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Abstract

Radial basis function pseudospectral method is applied to obtain the solution for nonlinear Phi-
four time dependant equation with nonhomogeneous initial and boundary conditions. In this method,
the efficient pseudospectral technique is combined with radial basis function to get the best of it.
In the proposed method, the radial basis kernels are used to discretize the space derivatives in the
Phi-four equation where as a time stepping technique is used to accord with the temporal part of
the solution. The given Phi-four equation is transformed into a set of ordinary equations. An ode
solver is used to solve the ordinary equations. An effective approach is used to choose the value of
the shape parameter for radial basis function. Numerical results are presented to check the validity
and accuracy of the method to solve the Phi-four equation.
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1. Introduction

In recent years, Radial basis functions (RBFs) are used extensively in various numerical methods
for solving the differential equations due to their mesh free nature and easy to apply nature. The
valuable RBF methods is a substitute for classical methods where they are hard to apply or even fail
to perform. It all started when Kansa [1] firstly used RBF interpolation and collocation technique to
solve differential equation. Due to its simplicity in implementation, researchers use Kansa method to
solve a vast variety of problems [2][3][4][5]. Many well-known methods combine with RBF approxi-
mation to take the advantage of its mesh free nature. Some of the methods are of weak formulation
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and other are of strong formulation. One such method in strong formulation is Radial Basis function
pseudospectral method (RBFPS). Fasshauer [6] proposed this method in which RBF collocation is
used in pseudospectral mode. Various researchers applied RBFPS method to solve problems in the
areas of science and engineering [7][8][9]. Recently Abbasbandy et al. [10] applied RBFPS to solve
two dimensional telegraph equation.

Many Phenomena in engineering and other fields of sciences are governed by nonlinear partial
differential equations. These equations play a great role in modelling a variety of physical problems
arises in the field of fluid mechanics, hydrodynamics, plasma physics and quantum mechanics. The
Phi-four equation is one such nonlinear partial differential equation. We study this equation in the
context of quartic interaction theory arises in the field of quantum mechanics.

In the literature, few numerical techniques have been presented to solve the Phi-four equation.
Chowdhury and Biswas [11] obtained the singular soliton solution of the Phi-four equation with
the help of ansatz method. Numerical solution is also obtained by using rational chebyshev basis
function in spectral mode. Bhrawy et al. [12] established Jacobi-Gauss-Lobatto Collocation method
for solving Phi-Four equation. Recently Zahra et al.[13] developed a numerical scheme based on
Cubic B-spline collocation method to solve the Phi-four equation. On the other hand, several analytic
methods are also used to obtain the solution for the equation. Wazwaz and Triki [14] applied anstaz
method to obtain the soliton solution of the equation. Najafi [15] applied the He’s Variational method
to obtain the analytic solution of the Phi-four equation. Demiray and Bulut [16] used modified exp
(−Ω(ξ))-expansion function method for the same.

In this present work, the RBFPS method is applied to solve Phi-four equation

utt = λ1uxx + λ2u+ λ3u
θ, (x, t) ∈ [A,B]× [0, T ] (1.1)

with initial and boundary condition as

u(A, t) = f1(t), u(B, t) = f2(t) (1.2)

u(x, 0) = g1(t), ut(x, 0) = g2(t), x ∈ [A,B] (1.3)

where u(x,t) represent the wave profile at spatial and temporal independent variables x and t
respectively. The coefficients λ1, λ2 and λ3 are real valued parameters. In this method, the partial
differential equation is transformed into a system of ordinary differential equations with the help of
RBF kernels. An ODE solver is used to solve the resultant system of ordinary differential equations.
Many RBFs contains a free parameter known as shape parameter. It is already proved that shape
parameter effects the accuracy and stability of the method so a special consideration is given to
choose the good value of shape parameter. Fasshauer and Zhang [17] proposed an algorithm which
is the modified version of Rippa approach for choosing the good value of the shape parameter. It
depends on the leave-one out cross validation (LOOCV) technique used in statistics. In this present
study, we have used the Fasshauer criteria for selecting the shape parameter. The paper is organized
as follows: in section 2, implementation of the proposed method is given. The given Phi-four equation
is transformed into a system of ordinary differential equations. An ODE solver is used to solve the
resultant ODEs. The Fasshauer criteria for selecting the shape parameter is also discussed. In section
3, to check the validity of the method, we present the results of three numerical problems. In the
end, a conclusion is drawn in section 4.

2. Implementation of the proposed method

In this section, we will use the RBFPS method to obtain a numerical solution of Phi-four equation
1.1 with initial and boundary conditions 1.21.3. We will transform the given Phi-four equation 1.1
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as coupled equation
ut = v, vt = λ1uxx + λ2u+ λ3u

θ (2.1)

The given domain [A,B] is divided into nodes xk = 1, 2, 3, ...N. The RBF approximation for v(x, t)
can be written in the form as

uN =
N∑
k=1

ζ1kφk(‖ x− xk ‖), vN =
N∑
k=1

ζ2kφk(‖ x− xk ‖) (2.2)

where φk = φ(r) and r=‖ x− xk ‖ denotes the Euclidean distance between the points x and xk and
φk is the radial basis function.

Equation 2.2 evaluated at various nodes xk = 1, 2, 3, ...N we get

uN(xi) =
N∑
k=1

ζ1kφk(‖ xi − xk ‖), vN(xi) =
N∑
k=1

ζ2kφk(‖ xi − xk ‖) (2.3)

In the matrix form, we can write equation 2.3 as

U = LC1, V = LC2 (2.4)

where Lik = φk(‖ xi − xk ‖) are the radial basis functions at nodes and C1 = [ζ11, ζ
1
2, ..., ζ

1
N ]

T
and

C2 = [ζ21, ζ
2
2, ..., ζ

2
N ]

T
are the unknown interpolation coefficients. Now, the derivative of uN of 2.3

by differentiating the basis functions, as

d

dxi
uN(xi) =

N∑
k=1

ζ1k
d

dxi
φk(‖ xi − xk ‖) (2.5)

Again, evaluate 2.5 at the grid points, xk = 1, 2, 3, ...N, we get

Ux = LxC1 (2.6)

where the entries of the derivative matrix Lx are d
dxi
φk(‖ xi−xk ‖) The condition that the evaluation

matrix L in 2.4 is invertible, depends on various factors like RBF selected and the chosen grid points.
The matrix generated by using a positive definite RBFs is always lead to a non-singular matrix and
hence invertible. Since L is invertible so from 2.4 C1 = L−1U and equation 2.6 becomes

Ux = LxL
−1U = DxU (2.7)

Similarly, one can find the differentiation matrix concerning the second and higher order derivatives,
i.e

Uxx = LxxL
−1U = DxxU (2.8)

Similarly, Vx = DxV and Vxx = DxxV Using the approximations, the coupled equation 2.1 can be
written as

dUN
dt

= VN ,
dVN
dt

= λ1DxxUN + λ2UN + λ3UN
θ (2.9)

By RBF-PS scheme, 1.1 reduces to a system of ODEs. The obtained ODEs can be discretized in
time using any ODE solver like ode113, ode45 from MATLAB. We have used ode45 ODE solver to
solve the resultant ODEs.
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2.1. Rippa’s Leave-One-Out Cross-Validation Approach

The first algorithm based on a well-known method in statistics as LOOCV was proposed by Rippa
[18] to determine an optimal value for the shape parameter. LOOCV is a cross-validation technique
used in statistics for a variety of parameter identification problems. Rippa determine the value of
the shape parameter by minimizing the error function as

E = [E1, E2, E3, ..., En]t

where Ek = |u(xk)− P k(x)| and P k(x) is the radial basis function interpolation to all the data points
except xk. Rippa use a simplified formula for finding the error to avoid the high cost

Ek =
αk

Akk
−1

where αk is the kth coefficient of the interpolation and Akk
−1 is the kth diagonal element of the

inverse of the interpolation matrix. As the problem becomes an optimization problem, Rippa used
Brent’s method to find the optimal value of the shape parameter for which the error function is
minimum. Fasshauer and Zang [17] modified the Rippa’s approach to finding the good value of the
shape parameter for the RBF-PS method. They suggest the use of MATLAB function fminbnd to
find the minimum of the error function.

3. Numerical simulation and Discussion

In this section, we consider three numerical problems to check the applicability of the proposed
method on Phi-four equation. We compare and analyse the obtained numerical solution of the
equation with respect to the exact solution. For discussion, we used the following error norms for
the solution.

L∞ = max
1≤i≤N

|u(xi, t)− UN(xi, t)|

L2 =

∑N
i=1 |u(xi, t)− UN(xi, t)|

N

RMS =

√∑N
i=1 (u(xi, t)− UN(xi, t))

2

N

where u(xi, t) is the exact solution and UN(xi, t) is the numerical solution for the given equation. In
the present paper for discretize the space derivatives, the positive definite Cubic Matern RBF given
by φ(r) = (15 + 15εr + 6(εr)2 + (εr)3)e−εr

Example 3.1. Consider the nonlinear Phi-four equation from [12] as

utt = λ1uxx + λ2u+ λ3u
θ, (x, t) ∈ [A,B]× [0, T ]

The exact solution of the equation is

u(x, t) =
3λ2
2λ3

(
1− tanh2

[√
λ2

(4v2 − λ1)
(x− vt)

])
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The initial and boundary conditions can be obtained from the exact solution. The above equation is
solved with λ1 = λ2 = 1 and λ3 = 1. First we solve the above equation in the computational domain
[0, 10] with N = 51 and δt = 0.001.The absolute errors are calculated for different values of t in the
interval [0, 10] with v = 2 and are represented in Table 1. We calculate different error norms for
t = 0.01, t = 0.03 and t = 0.05 in the interval [0, 1] with v = 2 and results are reported in table 2.
In Figure 1, a graph comparing the numerical and exact solutions at t = 0.1, t = 0.5 and t = 0.9
is represented in the interval [−5, 5]. The comparison between the exact and numerical solution for
t ≤ 0.1 is also depicted by figure 2. It is found that the obtained numerical results are comparable to
exact solution.

Table 1: Absolute error for Example 3.1 in the interval [0, 10] for different values of t

Time = 0.1 Time = 0.2 Time = 0.3
x Absoulte Error Absoulte Error Absoulte Error
1 1.15E-08 1.34E-08 7.52E-08
2 1.30E-08 1.46E-08 2.34E-08
3 3.68E-09 9.59E-09 4.08E-09
4 1.17E-08 1.66E-08 1.15E-08
5 8.86E-09 1.24E-08 1.16E-08
6 1.48E-08 1.87E-08 2.20E-08
7 1.51E-09 4.24E-10 7.92E-09
8 1.05E-08 2.07E-08 5.67E-09
9 6.40E-09 4.51E-09 1.99E-08
10 9.02E-08 4.26E-07 1.21E-06

Table 2: Error norms for different values of t for Example 3.1 with v = 2 and N = 51

t 0.1 0.2 0.3
L∞ 2.3160E-10 3.2839E-09 1.4780E-08
L2 4.0461E-12 5.7882E-11 2.7112E-10

RMS 7.1604E-11 9.6323E-10 4.2558E-09

Example 3.2. As second example, we consider equation 1.1 with the value of the parameters as
λ1 = λ2 = 1, λ3 = −1 and θ = 3 which is of the form

utt = uxx + u− u3, (x, t) ∈ [A,B]× [0, T ]

with initial and boundary conditions as

u(x, 0) = tanh

[√
1

2(1− v2)
(x)

]
, ut(x, 0) = sech2

[√
1

2(1− v2)
(x)

](
−v√

2(1− v2)

)
and

u(A, t) = tanh

[√
1

2(1− v2)
(A− vt)

]
, u(B, t) = tanh

[√
1

2(1− v2)
(B − vt)

]
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Figure 1: Approximate solution of Example 3.1 for different values of t

Figure 2: Exact and Numerical solution of Example 3.1 for t ≤ 0.1

The exact solution is

u(x, t) = tanh

[√
1

2(1− v2)
(x− vt)

]
We solve the above equation in the computational domain [0, 1] with N = 51.The absolute errors are
calculated for different values of t in the interval [0, 1] with v = 0.01 and are represented in Table 3 In
Table 4 , we represent L∞, L2 and RMS errors for different values of t In figure 3, a graph comparing
the numerical and exact solutions at t = 0.5 is represented in the interval [−5, 5]. In figure 4, we
display the comparison between the exact and numerical solution for t ≤ 1 in the interval [−5, 5] with
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N = 51. It is found that the obtained numerical results are comparable to the exact solution.

Table 3: Absolute error for Example 3.2 in the interval [0, 1] for different values of t

Time = 0.01 Time = 0.02 Time = 0.03
x Absoulte Error Absoulte Error Absoulte Error

0.1 2.39E-09 1.17E-08 3.41E-08
0.2 5.74E-12 2.07E-12 2.21E-12
0.3 1.79E-12 3.68E-11 4.81E-11
0.4 3.23E-11 3.01E-11 2.17E-11
0.5 2.13E-11 2.93E-11 2.24E-11
0.6 2.28E-11 2.87E-11 1.55E-12
0.7 5.14E-11 1.03E-10 5.17E-11
0.8 3.23E-13 2.67E-12 3.81E-11
0.9 4.91E-11 5.19E-11 2.02E-11
1 2.22E-11 1.12E-11 5.04E-11

Table 4: Error norms for different values of t for Example 3.2 with v = 0.01 and N = 51

t 0.1 0.2 0.3
L∞ 7.1857E-10 8.0328E-10 8.0170E-10
L2 1.9504E-10 3.1702E-09 1.6544E-08

RMS 1.2163E-09 1.7204E-08 7.8882E-08

.

Figure 3: Exact and numerical solution of Example 3.2 at t = 0.5 in the interval [−5, 5]
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Figure 4: Exact and Numerical solution of Example 3.2 for t ≤ 1 in the interval [−5, 5]

Example 3.3. Consider the equation of the form

utt = uxx + u− u4, (x, t) ∈ [A,B]× [0, T ]

The initial and boundary conditions are

u(x, 0) = 2

(
1− tanh2

[
3

2
(x)

]) 1
3

, ut(x, 0) = 4v

(
1− tanh2

[
3

2
(x)

])−2
3

tanh

[
3

2
(x)

]
sech2

[
3

2
(x)

]

u(A, t) = 2

(
1− tanh2

[
3

2
(A− vt)

]) 1
3

, u(B, t) = 2

(
1− tanh2

[
3

2
(B − vt)

]) 1
3

The exact solution of the equation is given as

u(x, t) = 2

(
1− tanh2

[
3

2
(x− vt)

]) 1
3

,

In Table 5 , we report L∞, L2 and RMS errors for different values of t with N = 51 and 4t = 0.0001.
Figure 5 represent the comparison between the exact and numerical solution of the equation in the
interval[−5, 5] for t ≤ 0.01 with N = 31. This assertion that the obtained numerical solution is in
good agreement with the exact solution.

Table 5: Error norms for different values of t of Example 3.3 with v = 0.01 and N = 51

t 0.001 0.002 0.003
L∞ 1.0414E-05 3.1225E-05 5.5174E-05
L2 6.0865E-07 5.4778E-06 1.5215E-05

RMS 5.8134E-06 2.5507E-05 6.1089E-05
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Figure 5: Exact and Numerical solution of Example 3.3 for t ≤ 0.01 in the interval [−5, 5]

4. Conclusion

In this paper, we investigate the application of Radial basis pseudospectral method to produce
the solution of Phi-four equation. The Radial kernel reduce the given into a system of ordinary
differential equations. The obtained equations then solved further with the help of an ODE solver in
MATLAB. To check the applicability and accuracy of the proposed method, three numerical problems
are solved. The obtained results are compared with the exact solutions. Different error norms are
obtained to check the accuracy. It is found that the proposed method is easy to implement, can
be used without any linearization process and produces good results in comparison with the exact
solution.
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