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Abstract

In this paper, we consider the problems of suboptimal control for a class of fractional-order optimal
control problems with multi-delay argument. The fractional derivative in these problems is in the
Caputo sense. To solve the problem, first by a suitable approximation, we replace the Caputo
derivative to integer order derivative. The optimal control law consists of an accurate linear feedback
term and a nonlinear compensation term which is the limit of an adjoint vector sequence, is obtained
by a sensitivity approach. The feed back term is determined by solving Riccati matrix differential
equation. By using a finite sum of the series, we can obtain a suboptimal control law. Finally,
numerical results are included to demonstrate the validity and applicability of the present technique.

Keywords: Delay optimal control problems, Fractional order, Riccati differential equation,
Caputo deriavitive.
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1. Introduction

The fractional calculus is more than 300 years old. The idea of differential order calculus a
fraction of the correct order differential calculus was taken at the request of Mr. Leibniz from the
hospital in 1965 to calculate the half-order derivative. In the last three decades, the applications of
fractional and integral calculus have grown significantly. This mathematical theory makes it possible
to describe the model more accurately than the classical method for real systems. The main reason
for using the correct order models was the lack of response method for fractional differential equations
(FDEs). Currently, there are many methods for approximating fractional derivatives and integrals,
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and fractional differential calculus can be used in many physical applications. Fractional order
differential calculus plays a very important role in the laws of physics, power electrical engineering,
control systems, robotics, biology, economics and many more [16, 39].

Fractional optimal control problems (FOCPs) are a subclass of optimal control problems (OCPs)
whose dynamics are described by FDEs. Recently, the applications of this equations have included
in various classes of FOCPs that refers to the minimization of a performance index subject to the
FDEs are used as the dynamic constraints [1]. With the emerging number of the applications of
FOCPs, the solution of these kind of problems has become an important topic for researchers. Using
necessary optimality conditions, the FOCP reduced to a system of FDEs so that by finding its
solution, one approximates the solutions of the original problem. A general formulation of FOCPs
was extended by Agrawal [2], where the necessary conditions of optimization are achieved with
the Caputo and Reimann-Liouvile derivatives. Since, it is difficult to obtain the exact solutions of
FOCPs, approximate and numerical methods are used extensively that can be seen in [1, 45].

Among dynamic systems, time-delay systems are very important. In many physical and biological
phenomena, the coefficient of variation in system variables depends on the past values of system
variables. This feature is called time delay. Delay is first discovered in biological systems and later in
many engineering systems, such as mechanical transmission lines, fluid transmission lines, grid control
systems, and metal smelting processes; see [8, 20, 26]. Time-delay is often a source of instability
and leads to poor control performance, which is why the persistent issue of time-delayed systems has
attracted much attention in recent research. Stabilizing time-delayed systems is also a complex issue
[10]. In the meantime, several techniques for time-delayed systems have been proposed. Of course, all
the existing articles in this field have designed control rules assuming that the exact amount of delay is
known, and the proposed control rules depend on the amount of delay. Optimal control of time-delay
systems is one of the most challenging mathematical problems in control theory. We briefly review
some resent papers that are relevant to the method developed in the current work for time-delay
optimal control problem. The method based on biortogonal cubic Hermit spline multiwavelets [30],
variational iteration method (VIM) [25], DARE solutions and suboptimal control of systems with
multiple input-output delays [13], method in the work of Basin [3], hybrid of block-pulse functions
and orthogonal Taylor series [6], composite Chebyshev finite difference method [22], semi-infinite
programming approach to nonlinear time delay optimal control problem (TDOCP) [17], adaptive
pseudospectral method [21], hybrid of block-pulse functions and Legendre polynomials [23, 24], the
Homotopy perturbation method [27], an iterior-point algorithm [40, 41], sliding mode control [37],
a novel neural network discrete-time optimal control [18] and a numerical approach based upon
Fibonacci wavelets and Petrov-Galerkin method [35].

The delay fractional optimal control problems (DFOCPs) are an extension form of fractional opti-
mal problems which at least one of their variables in the objective function or in the dynamic system
has the delay term. These problems appear in engineering, economics, power systems, transportation,
biological, electronics, manufacturing, chemical, and many other fields [42, 43]. In the recent years,
however, fewer articles in the delay fractional optimal control problems have been proposed such
as the Legendre operational technique is suggested by Bhrawy and Ezz-Eldien [5]. Effati et al. [7]
designed a Grunwald-Letnikov approximation for the fractional derivatives and the Euler-Lagrange
equation is used for finding its state and control variables. Binazadeh and Yousefi [4] designed a
cascade-control structure using fractional-order controllers based on the fractional-order sliding-mode
controller. Moradi et al. [31] presented a numerical approach based on the Chelyshkov wavelets and
the operational matrices for DOCPs with fractional order. Kheyrinataj and Nazemi [15] proposed an
artificial inteligence approach using Müntz–Legendre neural network construction for solving delay
optimal control problems of fractional order with equality and inequality constraints. Hosseinpour
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et al. [11] solved the DOCPs of fractional order by using a Müntz–Legendre spectral collocation
method. moreover, Nemati et al. [32] proposed Legendre wavelet collocation method combined with
the Gauss–Jacobi quadrature for solving fractional delay-type integro-differential equations. Yousefi
and Binazadeh [44] solved the DFOC by using a delay-independent sliding mode control.

Motivated by the above discussions, in this paper, we consider a particular numerical scheme
based on sensitivity approach which can be used to solve fractional-order optimal control problems
with multi-delay argument, and develop an approximation algorithm to obtain the optimal control
law. The optimal control law obtained is composed of a state feedback term and a compensation
term. Using the adjoint vector solution for the finite-step iteration, a suboptimal control law can
be obtained. The method is especially suitable for the synthesis of small time-delay systems. The
arithmetic of solving the suboptimal control law is given. The simulation results show the effectiveness
of our method.

Based on the above review, the structure of this paper is arranged as follows: In Section 2, some
important definitions and necessary preliminaries of fractional derivatives are described. In Section
3, we introduce problem statement of DFOCP and transform the DFOCP to a DOCP. In this section,
we replace the Caputo derivative to integer order derivative with the help of a good approximation
and state the necessary optimality conditions of the obtained problem. The solution of the optimal
control problem is given in Section 4, including the optimal control law design and an implementation
algorithm. In Section 5 the numerical examples are simulated to show the reasonableness of our
theory and demonstrate the performance of our network. Finally, we end this paper with conclusions
in Section 6.

2. Fractional derivatives and integrals

In this section, we recall some basic definitions and propertied of fractional calculus theory, which
will be used in this paper. The more basic and detailed information can be obtained from [1, 36].
Let f : [a, b]→ R be a function, α > 0 is a real number, and m = [α] + 1.

Definition 2.1. The fractional left and right Riemann-Lioville integrals of order α are defined as
follows, respectively:

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

(t− z)α−1f(z)dz, t > t0,

tI
α
tf
f(t) =

1

Γ(α)

∫ tf

t

(z − t)α−1f(z)dz, t < tf ,

(2.1)

where Γ is the Euler-Gamma function, that is

Γ(z) =

∫ ∞
0

tz−1e−tdt, z > 0. (2.2)

Definition 2.2. The left Caputo fractional derivative (LCFD) and the right Caputo fractional
derivative (RCFD) of f(t) of order α, when it exists, are defined as:

C
t0
Dα
t f(t) =t0 I

m−α
t f(t) =

1

Γ(m− α)

∫ t

t0

(t− z)m−α−1fm(z)dz, (2.3)

C
t D

α
tf
f(t) = (−1)mtI

m−α
tf

f(t) =
(−1)m

Γ(m− α)

∫ tf

t

(z − t)m−α−1fm(z)dz, (2.4)

where f (m)(t) and Dmf(t) are the usual m-th derivative of f(t).
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Definition 2.3. The fractional integral and Caputo fractional derivative of tk are given by

t0I
α
t t

k =
Γ(k + 1)

Γ(α + k + 1)
tα+k, k ∈ N ∪ {0}, t > 0, (2.5)

and if 0 ≤ m− 1 < α ≤ m < k + 1, k > 0 then we have

C
t0
Dα
t t
k =

Γ(k + 1)

Γ(k − α + 1)
tk−α, t > 0. (2.6)

The following theorem, helps us to apply a fractional integral over a fractional derivative.

Theorem 2.4. Let α > 0, m = [α] + 1 and f : [a, b]→ R be a function, then

t0I
α
t [Ct0D

α
t f(t)] = f(t)−

m−1∑
k=0

f (k)(t0)

k!
(t− t0)k, (2.7)

tI
α
tf

[Ct D
α
tf
f(t)] = f(t)−

m−1∑
k=0

(−1)kf (k)(tf )

k!
(tf − t)k, (2.8)

for 0 < α < 1 we have the following properties:

t0I
α
t [Ct0D

α
t f(t)] = f(t)− f(t0), (2.9)

tI
α
tf

[Ct D
α
tf
f(t)] = f(t)− f(tf ). (2.10)

In [45, 36, 33, 34] a good approximation is obtained without the requirement of such higher-order
smoothness on the admissible functions. The method can be explained for left Riemann-Liouville
fractional derivatives in the following way

t0D
α
t x(t) = A(α)(t− t0)−αx(t) +B(α)(t− t0)1−αẋ(t)−

∞∑
p=2

C(α, p)(t− t0)1−p−αvp(t), (2.11)

where vp(t) is defined as the solution of the system{
v̇p(t) = (1− p)(t− t0)p−2x(t),

vp(t0) = 0,

for p = 2, 3, · · · , and A(α), B(α) and C(α, p) are given by

A(α) =
1

Γ(1− α)

[
1 +

∞∑
p=2

Γ(p− 1 + α)

Γ(α)(p− 1)!

]
,

B(α) =
1

Γ(2− α)

[
1 +

∞∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!

]
,

C(α, p) =
Γ(p− 1 + α)

Γ(2− α)Γ(α− 1)(p− 1)!
.

For computational purposes, we truncate the sum and consider the finite expansion:

t0D
α
t x(t) = A(α,N)(t− t0)−αx(t) +B(α,N)(t− t0)1−αẋ(t)−

N∑
p=2

C(α, p)(t− t0)1−p−αvp(t), (2.12)
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where A(α,N) and B(α,N) are now defined by

A(α,N) =
1

Γ(1− α)

[
1 +

N∑
p=2

Γ(p− 1 + α)

Γ(α)(p− 1)!

]
,

B(α,N) =
1

Γ(2− α)

[
1 +

N∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!

]
.

See [33, 34] for proofs and other details.

3. Problem statement

Consider the linear fractional time-varying multi-delay system:
C
t0
Dα
t x(t) = A(t)x(t) + A1(t)x(t− τx) +B(t)u(t) +B1(t)u(t− τu),

x(t) = φ(t), t0 − τx 6 t 6 t0,

u(t) = ψ(t), t0 − τu 6 t 6 t0,

(3.1)

with the following cost functional

J =
1

2
xT (tf )H(tf )x(tf ) +

1

2

∫ tf

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt, (3.2)

where x(t) ∈ Rn and u(t) ∈ Rm, are the state and control vectors respectively; A(t), A1(t), B(t) and
B1(t) are real, piecewise continuous matrices of appropriate dimensions defined on the appropriate
intervals; φ(t) and ψ(t) are specified initial functions; τx and τu are constant positive scalars; the
matrix H(tf ) ∈ Rn×n is symmetric positive semi-definite, Q(t) ∈ Rn×n and R(t) ∈ Rm×m are chosen
to be positive semi-definite and positive definite matrices respectively.

Here, it is assumed that the system (3.1) is controllable and assume that τu < τx. The aim is
to find a control signal u(t) which the cost functional (3.2) is minimized while the dynamic equality
constraint (3.1) is satisfied.
Let us now use the approximation given by (2.12). The system in (3.1) becomes:

C
t0
Dα
t x(t) = A(α,N)(t− t0)−αx(t) +B(α,N)(t− t0)1−αẋ(t)

−
N∑
p=2

C(α, p)(t− t0)1−p−αvp(t)− x(t0)(t−t0)−α

Γ(1−α)

= A(t)x(t) + A1(t)x(t− τx) +B(t)u(t) +B1(t)u(t− τu),
v̇p(t) = (1− p)(t− t0)p−2x(t), p = 2, 3, · · · , N,
x(t) = φ(t), t0 − τx 6 t 6 t0,

u(t) = ψ(t), t0 − τu 6 t 6 t0,

vp(t0) = 0, p = 2, 3, · · · , N.

(3.3)
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By sorting the dynamic system (3.3), we have

ẋ(t) =
[
A(t)−A(α,N)(t−t0)−α

B(α,N)(t−t0)1−α

]
x(t) +

[
A1(t)

B(α,N)(t−t0)1−α

]
x(t− τx)

+
[

B(t)
B(α,N)(t−t0)1−α

]
u(t) +

[
B1(t)

B(α,N)(t−t0)1−α

]
u(t− τu)

+
N∑
p=2

[
C(α,p)(t−t0)1−p−α

B(α,N)(t−t0)1−α

]
vp(t) + x(t0)(t−t0)−α

Γ(1−α)B(α,N)(t−t0)1−α
,

v̇p(t) = (1− p)(t− t0)p−2x(t), p = 2, 3, · · · , N,
x(t) = φ(t), t0 − τx 6 t 6 t0,

u(t) = ψ(t), t0 − τu 6 t 6 t0,

vp(t0) = 0, p = 2, 3, · · · , N.

(3.4)

Below, as a result, we get the initial value of vp(t) = φp(t) in the interval t ∈ [t0 − τx, t0].

Corollary 3.1. If vp(t) = φp(t) in t ∈ [t0 − τx, t0] then it can be shown that

φp(t) =
vp(t0 − τx)

τx
(t0 − t). (3.5)

Proof . Let’s assume first

vp(t) = φp(t); t0 − τx 6 t 6 t0,

Because the following relationships are established:

x(t) = φ(t); t0 − τx 6 t 6 t0,

v̇(t) = (1− p)(t− t0)p−2x(t); p = 2, 3, · · · , N,
vp(t0) = 0; p = 2, 3, · · · , N.

So, we have ∫ t

t0

v̇(s)ds = vp(t)− vp(t0) =

∫ t

t0

(1− p)(s− t0)p−2x(s)ds

=⇒ vp(t) =

∫ t

t0

(1− p)(s− t0)p−2x(s)ds. (3.6)

Hence, it can be written

vp(t0 − τx) =

∫ t0−τx

t0

(1− p)(s− t0)p−2x(s)ds

= −
∫ t0

t0−τx
(1− p)(s− t0)p−2x(s)ds

= −
∫ t0

t0−τx
(1− p)(s− t0)p−2φ(s)ds,

On the other hand, because vp(t0) and vp(t0 − τx) are known, so φp(t) can be considered as follows:

φp(t) =
vp(t0 − τx)

τx
(t0 − t).
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� In the following, according to the dynamic system (3.4), we construct a new time-varying multi-
delayed optimal control problems as follows:

minimize J̄ =
1

2
XT (tf )H̄(tf )X(tf ) +

1

2

∫ tf

t0

(
XT (t)Q̄(t)X(t) + uT (t)R(t)u(t)

)
dt, (3.7)

subject to:
Ẋ(t) = Ā(t)X(t) + Ā1(t)X(t− τx) + B̄(t)u(t) + B̄1(t)u(t− τu) + Ξ(t),

X(t) = φ̄(t); t0 − τx 6 t 6 t0,

u(t) = ψ(t); t0 − τu 6 t 6 t0,

(3.8)

where

Ā(t) =


A(t)−A(α,N)(t−t0)−α

B(α,N)(t−t0)1−α
C(α,2)(t−t0)1−2−α

B(α,N)(t−t0)1−α
· · · C(α,N)(t−t0)1−N−α

B(α,N)(t−t0)1−α

(1− 2)(t− t0)2−2 0 · · · 0
...

...
...

(1−N)(t− t0)2−N 0 · · · 0

 ,

Ā1(t) =


A1(t)

B(α,N)(t−t0)1−α
0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

, B̄(t) =


B(t)

B(α,N)(t−t0)1−α

0
...
0

, B̄1(t) =


B1(t)

B(α,N)(t−t0)1−α

0
...
0

 ,

Ξ(t) =


x(t0)

Γ(1−α)B(α,N)(t−t0)

0
...
0

, X(t) =


x(t)
v2(t)

...
vN(t)

 =

[
x(t)
vp(t)

]
, φ̄(t) =

[
φ(t)
φp(t)

]
,

H̄(t) =


H(tf ) 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

, Q̄(t) =


Q(t) 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

 , (3.9)

In order to find the optimal control, a Hamiltonian function for the problem (3.7)-(3.9) is given by

H(X, u, λ, t) =
1

2
XT (t)Q̄(t)X(t) +

1

2
uT (t)R(t)u(t) (3.10)

+ λT (t)
[
Ā(t)X(t) + Ā1(t)X(t− τx) + B̄(t)u(t) + B̄1(t)u(t− τu) + Ξ(t)

]
,

where λ(t) ∈ Rn is the vector of the Lagrange multiplier. According to the necessary conditions
for optimality, we can obtain the following nonlinear two point boundary value problem (TPBVP)
[14, 29]:

Ẋ(t) =


Ā(t)X(t) + Ā1(t)X(t− τx)− (S1(t) + S2(t))λ(t)

−S3(t)λ(t+ τu)− S4(t)λ(t− τu) + Ξ(t), t0 6 t < tf − τu,
Ā(t)X(t) + Ā1(t)X(t− τx)− S1(t)λ(t)

−S4(t)λ(t− τu) + Ξ(t), tf − τu 6 t 6 tf ,

(3.11)
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and

λ̇(t) =

{
−Q̄(t)X(t)− ĀT (t)λ(t)− ĀT1 (t+ τx)λ(t+ τx), t0 6 t < tf − τx,
−Q̄(t)X(t)− ĀT (t)λ(t), tf − τx 6 t 6 tf ,

(3.12)

with initial conditions 
X(t) = φ̄(t); t0 − τx 6 t 6 t0,

u(t) = ψ(t); t0 − τu 6 t 6 t0,

λ(tf ) = H̄(tf )X(tf ),

(3.13)

where

S1(t) = B̄(t)R−1(t)B̄T (t),

S2(t) = B̄1(t)R−1(t− τu)B̄T
1 (t),

S3(t) = B̄(t)R−1(t)B̄T
1 (t+ τu),

S4(t) = B̄1(t)R−1(t− τu)B̄T (t− τu).

Hence, the optimal control law is obtained by:

u(t) =

{
−R−1(t)B̄T (t)λ(t)−R−1(t)B̄T

1 (t+ τu)λ(t+ τu), t0 6 t < tf − τu,
−R−1(t)B̄T (t)λ(t), tf − τu 6 t 6 tf .

(3.14)

Note that, relations (3.11)-(3.13) form a nonlinear TPBVP with time-varying coefficient involving
both delay and advance terms. The exact solution of this problem is, in general, extremely difficult,
if not impossible. Therefore, it is necessary to find approximation approaches for solving the optimal
control problem. We propose an sensitivity approach in this paper.

4. Design of suboptimal control

First, we introduce a sensitivity parameter ε [12, 19, 38] in TPBVP (3.11)-(3.13) and obtain the
following TPBVP including sensitivity coefficient ε

Ẋ(t, ε) =


Ā(t)X(t, ε) + εĀ1(t)X(t− τx, ε)− (S1(t) + ε2S2(t))λ(t, ε)

−εS3(t)λ(t+ τu, ε)− εS4(t)λ(t− τu, ε) + Ξ(t), t0 6 t < tf − τu,
Ā(t)X(t, ε) + εĀ1(t)X(t− τx, ε)− S1(t)λ(t, ε)

−εS4(t)λ(t− τu, ε) + Ξ(t), tf − τu 6 t 6 tf ,

λ̇(t, ε) =

{
−Q̄(t)X(t, ε)− ĀT (t)λ(t, ε)− εĀT1 (t+ τx)λ(t+ τx, ε), t0 6 t < tf − τx,
−Q̄(t)X(t, ε)− ĀT (t)λ(t, ε), tf − τx 6 t 6 tf ,

X(t, ε) = φ̄(t), t0 − τx 6 t ≤ t0,

λ(tf , ε) = H̄(tf )X(tf , ε).

(4.1)

The control law u(t) concluding sensitivity coefficient ε can be expressed as

u(t, ε) =

{
−R−1(t)B̄T (t)λ(t, ε)− εR−1(t)B̄T

1 (t+ τu)λ(t+ τu, ε), t0 6 t < tf − τu,
−R−1(t)B̄T (t)λ(t, ε), tf − τu 6 t 6 tf .

(4.2)
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where 0 ≤ ε ≤ 1 is a scalar. In the following discussion, we always assume that the solution of TPBVP
(4.1) is uniquely existed, and u(t, ε), x(t, ε) and λ(t, ε) with parameter ε are infinitely differentiable
with respect to the ε around ε = 0, and their Maclaurin series expansions are convergent at ε = 1;
obviously when ε = 1, TPBVP (4.1) and control law (4.2) are equivalent to original problem in (3.11)
and (3.14), respectively.
According to this assumption, we can write:

u(t, ε) =
∞∑
i=0

εiu(i)(t)
i!

,

X(t, ε) =
∞∑
i=0

εiX(i)(t)
i!

,

λ(t, ε) =
∞∑
i=0

εiλ(i)(t)
i!

,

(4.3)

where the superscript i denotes ith-order differentiation with respect to ε evaluated at ε = 0. Hence,
by substituting (4.3) into (4.1) and equating terms with the same order of ε on each side we have:

Ẋ(0)(t) = Ā(t)X(0)(t)− S1(t)λ(0)(t) + Ξ(t), t0 6 t < tf ,

λ̇(0)(t) = −Q̄X(0)(t)− ĀT (t)λ(0)(t), t0 ≤ t ≤≤ tf ,

X(0)(t) = φ̄(t),

λ(0)(tf ) = H̄(tf )X(tf ),

(4.4)

and

Ẋ(i)(t) =


Ā(t)X(i)(t) + Ā1(t)X(i−1)(t− τx)− S1(t)λ(i)(t)

−S3(t)λ(i−1)(t+ τu)− S4(t)λ(i−1)(t− τu) + Ξ(t), t0 6 t < tf − τu,
Ā(t)X(i)(t) + Ā1(t)X(i−1)(t− τx)− S1(t)λ(i)(t)

−S4(t)λ(i−1)(t− τu) + Ξ(t), tf − τu 6 t 6 tf ,

λ̇(i)(t) =

{
−Q̄(t)X(i)(t)− ĀT (t)λ(i)(t)− ĀT1 (t+ τx)λ

(i−1)(t+ τx), t0 6 t < tf − τx,
−Q̄(t)X(i)(t)− ĀT (t)λ(i)(t), tf − τx 6 t 6 tf ,

X(i)(t) = [0, 0, · · · , 0]T ,

λ(i)(tf ) = [0, 0, · · · , 0]T ,

(4.5)

for i = 1, 2, · · · . Also, from (4.2) of u(t, ε) and the infinite series of u(t) in (4.3), we obtain the
i-th-order control terms of the optimal control

u(i)(t) =

{
−R−1(t)B̄T (t)λ(i)(t)−R−1(t)B̄T

1 (t+ τu)λ
(i−1)(t+ τu), t0 6 t < tf − τu,

−R−1(t)B̄T (t)λ(i)(t), tf − τu 6 t 6 tf .
(4.6)

It should be noted that in (4.5) X(i−1)(t− τx) and λ(i−1)(t+ τx) are known from previous iteration so
(4.4) and (4.5) is a sequence of inhomogeneous linear TPBVPs without time-delay and time-advance
terms in each iteration. After determining X(i)(t) and λ(i)(t) for i ≥ 0, X(t, ε) and λ(t, ε) can be
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determined as the solution of TPBVP (4.1) by using (4.2).
If we stop the procedure at this step, by using (3.14) and (4.3) we can find the optimal control law
which is an open loop control; but for obtaining a close loop control in the form of state feedback,
we continue our discussion by assuming that ith-order terms of λ(t) in (4.5) be

λ(i)(t) = P (t)X(i)(t) + gi(t), (4.7)

where P (t) ∈ RN×N is unknown positive-semidefinite function matrix, gi(t) ∈ RN is the adjoint
vector.
Computing the derivatives to the both sides with respect to t of equation (4.7), we have

λ̇(i)(t) = Ṗ (t)X(i)(t) + P (t)Ẋ(i)(t) + ġi(t), t0 6 t 6 tf

=
[
Ṗ (t) + P (t)Ā(t)− P (t)S1(t)P (t)

]
X(i)(t)− P (t)S1(t)gi(t)

+ P (t)Ā1(t)X(i−1)(t− τx) + P (t)Fi(t) + ġi(t), (4.8)

where

Fi(t) =


−S3(t)

[
P (t+ τu)X

(i−1)(t+ τu) + gi−1(t+ τu)
]

−S4(t)
[
P (t− τu)X(i−1)(t− τu) + gi−1(t− τu)

]
+ Ξ(t), t0 6 t < tf − τu,

−S4(t)
[
P (t− τu)X(i−1)(t− τu) + gi−1(t− τu)

]
+ Ξ(t), tf − τu 6 t 6 tf .

(4.9)

Putting (4.7) into equation (4.5), we get

λ̇(i)(t) =


−Q̄(t)X(i)(t)− ĀT (t)P (t)X(i)(t)− ĀT (t)gi(t)

−ĀT1 (t+ τx)[P (t+ τx)X
(i−1)(t+ τx) + gi−1(t+ τx)], t0 6 t < tf − τx,

−Q̄(t)X(i)(t)− ĀT (t)P (t)X(i)(t)− ĀT (t)gi(t), tf − τx 6 t 6 tf .

(4.10)

Thus, from (4.8) and (4.10), we can obtain the following Riccati matrix differential equation:

− Ṗ (t) = P (t)Ā(t) + ĀT (t)P (t)− P (t)S1(t)P (t) + Q̄(t), P (tf ) = H̄(tf ), (4.11)

and adjoint vector differential equation the following:

ġi(t) = −
[
Ā(t)− S1(t)P (t)

]T
gi(t)− P (t)Ā1(t)X(i−1)(t− τx) +Gi(t), gi(tf ) = 0, (4.12)

where

Gi(t) =



−ĀT1 (t+ τx)
[
P (t+ τx)X

(i−1)(t+ τx) + gi−1(t+ τx)
]

+P (t)S3(t)
[
P (t+ τu)X

(i−1)(t+ τu) + gi−1(t+ τu)
]

+P (t)S4(t)
[
P (t− τu)X(i−1)(t− τu) + gi−1(t− τu)

]
, t0 6 t < tf − τx,

P (t)S3(t)
[
P (t+ τu)X

(i−1)(t+ τu) + gi−1(t+ τu)
]

+P (t)S4(t)
[
P (t− τu)X(i−1)(t− τu) + gi−1(t− τu)

]
, tf − τx 6 t < tf − τu,

P (t)S4(t)
[
P (t− τu)X(i−1)(t− τu) + gi−1(t− τu)

]
, tf − τu 6 t 6 tf ,

(4.13)

and g0(t) = 0 for t0 − τx ≤ t < t0. Substituting (4.7) into (4.4) and (4.5) yields:{
Ẋ(0)(t) = [Ā(t)− S1(t)P (t)]X(0)(t) + Ξ(t), t0 6 t ≤ tf ,

X(0)(t) = φ̄(t),
(4.14)
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and {
Ẋ(i)(t) =

[
Ā(t)− S1(t)P (t)

]
X(i)(t)− S1(t)g(t) + A1(t)X(i−1)(t− τx) + Fi(t),

X(i)(t) = [0, 0, · · · , 0]T ,
(4.15)

where Fi(t) is defined in relation (4.9). Solving problems (4.12) and (4.15), we can obtain the i-th-
order terms X(i)(t) and gi(t). Substituting X(i)(t) and gi(t) into (4.6) and letting ε = 1, we can get
u(t) = u(t, 1),

u(t) =


−R−1(t)B̄T (t)

∞∑
i=0

1
i!

[P (t)X(t) + gi(t)]

−R−1(t)B̄T
1 (t+ τu)

∞∑
i=0

1
i!

[P (t+ τu)X(t+ τu) + gi(t+ τu)] , t0 6 t < tf − τu,

−R−1(t)B̄T (t)
∞∑
i=0

1
i!

[P (t)X(t) + gi(t+ τu)] , tf − τu 6 t 6 tf .

(4.16)

Summarizing the above, we obtain the following theorem.

Theorem 4.1. Consider the problem of minimizing the cost functional (3.2) subject to system (3.1);
the control law

u∗(t) =



−R−1(t)B̄T (t)

[
P (t)X(t) +

∞∑
i=1

gi(t)
i!

]
−R−1(t)B̄T

1 (t+ τu)

[
P (t+ τu)X(t+ τu) +

∞∑
i=1

gi(t+τu)
i!

]
, t0 6 t < tf − τu,

−R−1(t)B̄T (t)

[
P (t)X(t) +

∞∑
i=1

gi(t+τu)
i!

]
, tf − τu 6 t 6 tf .

(4.17)

is optimal, where P (t) and gi(t) are solved by (4.11) and (4.12), respectively.

It should be noted that state feedback term in (4.17) is the exact solution. In the following, we
present an iterative procedure for finding the suboptimal control law.

Remark 4.2. In practice, calculating infinite terms of series in (4.17) is almost impossible, inter-
cepting M terms of the series, we obtain a suboptimal solution

uM(t) =



−R−1(t)B̄T (t)

[
P (t)

M∑
i=0

X(i)(t)
i!

+
M∑
i=1

gi(t)
i!

]
−R−1(t)B̄T

1 (t+ τu)

[
P (t+ τu)

M∑
i=0

X(i)(t+τu)
i!

+
M∑
i=1

gi(t+τu)
i!

]
, t0 6 t < tf − τu,

−R−1(t)B̄T (t)

[
P (t)

M∑
i=0

X(i)(t)
i!

+
M∑
i=1

gi(t+τu)
i!

]
, tf − τu 6 t 6 tf .

(4.18)

The integer M th in (4.18) is generally determined according to a concrete control precision. Then,
from (3.7) the following cost functional can be calculated:

J̄M =
1

2
XT (tf )H̄(tf )X(tf ) +

1

2

∫ tf

t0

(
XT (t)Q(t)X(t) + uTM (t)R(t)uM (t)

)
dt, (4.19)
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The M th order in (4.19) has the desirable accuracy, if for given positive constants ε > 0, the following
condition hold jointly: ∣∣∣∣JM − JM−1

JM

∣∣∣∣ < ε, (4.20)

If the tolerance error bound be chosen small enough, the M th order suboptimal control law will be
very close to u∗(t), and thus, the value of cost functional in (4.19) and its optimal value J∗ will be
almost identical.

Algorithm: Suboptimal control law of system (3.8):

Step 1: Obtain P (t) from (4.11).
Step 1: Obtain X(0)(t) from (4.14). And set i = 1.

Step 2: Compute X(i)(t) and gi(t) from (4.15) and (4.12).

Step 3: Let M = i and obtain uM(t) from (4.18).

Step 4: Calculate JM according to (4.19). If

∣∣∣∣JM − JM−1

JM

∣∣∣∣ < ε, then stop and output uM(t);

else, replace k by i+ 1 and go to step 2.

5. Simulation results

In this section, the proposed method is illustrated by some test problems. The calculations are
performed using the Matlab software.

Example 5.1. Consider the following linear time-varying multi-delay systems [22]:{
C
0 D

α
t x(t) = x(t− 1

2
) + tx(t− 3

4
) + u(t), 0 6 t 6 1,

x(t) = t+ 1, −3
4
6 t 6 0,

(5.1)

with the cost functional

J =
3

2
x2(1) +

1

2

∫ 1

0

u2(t)dt. (5.2)

When α = 1, the exact solutions of x(t) and u(t) are given by

x(t) =



239075
420332

t3 + 3129081
1681328

t2 − 1178769
611392

t+ 1, 0 6 t < 1
4
,

1
3
t3 + 1119201

840664
t2 − 680513

420332
t+ 7039811

7336704
, 1

4
6 t < 1

2
,

239075
1681328

t4 + 3375959
5043984

t3 − 20932555
13450624

t2 + 1156163
1222784

t+ 56216927
161407488

, 1
2
6 t < 3

4
,

47815
420332

t5 + 2306773
10087968

t4 − 2461871
2521992

t3 + 14865377
53802496

t2 + 17419475
26901248

t

+ 2652913
14673408

, 3
4
6 t 6 1,

and

u(t) =


296893
420332

t2 + 2078251
840664

t− 1484465
611392

, 0 6 t < 1
4
,

296893
210166

t− 890679
420332

, 1
4
6 t < 1

2
,

−296893
210166

, 1
2
6 t 6 1.
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Furthermore, when α = 1, exact value of cost functional is available and equal to J = 1.70648554.
We solve the problem by the proposed method with N = 2 and M = 10. The values of the cost
functional J and central processing unit (CPU) times for α = 1, 0.9, 0.8 are reported in Table 1. The
results compare well with the exact solution. In Figures 1 and 2, the obtained numerical solutions
(for N = 2 and M = 10) for both state and control functions are also depicted. The exact and the
approximate solutions for control function with α = 1 are plotted in Figure 3. This confirms that the
proposed method yields excellent results.

Table 1: Approximate values of J in Example 5.1.

method Value of α Value of J CPU time
The present method α = 1 1.70648351 8.951

(N=2 and M=10) α = 0.9 1.93215424 9.322

α = 0.8 1.43254178 9.891

Exact solution α = 1 1.70648554 -

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
(t

)

0.4

0.5

0.6

0.7

0.8

0.9

1

α=1

α=0.9

α=0.8

Figure 1: Approximate solutions of x(t) for α = 1, 0.9, 0.8 and M = 10 in Example 5.1.

Example 5.2. Consider the following linear time-varying multi-delay systems [7, 31, 15, 11, 28]:
C
0 D

α
t x(t) = −x(t) + x(t− 1

3
) + u(t)− 1

2
u(t− 2

3
), 0 6 t 6 1,

x(t) = 1, −1

3
6 t 6 0,

u(t) = 0, −2

3
6 t 6 0,

(5.3)

with the cost functional

J =
1

2

∫ 1

0

(
x2(t) +

1

2
u2(t)

)
(t)dt. (5.4)
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Figure 2: Approximate solutions of u(t) for α = 1, 0.9, 0.8 and M = 10 in Example 5.1.

t

0 0.5 1

u(
t)

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

Exact

Approximate

t
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1

Exact

Approximate

Figure 3: Approximate and exact solutions of x(t) and u(t) for α = 1 in for Example 5.1.

According to system (3.1), we have A = −1, A1 = B = 1, B1 = −1
2
, Q = 1, R = 1

2
.

We solve the problem by the proposed method with N = 2 and M = 17. The obtained cost functional
values and central processing unit (CPU) times, for different values of α = 1, 0.9, 0.8, are shown in
Table 2. In Table2, we compare the value J obtained using the proposed method with the value of
J reported in [7] by formulation of Euler-Lagrange equations, in [31] by using numerical approach
based on the Chelyshkov wavelets, in [15] by Muntz-Legendre neural network construction and in [11]
by using a Muntz-Legendre spectral colocations method. Also, For different values of α, the optimal
state and control functions x(t) and u(t) are also depicted in Figures 4 and 5, respectively. From
these figures, it is clear that when α approaches to 1, the numerical solutions for both the state and
the control variables approach the analytical solutions for α = 1.
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Table 2: Approximate values of J in Example 5.2.

method Value of α Value of J CPU time
The present method α = 1 0.37052341 17.355

(N=2 and M=17) α = 0.9 0.30125489 18.896

α = 0.8 0.21125367 18.211

Effati et al. [7] α = 1 0.37314692 -

Moradi et al. [31] α = 1 0.37311264 -

Kheyrinataj and Nazemi [15] α = 1 0.3656 -

Hosseinpour et al. [11] α = 1 0.3677 -

t
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x
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α=0.9
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Figure 4: Approximate solutions of x(t) for α = 1, 0.9, 0.8 and M = 17 in Example 5.2.

Example 5.3. We now consider the following nonlinear time-varying multi-delay systems:
C
0 D

α
t x(t) = x(t− 1)x(t− 2)u(t− 2), 0 6 t 6 3,

x(t) = 1, −2 6 t 6 0,

u(t) = 0, −2 6 t 6 0,

(5.5)

with the cost functional

J =

∫ 3

0

(x2(t) + u2(t))dt. (5.6)

This optimal control is adopted from [40, 41, 9]. In order to obtain an accurate enough suboptimal
control law, we applied the proposed algorithm with N = 2 and M = 15. The obtained cost functional
values and central processing unit (CPU) times, for different values of α = 1, 0.9, 0.8, are shown in
Table 3. In Table 3, we compare the value J obtained using the proposed method with the value of
J reported in [40] by using an interior-point algorithm, in [41] by an interior-point filter line-search
algorithm and in [9] by pontryagin’s maximum principle. Also, For different values of α, the optimal
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Figure 5: Approximate solutions of u(t) for α = 1, 0.9, 0.8 and M = 17 in Example 5.2.

state and control functions x(t) and u(t) are also depicted in Figures 6 and 7, respectively. Therefore,
in view of the results, the present method is quite effective.

Table 3: Approximate values of J in Example 5.3.

method Value of α Value of J CPU time
The present method α = 1 2.761574 15.452

(N=2 and M=15) α = 0.9 3.125476 16.562

α = 0.8 2.305341 17.893

Vanderbei et al. [40] α = 1 2.763044 -

Wachter et al. [41] α = 1 2.763044 -

Gollmann et al. [9] α = 1 2.761591012 -

6. Conclusions

In this paper, we developed an approximate solution method to solve fractional order optimal
control problems with delay argument, where the dynamic control system depends on Caputo frac-
tional derivatives. It is important to notice, that, in the proposed algorithm, only a few iteration
steps are required to get the suboptimal control law. Numerical methods to solve the problems
are presented, and some computational simulations are discussed detail. The study show that the
method is effective techniques to solve time-delayed optimal control problems, and the method is easy
to implement and computationally very attractive without sacrificing the accuracy of the solution.
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Figure 6: Approximate solutions of x(t) for α = 1, 0.9, 0.8 and M = 15 in Example 5.3.
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Figure 7: Approximate solutions of u(t) for α = 1, 0.9, 0.8 and M = 15 in Example 5.3.
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