1. Then ξ is a CF -simulation function.

3. Main Results

In the following section, we deduce a couple of fixed point theorems concerning self-maps via
CF -simulation functions on account of the notion of θ-metric spaces and also we present suitable
examples. We set up with the definition of a ZF -contraction in the setting of a θ-metric space.

Definition 3.1. Let (X, dθ) be a θ-metric space and T : X → X be a self-mapping. A mapping T
is called a ZF -contraction if there exists ξ ∈ ZF such that

ξ(dθ(Tx, Ty), dθ(x, y)) ≥ CF (3.1)

for all x, y ∈ X such that x ̸= y.

Remark 3.2. 1. From (ξb), it is clear that a CF -simulation function must verify ξ(r, r) < CF for
all r > 0.

2. If T is a ZF -contraction with respect to ξ ∈ ZF , then

dθ(Tx, Ty) < dθ(x, y),

for all x, y ∈ X such that x ̸= y.

At the very beginning, we establish some lemmas which are essential to pull off our main results.

Lemma 3.3. Let T : X → X be any ZF -contraction with respect to any CF -simulation function
ξ ∈ ZF defined on a complete θ-metric space (X, dθ). This implies that T is asymptotically regular
at each arbitrary element of X.
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Proof. Let x ∈ X. Without loss of generality, consider T nx ̸= T n+1x for all n ∈ N. This implies

dθ(xn, xn+1) > 0

for all n ∈ N. Since T is a ZF -contraction and ξ is any CF -simulation function, we obtain,

CF ≤ ξ(dθ(Txn, Txn+1), dθ(xn, xn+1))

< F (dθ(xn, xn+1), dθ(Txn, Txn+1)) (3.2)

for some CF ≥ 0, F ∈ C and for all n ∈ N. From (3.2) using Definition 2.7, we get

0 < dθ(Txn, Txn+1) = dθ(xn+1, xn+2) < dθ(xn, xn+1).

So {dθ(xn, xn+1)} is a decreasing sequence of non-negative real numbers. Thus there exists some
r ≥ 0 such that

lim
n→∞

dθ(xn, xn+1) = r.

We claim that r = 0. To prove this, we choose tn = dθ(Txn, Txn+1) and sn = dθ(xn, xn+1) and we
know that tn < sn for all n ∈ N. Since T is a ZF -contraction with respect to ξ, applying (ξc), we
obtain

lim sup
n→∞

ξ(dθ(Txn, Txn+1), dθ(xn, xn+1)) < CF .

But from (3.1), we have

ξ(dθ(Txn, Txn+1), dθ(xn, xn+1)) ≥ CF ,

which is a contradiction. So we can conclude that r = 0 and hence

lim
n→∞

dθ(xn, xn+1) = 0.

Therefore T is asymptotically regular at each x ∈ X. □

Lemma 3.4. Assume that T is any ZF -contraction with respect to ξ ∈ ZF and is defined on any
complete θ-metric space (X, dθ). Then whenever T possesses a fixed point in X, it is unique.

Proof. Take u, v ∈ X be two distinct fixed points of T . Therefore Tu = u, Tv = v and

dθ(u, v) = dθ(Tu, Tv) > 0.

Since T is a ZF -contraction with respect to ξ ∈ ZF , we have

CF ≤ ξ(dθ(Tu, Tv), dθ(u, v))

= ξ(dθ(Tu, Tv), dθ(Tu, Tv))

< F (dθ(Tu, Tv), dθ(Tu, Tv)).

From Definition 2.7, we find
dθ(Tu, Tv) < dθ(Tu, Tv),

which is impossible. Hence the assertion is proved. □
Here, we put down a new version of Lemma 2.1 of [16] and moreover, we generalize it in our

context.
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Lemma 3.5. Let (X, dθ) be a θ-metric space and {xn} be a sequence in X such that

lim
n→∞

dθ(xn, xn+1) = 0.

If {xn} is not a Cauchy sequence in (X, dθ), then there exist ϵ > 0 and two sequences {nk} and {mk}
of natural numbers such that nk > mk > k and such that the following sequences {dθ(xmk

, xnk
)} and

{dθ(xmk+1, xnk+1)} tend to ϵ as k → ∞.

Proof. If {xn} is not a Cauchy sequence in (X, dθ), then there exist ϵ > 0 and two sequences {nk}
and {mk} of natural numbers such that nk > mk > k and

dθ(xmk
, xnk−1) < ϵ, dθ(xmk

, xnk
) ≥ ϵ

for all k ∈ N. Hence we have,

ϵ ≤ dθ(xmk
, xnk

)

≤ θ(dθ(xnk
, xnk−1), dθ(xnk−1, xmk

)).

So passing to the limit when k → ∞ in the above inequality and employing (B4), we obtain

ϵ ≤ lim
k→∞

dθ(xmk
, xnk

)

≤ lim
k→∞

θ(dθ(xnk
, xnk−1), dθ(xnk−1, xmk

))

≤ θ( lim
k→∞

dθ(xnk
, xnk−1), lim

k→∞
dθ(xnk−1, xmk

))

≤ θ(0, lim
k→∞

dθ(xnk−1, xmk
))

≤ lim
k→∞

dθ(xnk−1, xmk
)

≤ ϵ.

As a result,

lim
k→∞

dθ(xmk
, xnk

) = ϵ. (3.3)

We observe that,
dθ(xmk

, xnk
) ≤ θ(dθ(xmk

, xnk+1), dθ(xnk+1, xnk
)) (3.4)

and also
dθ(xmk

, xnk+1) ≤ θ(dθ(xmk
, xnk

), dθ(xnk
, xnk+1)). (3.5)

So passing to the limit when k → ∞, and considering (3.4) and (3.5), we obtain

lim
k→∞

dθ(xmk
, xnk+1) = ϵ.

Again we notice that

dθ(xmk+1, xnk+1) ≤ θ(dθ(xmk+1, xmk
), dθ(xmk

, xnk+1))

and also
dθ(xmk

, xnk+1) ≤ θ(dθ(xmk+1, xnk+1), dθ(xmk+1, xmk
)).

So by the previous inequalities, when k → ∞, we get

lim
k→∞

dθ(xmk+1, xnk+1) = ϵ. (3.6)

□
By means of these lemmas, now we are in a position to state our first main result here.
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Theorem 3.6. Suppose that T : X → X is a ZF -contraction concerning a CF -simulation function
ξ ∈ ZF in a complete θ-metric space (X, dθ). Then T has a unique fixed point u in X.

Proof. By Lemma 3.3, the Picard sequence {xn}, where xn = Txn−1 for all n ∈ N, is such that

lim
n→∞

dθ(xn, xn+1) = 0.

Now, by Lemma 3.5, if {xn} is not a Cauchy sequence in (X, dθ), then there exist ϵ > 0 and two
sequences {nk} and {mk} of natural numbers such that nk > mk > k and such that

lim
k→∞

dθ(xmk
, xnk

) = ϵ = lim
k→∞

dθ(xmk+1, xnk+1).

However, there exists n1 ∈ N such that

dθ(xmk
, xnk

) >
ϵ

2
> 0

and
dθ(xmk+1, xnk+1) >

ϵ

2
> 0

for all k ≥ n1. Now, that T is a ZF -contraction with respect to ξ and using the axiom (ξb), we obtain
that

CF ≤ ξ(dθ(xmk+1, xnk+1), dθ(xmk
, xnk

)) (3.7)

= ξ(dθ(Txmk
, Txnk

), dθ(xmk
, xnk

))

< F (dθ(xmk
, xnk

), dθ(Txmk
, Txnk

)).

Using Definition 2.7, this implies

0 < dθ(xmk+1, xnk+1) < dθ(xmk
, xnk

) (3.8)

for all k ≥ n1. Employing the sequences {tk} = {dθ(xmk+1, xnk+1)} and {sk} = {dθ(xmk
, xnk

)}, which
have the same positive limit by (3.3) and (3.6) and using (3.8) in axiom (ξc), we conclude that

lim sup
k→∞

ξ(tk, sk) < CF

which is a contradiction to (3.7). Hence {xn} is a Cauchy sequence. Since (X, dθ) is complete, there
exists z ∈ X, such that

lim
n→∞

xn = z (3.9)

or equivalently
lim
n→∞

dθ(Txn, z) = 0.

Next we confirm that z is a fixed point of T. To the contrary, let Tz ̸= z. Then 0 < dθ(z, Tz) = δ.
Then there exists n0 ∈ N such that

dθ(Txn, z) < δ

= dθ(Tz, z)

for all n ≥ n0. This leads us to
Txn ̸= Tz
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which implies

dθ(Txn, T z) > 0 (3.10)

for all n ≥ n0. Now, there does not exist some n3 ∈ N such that for all n ≥ n3

xn = z.

Therefore, there exists a subsequence {xpk} of {xn} such that

xpk ̸= z (3.11)

for all k ∈ N. Now, let n2 ∈ N be such that pn2 ≥ n0. Hence by (3.10) and (3.11), we have
dθ(Txpn , T z) > 0 and dθ(xpn , z) > 0 for all n ≥ n2. Using (ξb),

CF ≤ ξ(dθ(Txpn , T z), dθ(xpn , z))

< F (dθ(xpn , z), dθ(Txpn , T z))

for all n ≥ n2. In view of Definition 2.7, this means

0 < dθ(Txpn , T z) < dθ(xpn , z)

for all n ≥ n2. In particular, using sandwich theorem and (3.9), we have

lim
n→∞

Txpn = Tz.

Again, {Txpn} = {xpn+1} is a subsequence of {xn}, which converges to z. By the unicity of the limit,
we conclude that Tz = z. Hence z is a fixed point of T. Lemma 3.4 guarantees the uniqueness of the
fixed point. □

Here we affirm the previous result by subsequent examples.

Example 3.7. Let X = {1, 3, 5, 7, 9} be equipped with the Euclidean metric

dθ(x, y) = |x− y|.

We consider θ(s, t) = st+s+t and define a mapping T on X such that T1 = T3 = T5 = T7 = T9 = 3.
It is easy to check that

dθ(Tx, Ty) = 0

for all x, y ∈ X. Here, we take ξ(t, s) = ks
1+t

for all t, s ∈ [0,∞), as the CF -simulation function, where

k ∈ [1
2
, 1) and CF = 1. Then it is easy to check that T satisfies

ξ(dθ(Tx, Ty), dθ(x, y)) ≥ 1

x, y ∈ X. Hence T is a ZF -contraction with respect to the CF -simulation function ξ. Making use of
Theorem 3.6 we get, T has a unique fixed point and it is u = 3 ∈ X.

Example 3.8. Consider the metric space l∞ equipped with the sup metric. Take C = {e0, ei : i ∈ N}
where e0 is the zero sequence and ei is the sequence whose i-th term is 3i and all the other terms are
0. Then one can easily check that C is a closed subset of l∞ and hence complete.
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We define T : C → C such that

Tx =

{
e0, if x = ei, i = 1, . . . , 5;
ei−5, if x = ei, i ≥ 6.

We also consider θ(s, t) = s+t+st and ξ(t, s) = ks
1+t

, t, s ∈ [0,∞), as the extended CF -simulation

function, where k = 1
2
and CF = 1. Let x, y ∈ C be arbitrary with x ̸= y and the three cases may

arise.
Case I: x, y ∈ {ei, i = 1, . . . , 5}. It is easy to check that

Tx =e0 = Ty

⇒ dθ(Tx, Ty) = 0.

But, dθ(x, y) ≥ 3 and taking k = 1
2
, we obtain

kdθ(x, y) ≥
3

2
>1

=1 + dθ(Tx, Ty)

kdθ(x, y)

1 + dθ(Tx, Ty)
≥1

ξ(dθ(Tx, Ty), dθ(x, y)) =
kdθ(x, y)

1 + dθ(Tx, Ty)
≥1.

Case II: x, y ∈ {ei, i ≥ 6}. We take x = ei and y = ej. Therefore

Tx = ei−5, T y = ej−5.

Without loss of generality, i > j. Then we get

dθ(Tx, Ty) = 3i−5

dθ(x, y) = 3i

kdθ(x, y) =
3i

2
> 1 + dθ(Tx, Ty)

kdθ(x, y)

1 + dθ(Tx, Ty)
≥1

ξ(dθ(Tx, Ty), dθ(x, y)) =
kdθ(x, y)

1 + dθ(Tx, Ty)
≥1.

Case III: x ∈ {ei, i = 1, . . . , 5}, y ∈ {ei, i ≥ 6}. Considering x = ei and y = ei, we have

Tx = e0, T y = ei−5.
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Hence we get

dθ(Tx, Ty) = 3i−5

dθ(x, y) = 3i

kdθ(x, y) =
3i

2
> 1 + dθ(Tx, Ty)

kdθ(x, y)

1 + dθ(Tx, Ty)
≥1

ξ(dθ(Tx, Ty), dθ(x, y)) =
kdθ(x, y)

1 + dθ(Tx, Ty)
≥1.

So, in all cases T satisfies all the hypotheses of Theorem 3.6 and employing the theorem, T possesses
a unique fixed point and it is w = e0 ∈ C.

Here we propose the notion of modified ZF -contractions in the framework of θ-metric spaces.

Definition 3.9. Let a mapping T defined on a θ-metric space (X, dθ) such that

ξ(dθ(Tu, Tv),M(u, v)) ≥ CF

holds for all u, v ∈ X, with u ̸= v where,

M(u, v) = max{dθ(u, v), dθ(u, Tu), dθ(v, Tv)}.

Then T is regarded as a modified ZF -contraction with respect to ξ.

In this context, we are going to present another fixed point result related to these modified ZF -
contractions. The following result ensures us the existence and uniqueness of a fixed point of a
modified ZF -contraction. The following lemma is crucial to claim the assertion.

Lemma 3.10. Let (X, dθ) is a complete θ-metric space. Also suppose that T : X → X is a modified
ZF -contraction with respect to any CF -simulation function ξ ∈ ZF . Then if T has a fixed point in
X, it is unique.

Proof. Let a, b ∈ X be two distinct fixed points of T . Therefore Ta = a, T b = b and

dθ(a, b) = dθ(Ta, Tb) > 0.

From Definition 3.9 and using the previous facts, we observe that

M(a, b) = max{dθ(a, b), dθ(a, Ta), dθ(b, T b)}
= max{dθ(a, b), dθ(a, a), dθ(b, b)}
= dθ(a, b).

Using the definition of modified ZF -contractions, we attain that

CF ≤ ξ(dθ(Ta, Tb),M(a, b))

= ξ(dθ(Ta, Tb), dθ(a, b))

= ξ(dθ(a, b), dθ(a, b))

< F (dθ(a, b), dθ(a, b)).
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From this, using Definition 2.7 we get,

0 < dθ(a, b) < dθ(a, b),

which is impossible. Hence the lemma is done. □
Here, we assert one more fixed point result.

Theorem 3.11. Let a mapping T defined on a complete θ-metric space (X, dθ) be a modified ZF -
contraction with respect to a CF -simulation function ξ ∈ ZF . Then for each x0 ∈ X, the Picard
iteration {xn} converges to u, which is the unique fixed point of T in X.

Proof. Suppose (X, dθ) be any θ-metric space and T : X → X be some modified ZF -contraction
with respect to ξ ∈ ZF . Take x0 be any arbitrary element and {xn} be the corresponding Picard
iterate, i.e., xn = Txn−1 for all n ∈ N. Now we suppose that dθ(xn, xn+1) > 0 for all n ∈ N. On the
other hand, if there is some np ∈ N such that xnp = xnp+1, then xnp is a fixed point of T and the
theorem is proved. We consider dnθ = dθ(xn, xn+1). Then,

M(xn, xn−1) = max{dθ(xn, xn−1), dθ(xn, xn+1), dθ(xn−1, xn)}
= max{dnθ , dn−1

θ }.

So if M(xn, xn−1) = dnθ , we get,

CF ≤ ξ(dθ(Txn, Txn−1),M(xn, xn−1))

= ξ(dnθ ,max{dnθ , dn−1
θ })

= ξ(dnθ , d
n
θ )

< F (dnθ , d
n
θ )

⇒ dnθ < dnθ

and this is impossible. So, we obtain,

M(xn, xn−1) = dn−1
θ .

Therefore we have,

CF ≤ ξ(dθ(Txn, Txn−1),M(xn, xn−1))

= ξ(dnθ ,max{dnθ , dn−1
θ })

= ξ(dnθ , d
n−1
θ )

< F (dn−1
θ , dnθ )

⇒ dnθ < dn−1
θ

for all n ∈ N. Here {dnθ} is a non-increasing sequence of positive reals and so, is convergent. Let

lim
n→∞

dnθ = r.

If r > 0, we choose {tn} = {dnθ} and {sn} = {dn−1
θ } and we know that tn < sn for all n ∈ N. Since

T is a ZF -contraction involving ξ, we apply (ξc) and obtain

CF ≤ lim sup
n→∞

ξ(dnθ ,M(xn, xn−1))

CF ≤ lim sup
n→∞

ξ(dnθ , d
n−1
θ )

< CF ,



Non-linear contractions via auxiliary functions and fixed point results with some consequences 2037

which is impossible and so r = 0, i.e.,

lim
n→∞

dθ(xn, xn+1) = 0.

Now we will show that {xn} is Cauchy. Now, by Lemma 3.5, since {xn} is a sequence in X such that

lim
n→∞

dθ(xn, xn+1) = 0

holds, then whenever {xn} is not a Cauchy sequence, there exist ϵ > 0 and two sequences {nk}
and {mk} of natural numbers such that nk > mk > k and the sequences {dθ(xmk

, xnk
)} and

{dθ(xmk+1, xnk+1)} tend to ϵ as k → ∞. In particular, there exists n1 ∈ N such that

dθ(xmk
, xnk

) >
ϵ

2
> 0

and
dθ(xmk+1, xnk+1) >

ϵ

2
> 0

for all k ≥ n1. Now, that T is a ZF -contraction with respect to ξ, and also from (ξb), we obtain that

CF ≤ ξ(dθ(xmk+1, xnk+1),M(xmk
, xnk

))

< F (M(xmk
, xnk

), dθ(xmk+1, xnk+1))

⇒M(xmk
, xnk

) > dθ(xmk+1, xnk+1) (3.12)

where,

M(xmk
, xnk

) = max{dθ(xmk
, xnk

), dθ(xmk
, xmk+1), dθ(xnk

, xnk+1)}.

Now if
M(xmk

, xnk
) = dθ(xmk

, xmk+1),

we get,

dθ(xmk
, xmk+1) > dθ(xmk+1, xnk+1).

Letting k → ∞ and using Lemma 3.5, we obtain

0 ≥ ϵ,

which contradicts our assumption. Using a similar argument, we can prove that

M(xmk
, xnk

) ̸= dθ(xnk
, xnk+1).

Hence

M(xmk
, xnk

) = dθ(xmk
, xnk

)

and

CF ≤ ξ(dθ(xmk+1, xnk+1), dθ(xmk
, xnk

)). (3.13)

So we obtain from (3.12),

0 < dθ(xmk
, xnk

)

= M(xmk
, xnk

)

> dθ(xmk+1, xnk+1). (3.14)
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Employing the sequences {tk} = {dθ(xmk+1, xnk+1)} and {sk} = {dθ(xmk
, xnk

)}, which have the same
positive limit ϵ and using (3.14) in axiom (ξc), we conclude that

lim sup
k→∞

ξ(tk, sk) < CF

which is a contradiction to (3.13). As a result, {xn} is Cauchy. As (X, dθ) is a complete metric space,
we can find some z ∈ X with

lim
n→∞

xn = z

or equivalently
lim
n→∞

dθ(Txn, z) = 0. (3.15)

Next we check that z is a fixed point of T. To the contrary, we assume Tz ̸= z. So

dθ(z, Tz) = δ > 0. (3.16)

Therefore from (3.15), there exists n0 ∈ N such that

dθ(Txn, z) < δ

= dθ(Tz, z)

for all n ≥ n0. This implies
Txn ̸= Tz

and hence,

dθ(Txn, T z) > 0 (3.17)

for all n ≥ n0. Now, there does not exist any n3 ∈ N such that for all n ≥ n3

xn = z.

Therefore, we can find a subsequence {xpk} of {xn} such that

xpk ̸= z (3.18)

for all k ∈ N. Now, let n2 ∈ N be such that pn2 ≥ n0. Hence by (3.17) and (3.18), we have

dθ(Txpn , T z) > 0

and
dθ(xpn , z) > 0

for all n ≥ n2. Now we employ Definition 3.9 to get,

CF ≤ ξ(dθ(Txn, T z),M(xn, z)),

where

M(xn, z) = max{dθ(xn, z), dθ(xn, xn+1), dθ(z, Tz)}.

Now if
M(xn, z) = dθ(xn, z),
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then,

CF ≤ ξ(dθ(Txn, T z), dθ(xn, z))

< F (dθ(xn, z), dθ(Txn, T z))

⇒ dθ(xn, z) > dθ(Txn, T z). (3.19)

As n→ ∞ we get from (3.16) and (3.19),

0 ≥ dθ(z, Tz) = δ,

which is a contradiction. Now if
M(xn, z) = dθ(z, Tz),

then,

CF ≤ ξ(dθ(Txn, T z), dθ(z, Tz))

< F (dθ(z, Tz), dθ(Txn, T z)). (3.20)

From (3.20), we derive
dθ(z, Tz) > dθ(Txn, T z).

Also,
lim
n→∞

dθ(Txn, T z) = dθ(z, Tz) = δ.

Hence considering the sequences {tn} = {dθ(Txn, T z)} and {sn} = {dθ(z, Tz)}, which have the same
positive limit δ and using (3.14) in (ξc), we conclude that

lim sup
n→∞

ξ(tn, sn) < CF

which is a contradiction to (3.20). Now if

M(xn, z) = dθ(xn, xn+1),

then from Definition 2.7 and (ξb),

CF ≤ ξ(dθ(Txn, T z), dθ(xn, xn+1))

< F (dθ(xn, xn+1), dθ(Txn, T z))

⇒ dθ(xn, xn+1) > dθ(Txn, T z).

As n→ ∞ we get,
0 ≥ dθ(z, Tz) = δ,

which is also impossible. These contradictions confirm that dθ(z, Tz) = 0, and therefore, Tz = z.
Therefore z is a fixed point of T. The uniqueness of the fixed point is confirmed from the Lemma
3.10. □

Corollary 3.12. If M(x, y) = d(x, y), then Theorem 3.11 coincides with Theorem 3.6.

To authenticate our previous result, we construct the succeeding examples which elucidate Theorem
3.11.
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Example 3.13. Let X = {1, 3, 5, 6} be furnished with the Euclidean metric and θ(s, t) = st+ s+ t,
for all t, s ∈ [0,∞). We consider T on X by

T1 = 3, T3 = 3, T5 = 1, T6 = 1.

Now, we consider ξ(t, s) = ks
1+t

, t, s ∈ [0,∞), as the CF -simulation function, where k ∈ [0, 1) and
CF = 1. Then T is not a ZF -contraction with respect to ξ, since dθ(T3, T5) = 2, dθ(3, 5) = 2 and

ξ(dθ(T3, T5), dθ(3, 5)) =
2k

3
≱ 1,

for any k ∈ [0, 1). Also it is very simple to verify that T satisfies

ξ(dθ(Tx, Ty),M(x, y)) ≥ 1

x, y ∈ X. Therefore T is a modified ZF -contraction with respect to the CF -simulation function ξ. By
Theorem 3.11, u = 3 is that required fixed point.

Example 3.14. Let X = N be furnished with the metric defined by

dθ(x, y) =

{
0, if x = y;

3 +
∣∣∣ 1x − 1

y

∣∣∣ , otherwise

and we take θ(s, t) = s+ t+ st, for all t, s ∈ [0,∞). Then clearly (X, dθ) is a complete metric space.
We consider T on X by

Tx = 1,

for all x ∈ N. Now, we consider ξ(t, s) = ks
1+t

, for all t, s ∈ [0,∞). as the CF -simulation function,

where k = 1
3
and CF = 1. For any x, y ∈ X with x ̸= y, we have

M(x, y) ≥dθ(x, y)

=3 +

∣∣∣∣1x − 1

y

∣∣∣∣
and dθ(Tx, Ty) = 0. We take k = 1

3
, and obtain

kM(x, y) ≥kdθ(x, y)

=1 +
1∣∣∣ 1x − 1

y

∣∣∣
≥1

=1 + dθ(Tx, Ty)

kM(x, y)

1 + dθ(Tx, Ty)
≥1

ξ(dθ(Tx, Ty),M(x, y)) =
kM(x, y)

1 + dθ(Tx, Ty)
≥1.

Therefore T is a modified ZF -contraction with respect to the CF -simulation function ξ. By Theorem
3.11, u = 1 is that required fixed point.
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4. Consequences

In this section, as consequences of our obtained results, we provide some fixed point results in
the literature.

Theorem 4.1. [7] Let T be a Z-contraction with respect to a simulation function ξ ∈ Z and is
defined on a complete θ-metric space (X, dθ). Then u is a unique fixed point of T in X.

Proof. We consider F (s, t) = s − t and CF = 0. Therefore T is a ZF -contraction with respect to
the CF -simulation function ξ and by Theorem 3.6, it possesses a unique fixed point. □

Theorem 4.2. [12] Let T be a Z-contraction with respect to a simulation function ξ ∈ Z and is
defined on a complete metric space (X, d). Then T has a unique fixed point u in X.

Proof. In Theorem 3.6, we take θ(s, t) = s + t. Then (X, dθ) is actually the metric space endowed
by the usual metric. Now, taking F (s, t) = s − t and CF = 0, we have T is a ZF -contraction with
respect to the CF -simulation function ξ and so, by Theorem 3.6, it has a unique fixed point. □

Theorem 4.3. [7] Let T be any modified Z-contraction with respect to a simulation function ξ ∈ Z
and is defined on a complete θ-metric space (X, dθ). Then T possesses a unique fixed point u in X.

Proof. We take F (s, t) = s− t and CF = 0. Therefore T is a modified ZF -contraction with respect
to the CF -simulation function ξ and by Theorem 3.11, it has a unique fixed point. □
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