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Abstract

We propose a multi-objective machine scheduling problem (MSP) in this study. The sum of total
flow time, total tardiness, total earliness, and total late work is the topic under discussion. With an
arbitrary release date, This paper offers a theoretical analysis, discussion, and proofs for a number
of special instances that apply to our topic.
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1. Introduction

This article describes the challenge of scheduling (n) tasks on a single machine with several
performance measurements and a release date with the goal of reducing the sum total flow time, total
tardiness, total earliness, and total late work. This problem is represented by 1/rj/

∑n
j=1 (F J + T J+

EJ + V J), from used frot. 3-filed α/β/γ by Graham et al [12].
Various investigations that were introduced in the early years of the discovery of the theory of

scheduling focused on a single performance measuring criterion. But because of the increasing role of
scheduling theory in the decision-making process in different fields for the real-world environments,
whether in the field of industrial production or service, which often require more than one criterion
to measure the quality of performance [8]. In addition to the spread of production, philosophy
was timely which is referred to by (just-in-time (JIT)), which is based on an idea both earliness
and tardiness are can be detrimental, for example, tardiness causes loss of customers or delayed
payments. while earliness causes inventory carrying cost and insurance and so on [3]. These and
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other reasons have attracted researchers attention to scheduling problems with multiple criteria (two
criteria or more). In this paper, we examine the problem of scheduling with four criteria (referred
to above) for measuring performance with the release time, and to the best of our knowledge, this
problem is not studied before. Before talking about our problem (P), we find it necessary to present
some research from the literature which included machine scheduling problems with one or more of
the performance criteria contained in our problem.

The time requiled for completion

There has been much research done on this criterion in the literature For 1/rj/
∑

Cj is NP- hard
in the strong sense by Lenstra, Rinnooy Kan and Bruker [14]. The ”shortest- processing- time (SPT)-
rule” of smith was used to address this problem with an equal release date. Also, the problem 1/rj,
pmtn /

∑
Cj is amenable to resolution via the ”shortest remaining processing- time (SRPT)-rule” of

Schrage [20]. Chandra’s ”dominance rules (DR)” play a significant role in several branch and bound
algorithms for the issue 1/rj/

∑
Cj [7, 11]. For such issue, Ahmadi and Bghchi [2]. Display that

the lower bound which is symbolized by (SRPTLB) obtained by using the (SRPT)- rule to solve
the problem 1/ rj, put /

∑
Cj best (LB) in comparison other know bounds, also, see [9]. Uses this

(SRPT-LB) in (B&B) algorithm that is effective in solving problems, when n ≤ 100 jobs.

The time of tardiness

The second one of the most significant requirements in practice is to keep the overall amount of
tardiness to a bare minimum. Rinnooy proved that the problem of 1/rj/

∑
Tj is NP- difficult in the

strict sense [19]. The (BAB) algorithm is proposed, and several dominant qualities are demonstrated.
According to Schrage [20],(LB) is dependent on the construction of the timetable for which the jobs
are scheduled in accordance with the (SRPT)-rule (by resting the issue under the assumption that the
jobs are preemptive). When n ≤ 260 tasks were involved, the suggested method made a significant
contribution to issue solving. A(B& B) method with new lower limits (NLB) was presented, which
was based on the improved (LB) of Chu [9]. In addition, several well-known dominance characteristics
were generalized in order to address the 1/rj/

∑
Tj issue. The number of instances handled by this

technique is around 500 jobs.

The beginning of time

Early arrival is one of the scheduling objectives that few researchers have studied since for long
years academics focused on single-criterion regular performance measures (i.e. no reducing in Cj for
all j ). Most studies that use punctuality as an optimality criterion also include a component of
tardiness. Sidney [21] published the first research on earliness and tardiness (E/T) fines.

Who invented a polynomial method to reduce the maximum of (E/T) in a single machine prob-
lem? Mahnam and Ghasem presented one of the most current investigations in recent years [15]. Who
studied this problem 1/rj/ Emax + Tmax ·A(B& B) algorithm is proposed, the algorithm extensively
uses efficient dominance rules. In the (B&B) algorithm, a (LB), is obtained by relaxing the assump-
tion of the non-preemption, and divided the problem into two sub-problems of (1/rj, pmtn /Tmax)
and (1/rj, pmtn /Emax) . The two problems are then resolved by applying some procedures derived
from the two rules, (EDD) and (MST). Computational experiments showed the efficiency of the
proposed procedure of solving problems with up to 1000 jobs.
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The lateness of the work

Processed after the due date, as shown by (Vj). Initially, Blazewicz called this ”information loss”
[5]. The word was proposed as (Total late work ). For the problem 1/pmtn/

∑
Vj, the researchers

displayed that the minimum (1//
∑

Vj) ≤ [(Tmax) for the (EDD)-rule sequence ]. Potts and Van
Wassenhove [17, 18] have determined that the issue 1//

∑
Vj is NP-hard. Kethley and Bahram are

two of the most talented in machine scheduling.
In this study, we took into account 1//

∑
WjVj the whole weighted late work under the assump-

tion that all jobs arrived simultaneously (i.e., the release date rj = 0 for all jobs ) and calculated
the total weighted late work. Potts and Van Wassenhove [17, 18] developed a more broad version
of the function than the formula they used. Abdul Razaq et al [1] investigated the 1/rj/

∑
WjVj

problem with mismatched release dates. In order to solve this problem, various specific instances
were proofed, as well as a branch and bound a method with as many as 30 tasks was used to solve
the problem. In addition, five local search strategies to address such issues were used, and their
performance was tested with up to 60000 tasks, which demonstrated that this problem is NP-hard
to solve.

The unit penalty

Moore [16] provides an example of the 1//
∑

Uj. The study was one of the first to explore
scheduling in order to reduce this difficulty, using a method known as the Moor Algorithm (also
known as Hudgson’s Algorithm) that handled optimally solving the problem. With release dates,
the problem 1/rj/

∑
Uj is strongly −NP− hard by Lenstra et al [14]. Dauzere [10] studied this

1/rj/
∑

Uj problem, and determined a lower bound based on relaxation of a ”Mixed-Integer- Linear-
Programming” formulation presented a heuristic method for problem resolution. Up to 50 tasks have
been evaluated on a wide range of issues. When compared to the lower limit, the proposed method
was shown to be more efficient. To solved this 1/rj/

∑
Uj problem, who suggesting (B&B) algorithm,

based on lower bounds on a ”Lagrangian relaxation”. With the use of these strategies, they were
able to solve optimality instances with up to 200 tasks using dominance criteria [6]. The current
investigation displayed how good-lower and upper bounds on quality that can be calculated in relation
to the problem 1/rj/

∑
Uj, using an original mathematical integer programming formulation. Up to

160 jobs might be saved as a result of the proposed method’s evaluation. Al-Zuwaini and Mohanned
[4] investigated the problem 1/rj/

∑
(Fj + Uj), and presented a (B&B) algorithm, and to solve

this problem, apply some dominance rules, finding lower bound by using (SPT ) - rule & Moor’s
algorithm. The lower limitation was shown to be useful in limiting the search in cases with up to 40
jobs.

2. The formulation in mathematics

The problem (P) regarded in the present study is to schedule a set N of n jobs, N = {1, . . . , n}
on an one − machine. Each job, j ∈ N has integer processed time pj, a release date rj, and due
date dj. Given a schedule σ = (1, . . . , n), the flow time of job j,Fj can be define as Fj = Cj − rj
where Cj be completion time for job j, given by relationship : C1 = r1 + p1, Cj = max {rj, Cj}+ pj
for j = 2, . . . , n The tardiness of job j is referred to by Tj = max {Cj − dj, 0}, and earliness by
Ej = max {dj− Cj, 0}

The late work of job j given by Vj = min{Tj, pj}. Let δ be a collection of all conceivable answers,
and σ is a schedule in δ. The mathematical formulation of our issue (P ) is as follows:
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M = MinF (σ) =

Minσ∈δ

{∑n
j=1

(
Cσ(j) + Tσ(j) + Eσ(j) +Vσ(j)

)}
Subject to:
Cg(1) = rσ(1) + pσ(1)
Cq(j) = Max {rj, Cj−1}+ pj j = 2, . . . , n
Tg(j) = Max

{
Cσ(j) − dσ(j), 0

}
j = 1, . . . , n

Eg(j) = Max
{
dσ(j) − Cσ(j), 0

}
j = 1, . . . , n

Vσ(j) = Min
{
Tσ(j), pσ(j)

}
j = 1, . . . , n


..(P )

This task’s goal is to identify a processing order σ = (σ(1), . . . , σ(n)) for the problem (P ) that
minimizes t he sum of all flow times, all lateness, all earliness, all lateness, all tardiest, all tardy
workers, and all late work.

3. Problem (P) decomposition

To simplify the problems structure, (P ), it may be divided into two subproblems (P1) and (P2)
as follows:

m1 = Minσ∈δ

{∑n
j=1

(
Cσ(j) + Tσ(j) + Eσ(j)

)}
Subject to:
Cσ(1) = rσ(1) + pσ(1)
Cσ(j) = Max

{
rσ(j), Cσ(0−1)}

}
+ pσ(j) j = 2, . . . , n

Tσ(j) = Max
{
Cσ(j) − dσ(j), 0

}
j = 1, . . . , n

Eg(j) = Max
{
dσ(j) − Cσ(j), 0

}
j = 1, . . . , n


..(P )

m2 = Minσ∈δ

(∑n
j=1Vσ(j)

)
Subject to:
Tσ(j) ≥ 0 j = 1, . . . , n
pQ(j) > 0 j = 1, . . . , n
Vg(j) = Min

{
Tg(j), pα(j)

}
j = 1, . . . , n


..(P )

4. Special cases (SC)

A special case (SC) is defined for scheduling problems as obtaining an ideal schedule (optimal
solution) without utilizing either the B&B approach or the differential programming methodology.
Two (SC) of our problem’s (P) solutions are shown in this part. They are as follows:

Case 1. Suppose that in a schedule S, the condition Cj = dj ∀ is met, and the
preemptive option is permitted. Then S is provided an optimum solution to the issue.

1/rj, pmtn/
n∑

j=1

(Cj + Tj + Ej + Vj)

Proof . Since Cj = dj∀j in S, then Tj = Ej = Vj = 0, then the problem P with preemptive reduced
to 1/rj, pmtn/

∑
Cj, but this problem solved in SRPT rule, then S given an optimal solution for

the problem

1/rj, pmtn/

n∑
j=1

(Cj + Tj + Ej +Vj) .
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Case (2). If the SPT schedule rj = r ∀j and the just-in-time (IIT) requirement are met, then
SPT will provide an optimum solution for the problem P . □
Proof . From (JIT ) we get Cj = dj and Tj = Ej = Vj = 0,∀j then the problem H reduced to
1/r/

∑n
j=1Cj, while the SPT rule was able to resolve this issue. As a result, SPT provides an optimum

solution to the issue P. □

5. Dominance-rules(DR)

Dominance Rules (DR) are rules that indicate whether a node in a search tree can be removed
before its lower bound (LB) is determined, which helps to decrease the amount of search space
required. (DR) are clearly more effective when a node can be deleted that has (LB) that is smaller
than the best solution, as seen in the following example.Let us examine two partial schedules of the
remaining S = (σ, i, j, σ′) and S ′ = (σ, j, i, σ′) where I and j are two integers representing the number
of jobs remaining in the schedule. Let t=

∑
k∈σ, pk be the completion time of, with ri = rj = r, di ≤ dj,

and pi ≤ pj being the initial and final positions, respectively.
Assume that job I is scheduled at time t and that Fi = Ci(t) + Ti(t) + Ei(t)+ Vi(t) is the total

completion time, tardiness, earliness, number of tardy jobs, and late work of job I and that if I comes
before j and their processing begins at time t. In order to express the new dominant qualities, the
interchange function ∆ij(t) is utilized. This function calculates the cost of interchanging two nearby
jobs, I and j, whose processing begins at the same time as time t.

∆ij(t) = Fij(t)−Fji(t).

Keep in mind that this cost ∆ij(t) is not dependent on the order in which the jobs are organized in
σ and σ′, but rather dependent on the start time to f the pair, and that:

1. If ∆ij(t) < 0 then should precedes j at time t.

2. If ∆ij(t) > 0 then j should precedes i at time t.

3. If ∆ij(t) = 0 then it is no matter to schedule i or j first.

First: We can categorize the situation into the following categories if r ≤ t is true.

Case 1. If di ≤ t+ pi, dj ≤ t+ pj (i.e. both the jobs i, j are always tardy ).
Proof . If we prove that S dominates S ′, we just need to display that (∆ij = Fij . Because jobs I
and j are both late, Ei = Ej = 0, V i = pi, and V j = pj, and now, let us assume that Ei = Ej =
0, Vi = pi, Vj = pj

∗ Fij = [(t + pi)− r + (t + pi − di) + 0 + pi + (t + pi + pj)− r + (t+

pi + pj − dj) + 0 + pj] = 4t + 5pi + 3pj − di − dj − 2r . . . (a)

∗ F ′
ji = [(t + pj)− r + (t + pj − dj) + 0 + pj + (t + pj + pi)− r + (t+

pj + pi − di) + 0 + pi] = 4t + 3pi + 5pj − dj − di − 2r . . . .(b)

∆ij = (a)−(b) = 2pi−2pj ≤ 0, then job icomes before j□Case 2. If di ≤ t+pi, t+pj ≤ dj ≤ t+pi+pj
(i.e. the job i, is always tardy and the job j, is tardy if not scheduled first ).
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Proof . There is no job i thus Ei = 0, and Tj = 0, and if the first planned work j is delayed and
Vj = {0, Cj − dj} (i.e. j, is early or partial early).

∗ Fij = [(t + pi)− r + (t + pi − di) + 0 + pi + (t + pi + pj)− r + (t+

pi + pj − dj) + 0 + pj] = 4t + 5pi + 3pj − di − dj − 2r . . . (a)

∗ F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + (t + pj + pi)− r+

(t + pj + pi − di) + 0 + pi] = 2t + 3pi + 2pj + dj − di − 2r . . . (b)

(whenV j = 0)

∗ F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + (t + pj + dj) + (t + pj+

pi)− r + (t + pj + pi − di) + 0 + pi] = 3t + 3pi + 3pj − di − 2r . . . (c)

(whenV j = Cj − dj)

1- ∆ij = (a)− (b) = 2t+ 2pi + pj − 2dj > 0, then job j precedes i

2- ∆ij = (a)− (c) = t+ 2pi − dj > 0, then job j precedes i

□
Case 3. If di ≤ t + pi, t + pi + pj ≤ dj (i.e. the job i, is always tardy and the job j, is always

early ).
Proof . When a job is always late, Ei = 0; if the job is always early, Tj = 0, and Vj = 0 (i.e. j,
is early) Since the job i, is always tardy then Ei = 0 and if job j is always early, then Tj = 0, and
Vj = 0 (i.e. j, is early).
(*) when Vj = 0

∗ Fij = [(t + pi)− r + (t + pi − di) + 0 + pi + (t + pi + pj)− r + 0+

(dj − t− pi − pj) + 0 + 0] = 2t + 3pi − di + dj − 2r . . . .(a)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + (t + pj + pi)− r+

(t + pj + pi − di) + 0 + pi] = 2t + 3pi + 2pj + dj − di − 2r . . . ..(b)

∆ij = (a)− (b) = −2pj < 0h then must job i precede j.
(**) when V j = Cj − dj

∗ Fijij = [(t + pj)− r + 0 + (t + pj − dj) + 0 + pi + (t + pj + pi)−
r + 0 + (di − t− pj − pi) + 0 + t + pi + pj − dj [= 3t + 4pi + pj − di−
2r . . . .. (c)

∗ F ′
ji = [(t + pj)− r + 0 + (dj − t− pj)− r + 0 + (t + pj − dj) + (t−

pj − pi)− r (t + pj + pi − di) + 0 + pi [= 3t + 3pi − di − 2r . . . . . . (e)

∆ij = (c)− (e) = pi − 2pj ≤ 0, then job i precede j □
Case 4. If t + pi ≤ di ≤ dj ≤ t + pj (i.e.the jobj, is always tardy and the job i, ”is tardy if not

scheduled first ).
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Proof . Since the job j, is always tardy then Ej = 0 and if job i, scheduled first then Ti = 0, and
Vi = {0, Ci − di} (i.e. i, is early or partial early).
• (when Vi = 0 ).

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + 0 + (t + pi + pj)− r + (t+

pi + pj − dj) + 0 + pj] = 2t + 2pi + 3pj − dj + di − 2r . . . . . . (a).

• F ′
ji = [(t + pj)− r + (t + pj − dj) + 0 + pj + (t + pj + pi)− r + (t+

pj + pi − di) + 0 + pi] = 4t + 3pi + 5pj − dj − di − 2r . . . (b).

∆ij = (a)− (b) = −2t− pi − 2pj + 2di ≤ 0, then job i precede j.
• (when Vi = Ci − di).

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + (t + pi − di) + (t + pi + pj)−
r + (t + pi + pj − dj) + 0 + pj] = 3t + 3pi + 3pj − dj − 2r . . . (c)

• F ′
ji = [(t + pj)− r + (t + pj − dj) + 0 + pj + (t + pj + pi)− r + (t+

pj + pi − di) + 0 + pi] = 4t + 3pi + 5pj − dj − di − 2r . . . . . . (e).

∆ij = (c)− (e) = −t− 2pj + di − 1 ≤ 0, then job i precede j □
Case 5. If t + pi ≤ di, t + pj ≤ dj ≤ t + pi + pj (i.e. if they aren’t scheduled first, jobs I and j

will be late.).
Proof . • (when Vi = 0)

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + 0 + (t + pi + pj)− r + (t + pi+

pj − dj) + 0 + pj] = 2t + 2pi + 3pj − dj + di − 2r . . . . . . (a)

• (when Vj = 0)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + (t + pj + pi)− r + (t + pj+

pi − di) + 0 + pi] = 2t + 3pi + 2pj + dj − di + 1− 2r . . . (b)

∆ij = (a)− (b) = −pi + pj + 2di − 2dj > 0, then job j precede i.
• (when Vi = Ci − di)

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + (t + pi − di) + (t + pi + pj)− r+

(t + pi + pj − dj) + 0 + pj] = 3t + 3pi + 3pj − dj − 2r . . . (c)

• (when Vj = Cj − dj)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + (t + pj − dj) + (t + pj + pi)−
r + (t + pj + pi − di) + 0 + pi] = 3t + 3pi + 3pj − di − 2r . . . (e)

∆ij = (c)− (e) = −dj + di ≤ 0, then job i precede j.
• (when Vi = 0)

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + 0 + (t + pi + pj)− r + (t + pi

+pj − dj) + 0 + pj] = 2t+ 2pi + 3pj − dj + di − 2r . . . . . . (a′)



2082 Daowd, Chachan, Daway

• (whenVj = Cj − dj)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + (t + pj − dj) + (t + pj + pi)−
r + (t + pj + pi − di) + 0 + pi] = 3t + 3pi + 3pj − di − 2r . . . . . . (e′)

∆ij = (a′)− (e′) = −t− pi + 2di − dj > 0, then job j precede i.
• (when Vi = Ci − di)

Fij = [(t+ pi)− r + 0 + (di − t− pi) + 0 + (t+ pi − di) + (t+ pi + pj)−
r + (t+ pi + pj − dj) + 0 + pj] = 3t+ 3pi + 3pj − dj − 2r . . . (c′)

• (when Vj = 0)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + (t + pj + pi)− r + (t+

pj + pi − di) + 0 + pi] = 2t + 3pi + 2pj + dj − di − 2r . . . (b′)

∆ij = (c′)− (b′) = t+ pj + di − 2dj ≤ 0, then job i precede j □
Case 6. If t + pi ≤ di ≤ t + pi + pj ≤ dj(i.e.the job i, is tardy if not scheduled first, and j, is

always early).
Proof . • (when Vi, Vj = 0)

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + 0 + (t + pi + pj)− r + 0+

(dj − t− pi − pj) + 0 + 0] = di + dj − 2r . . . (a)

• (when Vj = 0)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + (t + pj + pi)− r + (t+

pj + pi − di) + 0 + pi] = 2t + 3pi + 2pj + dj − di − 2r . . . (b)

∆ij = (a)− (b) = −2t− 3pi − 2pj + 2di ≤ 0, then job i precede j.
• (when Vi = Ci − di, and Vj = Cj − dj)

Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + (t + pi − di) + (t + pi + pj)− r+

0 + (dj − t− pi − pj) + 0 + t + pi + pj − dj] = 2t + 2pi + pj − 2ri(c)i

• (when Vj = Cj − dj)

F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + (t + pj − dj) + (t + pj + pi)−
r + (t + pj + pi − di) + 0 + pi] = 3t + 3pi + 3pj − di − 2r . . . . . . (e)

∆ij = (c)− (e) = −t− pi − 2pj + di − 1 ≤ 0, then job i precede j □
Case 7. If t+ pi + pj ≤ di ≤ dj( i.e.both the jobs i, j are always early).

Proof . When Vi, Vj = 0

• Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + 0 + (t + pi + pj)− r + 0+

(dj − t− pi − pj) + 0 + 0] = di + dj − 2ri...(a)
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• F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + (t + pj + pi)− r + 0+

(di − t− pj − pi) + 0 + 0] = dj + di − 2ri...(b)

∆ij = (a)− (b) = 0, then scheduling i or j first is irrelevant.
When Vi = Ci − di, Vj = Cj − dj.

• Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + (t + pi − di) + (t + pi + pj)−
r + 0 + (dj − t− pi − pj) + 0 + (t + pi + pj − dj)] = 2t + 2pi + pj − 2r−i−(c)

• F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + (t + pj − dj) + (t + pj + pi)−

r + 0 + (di − t− pj − pi) + 0 + (t + pj + pi − di)] = 2t + pi + 2pj − 2r . . . (e)

∆ij = (c)− (e) = pi − pj ≤ 0, then job i comes before j.
When Vi = Ci − di, Vj = 0

• Fij = [(t + pi)− r + 0 + (di − t− pi) + 0 + (t + pi − di) + (t + pi + pj)−
r + 0 + (dj − t− pi − pj) + 0 + 0] = t + pi + dj − 2r . . . (n)

• F ′
ji = [(t + pj)− r + 0 + (dj − t− pj) + 0 + 0 + [(t + pj + pi)− r + 0+

(di − t− pj − pi) + 0 + (t + pj + pi − di) = t + pj + pi + dj − 2r...(m)

∆ij = (n)− (m) = −pj ≤ 0, then job i comes before j □
Second: If r > t, then we demonstrate that the theorem is correct in the same way as we did

earlier (integral).

Theorem 5.1. Jobs I and (j) are neighboring jobs in the problem (P) if ri = r, and di = d, for all
(i ∈ N), and if pi ≤ pj and dj = d, then job i should come before job (j) in at least one optimum
sequence for the problem (P). Proof. By re-using the same methods as previously, we can demonstrate
the validity of this theorem in the following situations:
First: r ≤ t :
Case 1: If d ≤ t+ pi ≤ t+ pj( i. e.both the jobs i, j are always tardy).

Proof . To display that S dominates S ′, it suffices to display that (∆ij = Fij(S)− Fji (S
′) ≤ 0) .

Since the jobs i and j are both tardy, then Ei = Ej = 0, Vi = pi, Vj = pj, Now, let

• Fij(S) = [(t + pi)− r + (t + pi − d) + 0 + pi + (t + pi + pj)− r + (t+

pi + pj − d) + 0 + pj] = 4t + 5pi + 3pj − 2d− 2r . . . (a)

• F ′
ji = [(t + pj)− r + (t + pj − d) + 0 + pj + (t + pj + pi)− r + (t + pj+

pi − d) + 0 + pi] = 4t + 3pi + 5pj − 2d− 2r . . . (b)

∆ij = (a)− (b) = 2pi − 2pj ≤ 0, then job i comes before j. □
Case 2. If d ≤ t+ pi, t+ pi+ pj ≤ d (i.e.the job i, is always tardy and the job j, is always early ).

Proof . Because job I is always late, Ei = 0; similarly, if job j is always on time, T j = 0, and
Vj = {0, Cj − dj} (i.e. j, is early or partial early).
(when Vj = 0 ).

• Fij = [(t + pi)− r + (t + pi − d) + 0 + pi + (t + pi + pj)− r + 0+

(d− t− pi − pj) + 0 + 0] = 2t + 3pi − 2r . . . (a)
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• F ′
ji = [(t + pj)− r + 0 + (d− t− pj) + 0 + 0 + (t + pj + pi)− r + (t+

pj + pi − d) + 0 + pi] = 2t+ 3pi + 2pj − 2r . . . (b)

∆ij = (a)− (b) = −2pj < 0. then job i precede j.
(when Vj = Cj − d)=

• Fij = [(t + pi)− r + (t + pi − d) + 0 + pi + (t + pi + pj) + 0+

(d− t− pi − pj)− r + 0 + t + pi + pj − d] = 3t + 4pi + pj − d− 2r . . . (c)

• F ′
ji = [(t + pj)− r + 0 + (d− t− pj) + 0 + (t + pj − d) + (t + pj + pi)−

r + (t + pj + pi − d) + 0 + pi] = 3t + 3pi + 3pj − d− 2r . . . (e)

∆ij = (c)− (e) = pi − 2pj ≤ 0, then job i precede j. □
Case 3. If t+ pi + pj ≤ d(i · e.both the jobs i, j are always early).

Proof . When Vi, Vj = 0

• Fij = [(t + pi)− r + 0 + (d− t− pi) + 0 + 0 + (t + pi + pj)− r + 0+

(d− t− pi − pj) + 0 + 0] = 2d− 2r . . . (a)

• F ′
ji = [(t + pj)− r + 0 + (d− t− pj) + 0 + 0 + (t + pj + pi)− r + 0+

(d− t− pj − pi) + 0 + 0] = 2d− 2r . . . (b)

∆ij = (a)− (b) = 0, then scheduling i or j first is irrelevant.
When Vi = Ci − d, Vj = Cj − d,

• Fij = [(t + pi)− r + 0 + (d− t− pi) + 0 + (t + pi − d) + (t + pi + pj)−
r + 0 + (d− t− pi − pj) + 0 + (t + pi + pj − d)] = 2t + 2pi + pj − 2ri . . . (c).

• F ′
ji = [(t + pj)− r + 0 + (d− t− pj) + 0 + (t + pj − d) + (t + pj + pi)−

r + 0 + (d− t− pj − pi) + 0 + (t + pj + pi − d)] = 2t + pi + 2pj − 2r . . . (e)

∆ij = (c)− (e) = pi − pj ≤ 0, then job i comes before j.
Second: If r > t, then we demonstrate that the theorem is correct in the same way as we did earlier
(integral). □

6. Conclusions and suggestions for future works

The researchers, in the current investigation, provided certain special cases (CS) for the problem,
as well as some dominoes’ rules for it (p). In further investigations, we recommend that we use
certain weights with each function of the presented issue and that we investigate the CS’s for each
of those functions. In addition, we must investigate the solution of issue (p), which is NP-hard,
by employing certain precise methods, such as the BAB method, as well as some heuristic and
metaheuristic approaches.
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