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Abstract

This work aims to introduce a numerical approximation procedure based on operational matrix of
block pulse functions, which is employed in solving integral-algebraic equations arising from diffusion
model. It is known that the integral-algebraic equations belong to the class of singular problems. The
main advantage of this method is the reduction of these singular systems by using operational matrix
to a linear lower triangular systems of algebraic equations, which is non-singular. An estimation of
the error and illustrative instances are discussed to evaluate the validity and applicability of the
presented method.
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1. Introduction

A mixed system of Volterra integral equations consisting of the first and second kind often occurs
as following {

x1(t) = f1(t) +
∫ t

0
k11(t, s)x1(s)ds+

∫ t

0
k12(t, s)x2(s)ds,

0 = f2(t) +
∫ t

0
k21(t, s)x1(s)ds,

(1.1)

where f1, f2, k11 , k12 and k21 are known functions and x1(t) and x2(t) are solutions to be determined.
These types of systems are called integral-algebraic equations (IAEs) and they are also well-known
as singular systems of integral equations. IAEs arise in many applications and mathematical mod-
eling processes such as problems of the theory of elasticity, dynamic processes in chemical reactors,
evolution of a chemical reaction, neutron transport, the kernel identification in viscoelasticity and
diffusion mechanism.(For further applications see [5, 6] and references therein.)
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In 1990, Gear introduced the theory of IAEs and he defined the ”index reduction procedure”
for these type of equations. Since then, Bulatov [1] presented the existence and uniqness results of
solution for IAEs. The polynomial spline collocation method and its convergance results have been
utilized for a semi-explicit IAEs in [2]. Hadizadeh et. al [3] has studied a Jacobi collocation method
for integral-algebraic equations. Maleknejad et. al [4] in 2011, applied an operational matrix with
block pulse functions for solving systems of Volterra integral equations of the first kind.

Diffusion mechanism models the movement of many individuals in media or environment. The
individuals can be very small such as molecules, cells, basic particles in physics, bacteria, or also
they can be very large objects such as plants, animals, or certain kind of events like epidemics, or
rumors. The diffusion equation is a partial differential equation which describes density fluctations
in a material undergoing diffusion. In order to give an application of IAEs, we consider the following
(1D) diffusion equation with initial and mixed boundary conditions [7]:

ut = uxx, 0 < x < 1, 0 < t,
u(x, 0) = h1(x), 0 < x < 1,
ut(0, t) + α(t)ux(0, t) + β(t)u(0, t) = h2(t), 0 < t,
ux(1, t) + γ(t)u(1, t) = h3(t), 0 < t.

(1.2)

(1.2) represents a boundary reaction in diffusion of chemicals. Also, the diffusive transport of
material to the boundary is represented by α(t)ux. The solution of this equation, for continuous
functions h2, h3, α, β, γ and for continuously differentiable function h1, is

u(x, t) =

∫ 1

0

{Θ(x− ξ, t)−Θ(x+ ξ, t)}h1(ξ)dξ − 2

∫ t

0

∂Θ

∂x
(x, t− s){h1(0) +

∫ s

0

φ1(η)dη}ds

+ 2

∫ t

0

∂Θ

∂x
(x− 1, t− s){h1(1) +

∫ s

0

φ2(η)dη}ds, (1.3)

if and only if φ1 and φ2 are continuous functions that satisfy in the following system:

φ1(t) = h2(t)− 2α(t)
∫ t

0
Θ(ξ, t)h′

1(ξ)dξ + 2α(t)
∫ t

0
Θ(0, t− s)φ1(s)ds

− 2α(t)
∫ t

0
Θ(−1, t− s)φ2(s)ds− β(t)h1(0) + β(t)

∫ t

0
φ1(s)ds,

h3(t) = 2
∫ t

0
Θ(1 + ξ, t)h′

1(ξ)dξ − 2
∫ t

0
Θ(1, t− s)φ1(s)ds

+ 2
∫ t

0
Θ(0, t− s)φ2(s)ds+ γ(t)h1(1) + γ(t)

∫ t

0
φ2(s)ds,

(1.4)

where Θ(x, t) =
∑∞

n=−∞ K(x+ 2n, t) is a well-known Theta function and K(x, t) =
e−x2/4t

√
4πt

.

Without loss of generality, by assuming γ(t) =
−2

∫ t
0 Θ(0,t−s)φ2(s)ds

h1(1)+
∫ t
0 φ2(s)ds

, this system reduces to a system of

the form (1.1) as follows:

φ1(t) = h2(t)− 2α(t)
∫ t

0
Θ(ξ, t)h′

1(ξ)dξ + 2α(t)
∫ t

0
Θ(0, t− s)φ1(s)ds

− 2α(t)
∫ t

0
Θ(−1, t− s)φ2(s)ds− β(t)h1(0)− β(t)

∫ t

0
φ1(s)ds,

0 = −h3(t) + 2
∫ t

0
Θ(1 + ξ, t)h′

1(ξ)dξ − 2
∫ t

0
Θ(1, t− s)φ1(s)ds,

(1.5)
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The remainder of the paper consists of four sections. Section 2 describes some notations, proper-
ties and basic definitions of block pulse functions and itegral-algebraic equations. The general form
of the integral-algebraic equation (1.1) is numerically investigated, then error bound of the proposed
method is given in Section 3. In the final section, some numerical results are discussed to illustrate
the efficiency and accuracy of our algorithm.

2. Preliminaries

In this section, we introduce some useful notations, definitions and also results concerning the
integral-algebraic equations and the block pulse functions, which are used further in this paper [8, 4].

The general form of the linear integral- algebraic equations with variable coefficients is defined
as follows:

A(t)X(t) = F (t) +

∫ t

0

K(t, s)X(s)ds, t ∈ I = [0, T ], (2.1)

with

A(t) =

(
a1(t) a2(t)
a3(t) a4(t)

)
, K(t, s) =

(
k11(t, s) k12(t, s)
k21(t, s) k22(t, s)

)
, F (t) =

(
f1(t)
f2(t)

)
, (2.2)

where A is a singular matrix. Also A,F,K are given functions and X(t) = (x1(t), x2(t)) is the
solution to be determined. The conditions of existence and uniqueness of solutions related to the
IAEs of (2.1) are considered by the following theorem [1]:

Theorem 2.1. Assume that the system (2.1) with det A(t) = 0 and I = [0, 1] satisfies the following
conditions:
1) Rank A(t)=deg(det[λA(t) +K(t, t)]) = c ∀t ∈ I, where c is a constant and λ is a scalar,
2) Rank A(0)= rank[A(0)|X(0)],
3)A(t) ∈ C1(I), X(t) ∈ C1(I) and K(t, s) ∈ C1(△), where △ = {0 ≤ s ≤ t ≤ 1},

then the system has a unique continuous solution.

Definition 2.2. Let B(t) = [b1(t), b2(t), ..., bn(t)]
T and bi is the ith block pulse function, then an

n-set of block pulse functions is defined as:

bi(t) =

{
1, (i−1)T

n
≤ t < iT

n
,

0, o.w,

where t ∈ [0, T ), h = T
n
, i = 1, 2, ..., n. In this work, it is assumed that the block pulse functions are

defined over t ∈ [0, 1). i.e. T = 1.

Definition 2.3. Any function u(t) ∈ L2[0, 1) can be approximated by block pulse functions as

u(t) ≃
n∑

i=1

uibi(t) = UTB(t) = B(t)TU, (2.3)

where U = [u1, u2, ..., un]
T and ui = n

∫ 1

0
u(t)bi(t)dt.

Also for every u(x, t) ∈ L2([0, 1)× [0, 1)) approximation of u(x, t) can be written as:

u(x, t) ≃ BT (t)UB(s), (2.4)

where U is the block pulse coefficients matrix with uij, i = 1, 2, ..., n1, j = 1, 2, . . . , n2 and

uij = n1n2

∫ 1

0

∫ 1

0
u(x, t)bi(t)bj(s)dtds.
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Proposition 2.4. Disjointness, orthogonality and completeness are the most important properties
of block pulse functions. Also it is easy to verify the following properties:

B(t)BT (t) = diag(B(t)), B(t)TB(t) = 1, (2.5)

B(t)BT (t)W = W̃B(t), (2.6)

where W be an n-vector, W̃ = diag(W ). And for every matrix Vn×n, we can write:

BT (t)V B(t) = V̂ TB(t), (2.7)

where V̂ is an n-vector with elements equal to the diagonal entries of V . Another property of block
pulse family is: ∫ t

0

B(x)dx ≃ PB(t), (2.8)

where Pn×n is well-known as an operational matrix and is given by

P =
1

2n


1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2

0 0 0
... 1


3. Outline of the method for integral-algebraic equations

First part of our presentation in this section describes the algebraic structure which arises from
the block pulse approximations of IAEs, and the second part is concerned with an error analysis of
the proposed method.

3.1. Solution of the integral-algebraic equations

Consider the general form of integral-algebraic equations given by (2.1). For simplicity, we rewrite
equation (2.1) as:

2∑
j=1

aij(t)xj(t) = fi(t) +
2∑

j=1

∫ t

0

kij(t, s)xj(s)ds, i = 1, 2. (3.1)

Due to (2.3) and (2.4), we have

aij(t) ≃ AT
ijB(t) = BT (t)Aij, xj(t) ≃ XT

j B(t) = BT (t)Xj,

fi(t) ≃ F T
i B(t) = BT (t)Fi, kij(t, s) ≃ BT (t)KijB(s).

Substituting the above relations in (3.1) yields

2∑
j=1

BT (t)AijX
T
j B(t) ≃ F T

i B(t) +
2∑

j=1

∫ t

0

BT (t)KijB(s)BT (s)Xjds, i = 1, 2. (3.2)
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On the other hand, according to (2.6) and (2.8), the right-hand side of the above equation can be
rewritten as

2∑
j=1

∫ t

0

BT (t)KijB(s)BT (s)Xjds ≃
2∑

j=1

BT (t)Kij

∫ t

0

B(s)BT (s)Xjds =
2∑

j=1

BT (t)Kij

∫ t

0

X̃jB(s)ds

=
2∑

j=1

BT (t)KijX̃j

∫ t

0

B(s)ds =
2∑

j=1

BT (t)KijX̃jPB(t), (3.3)

and by rearranging (3.2) due to (3.3) we get

BT (t)

[
2∑

j=1

AijX
T
j

]
B(t) ≃ F T

i B(t) +BT (t)

[
2∑

j=1

KijX̃jP

]
B(t). (3.4)

let us set Di =
∑2

j=1AijX
T
j and Ei =

∑2
j=1KijX̃jP . Using (2.7) in Proposition 1, the last equation

can be transformed to the following matrix form:

D̂T
i B(t) ≃ F T

i B(t) + ÊT
i B(t), i = 1, 2. (3.5)

or equivalently
D̂i ≃ Fi + Êi, i = 1, 2, (3.6)

where

D̂i =



∑2
j=1 aij(1)xi(1)∑2
j=1 aij(2)xi(2)

...∑2
j=1 aij(n)

xi(n)

 , Êi =



1

2n

∑2
j=1 kij(1,1) 0 . . . 0

1

n

∑2
j=1 kij(2,1)

1

2n

∑2
j=1 kij(2,2) . . . 0

...
...

. . .
...

1

m

∑2
j=1 kij(n,1)

1

n

∑2
j=1 kij(n,2)

. . .
1

n

∑2
j=1 kij(n,n)




xi(1)

xi(2)
...

xi(n)

 .

Clearly, system (3.6) can be represented as a simple form:

A(r)X(r) = F(r) +
1

n

r−1∑
s=1

K(r,s)X(s) +
1

2n
K(r,r)X(r), r = 1, 2, . . . , n, (3.7)

and so

X(r) =

[
A(r) −

1

2n
K(r,r)

]−1
[
F(r) +

1

n

r−1∑
s=1

K(r,s)X(s)

]
, r = 1, 2, . . . , n, (3.8)

where X(r) = [x1(r), x2(r)]
T , F(r) = [f1(r), f2(r)]

T , A(r) = [aij(r)] and K(r,s) = [kij(r,s)]. Since[
A(r) −

1

2n
K(r,r)

]−1

is non-singular, so (3.8) enables us to compute block pulse coefficients. Finally,

the desired approximation to the solution X(t) of (2.1) can be obtained from
X(t) = [X(1), X(2), . . . , X(n)]B(t).
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The following algorithm summarizes our proposed method:

Algorithm 1. The construction of proposed method for integral-algebraic equation (2.1)

Step 1. Input:
n, fi, aij, kij, for i, j = 1, 2, and block pulse bases B(t).
Step 2. Compute A(r), k(r,s) and F(r) from matrices representation of (3.6).

Step 3. Compute non-singular matrix of

[
A(r) −

1

2n
K(r,r)

]−1

.

Step 4. Compute X(r) from the following equation:[
A(r) −

1

2n
K(r,r)

]−1
[
F(r) +

1

n

r−1∑
s=1

K(r,s)X(s)

]
.

Step 5. Set x1(t) = [x1(1), x1(2), . . . , x1(n)]B(t), x2(t) = [x2(1), x2(2), . . . , x2(n)]B(t),
and then an approximated solution will be obtained.

3.2. Error analysis

Theorem 3.1. Let Xn(t) be an approximate solution of the exact solution X(t) of integral-algebraic
equation (2.1) by block pulse functions and suppose there exists (A(t)+I)−1. If L = sup︸︷︷︸

0≤t≤1

|(A(t)+I)−1|

and M = sup︸︷︷︸
0≤t≤1

∫ t

0
|ki,j(t, s)|ds, then for 0 < L < 1 we can conclude ||X(t)−Xn(t)|| → 0 as n → ∞.

Proof . According to the (2.1) and given assumptions, we have

A(t)(X(t)−Xn(t)) =

∫ t

0

K(t, s)(X(s)−Xn(s))ds, (3.9)

by adding (X(t)−Xn(t)) to the above equation, we obtain

(A(t) + I)(X(t)−Xn(t)) =

∫ t

0

K(t, s)(X(s)−Xn(s))ds+ (X(t)−Xn(t)), (3.10)

or equivalently

(X(t)−Xn(t)) = (A(t) + I)−1

[∫ t

0

K(t, s)(X(s)−Xn(s))ds+ (X(t)−Xn(t))

]
, (3.11)

then we can write

∥X(t)−Xn(t)∥ ≤ ∥(A(t) + I)−1∥
[∫ t

0

∥K(t, s)∥∥(X(s)−Xn(s))∥ds+ ∥X(t)−Xn(t))∥
]
, (3.12)

suppose M = sup︸︷︷︸
0≤t≤1

∫ t

0
|ki,j(t, s)|ds and L = sup︸︷︷︸

0≤t≤1

|(A(t) + I)−1|, then we get

||X(t)−Xn(t)|| ≤ L||(X(t)−Xn(t))|| (M + 1) , (3.13)

let N = L(M + 1) and we rewrite the above equation as

(1−N)||X(t)−Xn(t)|| ≤ 0, (3.14)

finally, for 0 < N < 1 we have ||X(t)−Xn(t)|| → 0 as n → ∞. □
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4. Numerical experiments

In this section, two special cases of the integral-algebraic equations will be investigated to demon-
strate the reliability and efficiency of the proposed numerical method. All calculations will be done
by the Mathematica.

Example 4.1. Consider the following diffusion equation (1.2) where α(t) = 1, β(t) = 0, h1(x) = 1,

h2(t) =
1√
πt
, h3(t) =

e
−1
4t (1+2t)

2
√
πt

3
2

, γ(t) =
e

−49
4t (7− 12e

13
4t + 5e

6
t )(9 + π2t)

9πt(−erf( 5
2
√
t
) + 2erf( 3√

t
)− erf( 7

2
√
t
))
,

ut = uxx, 0 < x < 1, 0 < t,
u(x, 0) = 1, 0 < x < 1,

ut(0, t) + ux(0, t) =
e
−1
4t (1+2t)

2
√
πt

3
2

, 0 < t,

ux(1, t) + γ(t)u(1, t) = 1√
πt
, 0 < t,

(4.1)

and the exact solution of this equation is u(x, t) = erf(
1− x

2
√
t
).

Using the given assumption and due to (1.4), we have
φ1(t) =

e
−1
4t (1+2t)

2
√
πs

3
2

+ 2
t∫
0

Θ(0, t− s)φ1(s)ds− 2
t∫
0

Θ(−1, t− s)φ2(s)ds

0 = −1√
πt

− 2
t∫
0

Θ(1, t− s)φ1(s)ds

Or equivalently(
1 0
0 0

)(
φ1(t)
φ2(t)

)
=

 e
−1
4t (1+2t)

2
√
πt

3
2

−1√
πt

+

∫ t

0

(
2Θ(0, t− s) −2Θ(−1, t− s)
−2Θ(1, t− s) 0

)(
φ1(s)
φ2(s)

)
ds

Table 1: The absolute errors of Example 1 for different values of n.
|u(0.95, 0.05)− û(0.95, 0.05)|

n
11 points of interpolation

for x and t
101 points of interpolation

for x and t

2 5.031× 10−2 2.0865× 10−3

4 5.022× 10−2 2.0861× 10−3

8 4.899× 10−2 2.0802× 10−3

16 1.595× 10−2 1.9908× 10−3

For computational and numerical implementation of the proposed algorithm, due to complexity
of Θ(x, t), we take Θ(x, t) ≃

∑3
n=−3K(x + 2n, t) and also we should interpolate it by appropriate

function. Using Algorithm 1, unknowns φ1(t) and φ2(t) will be obtained. For finding the desired
approximation, we substitute φ1(t) and φ2(t) in the following equation

û(x, t) =

∫ 1

0

{Θ(x− ξ, t)−Θ(x+ ξ, t)} dξ − 2

∫ t

0

∂Θ

∂x
(x, t− s)

{
1 +

∫ s

0

φ1(η)dη

}
ds

+ 2

∫ t

0

∂Θ

∂x
(x− 1, t− s)

{
1 +

∫ s

0

φ2(η)dη

}
ds. (4.2)
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In Table 1, we report numerical results for different n-set of block pulse functions which Θ(x, t) is
interpolated in 11-points and 101-points of x and t.

Example 4.2. Let us consider the IAEs system,(
0 0
t −2t

)(
x1(t)
x2(t)

)
=

(
− t3

6

3t2 − t3

6

)
+

∫ t

0

(
3s t+ s

t+ 1 s+ 1

)(
x1(t)
x2(s)

)
ds,

with the exact solution x1(t) = t and x2(t) = −t.

As we expected, proposed scheme has produced good numerical results. The error estimates of the
method for different n-set of block pulse are represented in Table 2. Numerical results for x1(t) and
x2(t) with n = 32 have been shown in Figs. 1, 2, respectively. An approximate solutions of x1(t)
and x2(t) are shown by x̂1(t) and x̂2(t), respectively.

Figure 1: Numerical results for x1(t) of Example 2 using proposed method with n = 32

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1(t) for example 2

Dashed, Black: exact solution, Green: Block-pulse solution

Figure 2: Numerical results for x2(t) of Example 2 using proposed method with n = 32

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

x2(t) for example 2

Dashed, Black: exact solution, Green: Block-pulse solution

Table 2: The absolute errors of Example 2 for different values of n.
n |x1(0.55)− x̂1(0.55)| |x2(0.55)− x̂2(0.55)|
2 2.098× 10−1 1.960× 10−1

4 7.192× 10−2 7.850× 10−2

8 6.192× 10−2 8.240× 10−2

16 3.251× 10−2 4.145× 10−2
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5. Conclusion

In this research, an efficient numerical algorithm based on the block pulse functions was proposed
for the new class of the system of integral equation as the integral-algebraic equations. The difficulty
which we will be faced with is the singularity of A(t), which is done by proposed method and
also using triangular matrix, we may conclude the low computational complexity. Two numerical
examples was introduced to show that the numerical method is applicable with a good accuracy.
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