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Abstract

Latent variable models define as a wide class of regression models with latent variables that cannot
be directly measured, the most important latent variable models are structural equation models.
Structural equation modeling (SEM) is a popular multivariate technique for analyzing the interre-
lationships between latent variables. Structural equation models have been extensively applied to
behavioral, medical, and social sciences. In general, structural equation models includes a measure-
ment equation to characterize latent variables through multiple observable variables and a mean
regression type structural equation to investigate how the explanatory latent variables affect the out-
comes of interest. Despite the importance of the structural equations model, it does not provide an
accurate analysis of the relationships between the latent variables. Therefore, the quantile regression
method will be presented within the structural equations model to obtain a comprehensive analysis
of the latent variables. we apply the quantile regression method into structural equation models to
assess the conditional quantile of the outcome latent variable given the explanatory latent variables
and covariates. The posterior inference is performed using asymmetric Laplace distribution. The
estimation is done using the Markov Chain Monte Carlo technique in Bayesian inference. The simu-
lation was implemented assuming different distributions of the error term for the structural equations
model and values for the parameters for a small sample size. The method used showed satisfactorily
performs results.
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1. Introduction

Latent variables

Everett (2013) defines latent variable models as a wide class of regression models with latent
variables that cannot be directly measured. For the following reasons, latent variables are frequently
used in models. A latent variable, for starters, can be thought of as the underlying attribute that is
measured by a number of observable variables. This is a common method for achieving dimensionality
reduction in factor analysis models, in which the latent variables are also referred to as factors.
Second, in mixed effects models, which are widely employed in the analysis of longitudinal data with
repeated measurements on the same subjects, latent variables might indicate unobserved subject-
specific variability. The latent variables are also known as random effects in this context. Third,
latent variables can be utilized to represent the true values of observed variables in some cases where
the observed variables are subject to measurement error.

Structural equation model

Structural equation model(SEM) are a versatile class of models that allow for complicated mod-
eling of correlated multivariate data in order to examine interrelationships between observable and
latent variables. Many extensively used statistical models, such as regression, factor analysis, canon-
ical correlations, and analysis of variance and covariance, are included in this class of models, which
is well recognized in the fields of social and psychological sciences. Most applications of SEMs are
related to the study of interrelationships among latent variables. In particular, they are useful for
examining the effects of explanatory latent variables on outcome latent variables of interest. For
such situations, researchers usually have in mind what observed variables should be selected from
the whole data set for the analysis, and how these observed variables are grouped to form latent
variable [12].

Where it is mentioned that the term of SEM are actually referring to the simultaneous equation
model in econometrics, which is not what we commonly refer to as “SEM” because no latent variables
are involved in their models. Traditional methods for analyzing SEMs were mainly developed in
psychometrics, and have been extensively applied in behavioral, educational, social research During
the past years. Recently, SEMs have begun to attract a great deal of attention in medical sciences
public health [1],Although it is widely used in many fields, it has rarely been applied in latent
variable models, including structural equation models, In Bayesian latent models, [7] presented the
QR technique as a comprehensive statistical tool to analyze the relationship between the response
variable and the explanatory variables in the entire conditional distribution of the response variable
by estimating conditional quantiles Qp(Y|X)} instead of only estimating the conditional mean (E(Y|
X)) as in the normal regression. In this technique, the Least Absolute Deviation method (LAD) was
used to estimate the model parameters instead of the quadratic loss function used in the normal
regression model. Explain the importance of using (QR) technique to estimate regression models
that do not assume the state of the non-Gaussian errors. [15] suggested the Bayesian method in
analyzing the Linear QR model by assuming an Asymmetric Laplace distribution for random errors
in the model in order to link the Bayesian method to the classical method in estimating the model
and noting that the minimization of the loss function applied in the method The classic is equivalent
to maximizing the possibility function using the skewed Laplace distribution of error,

The median regression method for Bayesian latent response models was proposed by Dunson,
Watson, and Taylor (2003), Dunson and Taylor(2005) proposed an approximate method based on a
substitution likelihood expressed as a vector of quantiles, Burgette and Reiter (2012) proposed the



The estimation process in theBayesian quantile structural equation modeling approach 2139

quantile regression in a factor analysis model to analyze the effects of latent variables on the lower
quantiles of the response distribution. The Bayesian inference for the proposed quantile Structural
equation model is based on ALD in this article, not only because it is a natural and effective method
to model the Bayesian quantile regression, but also because it is a natural and effective way to model
the Bayesian quantile regression.

2. Quantile Regression

The subject of regression is one of the important statistical topics used in many scientific research
and has wide applications in many fields in recent years. Ordinary regression, or what is sometimes
called mean regression, is one of the important statistical methods that are used in analyzing the
relationship between explanatory variables X and response variable Y, through the mean point in
the distribution of the response variable. In other words, in the normal mean regression analysis, the
attention is focused on estimating the conditional mean of the distribution of the response variable
{E(Y |X)} and the loss function used in estimating the normal regression models is the quadratic loss
function. It is known that the normal regression analysis is based on the assumptions of the analysis,
the most prominent of which is that the random error in the model is distributed independently,
normally, with a mean equal to zero, and variance is σ2

ϵ .
The main purpose of quantile regression is to obtain a highly comprehensive analysis of the

relationship between variables by using different measures of central tendency and statistical disper-
sion. A well-known special case is the least absolute deviation, or median regression, where the 50%
conditional quantile is estimated [12].

The rest of the paper is organized as follows. In section 3, we present Quantile Structural equation
model. In section 4 we present Bayesian inference of QSEM model with finding the conditional
distributions of parameters and latent variable within the Bayesian analysis in chapter 5.and in
section, In section 6we perform simulation studies to examine the performance of the method used
with different error term distributions. We conclude with brief conclusions in section 7.

3. Quantile Structural equation model

The structural equation model consists of two components, as follows:

1. Let yi = (yi1, yi2, . . . , yip)
T be a (p) vector representing the ith observation in a random sample

of size n, and (ωi1, ωi2, . . . , ωip)
T be a (q × 1) vector of latent variables with (q < p).

The link between yi and ωi is defined by the following measurement equation:

yi = Aci + Λωii+ εi, i = 1, . . . .., n (3.1)

where A (p × r1) and Λ(p × q) are matrices of unknown coefficients, ci(r1 × 1) is a vector of
fixed covariates, and ϵi(p× 1) is a random vector of error terms.

2. ηi can be assessed in the following structural equation

ηi = βτdi+ Γτζi + δi, i = 1, . . . .., n (3.2)

Then the quantile SEM is defined by Equations (3.1) and (3.2).

The purpose of the measurement equation in an SEM is to relate the latent variables in ω to the
observed variables in y . It represents the link between observed and latent variables, through the
specified factor loading matrix Λ, the vector of measurement error ϵ is used to take the residual
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error into account. The important issue in formulating the measurement equation is to specify the
structure of the factor loading matrix Λ, based on the knowledge of the observed variables in the
study. Any element of Λ can be a free parameter or fixed parameter with a preassigned value [11].
The positions and the preassigned values of fixed parameter are decided on the basis of the prior
knowledge of the observed and latent variables, and they are also related to the interpretations of
latent variables [11].
To analyze the interrelationship among latent variables, let partition ωi = (ηTi , ζ

T
i )

T , where ηi(q1×1)
denote outcome latent variables and ζi(q2 × 1) is explanatory latent variables.

to simplify we assume thatq1 = 1 . The primary aim of SEM is analyze the behavior of latent
variable ηi given the information contained in a set of explanatory latent variables ζi . This is done
in traditional SEM by calculating the conditional mean of ( ηi\ζi ) and fixed covariates di(r2× 1) as
follows: [4]

E(ηi\ζi, di) = Bdi+ Γζi, i = 1, . . . .., n (3.3)

Where B(q1× r2) and Γ(q1× q2) are the matrices of unknown coefficients to be estimated.
The conditional mean does not provide a complete description of the interrelationship among latent
variables. A more comprehensive analysis can be achieved from a combination of Q(ηi\ζi) with fixed
covariates di(r2× 1) the conditional quantile of ηi, under a number of different quantiles τ ∈ (0, 1),
as follows:

Qτ(ηi\ζi, di) = Bτdi+ Γτζi, i = 1, . . . .., n (3.4)

The coefficients matrices Bτ and Γτ have a subscript τ because they might not be equal for different
quantiles.
Unlike in conventional SEMs, here the distribution of δi is undefined The only assumption is that
the τ− quantile of δi is 0 to guarantee that equation (3.4) holds. Unlike the structural equation,
the measurement equation is restricted to a median regression model rather than quantile regression
with an arbitrary τ , because its main role is to relate highly correlated observed variables to latent
factors. Therefore, a quantile regression is meaningless here. Instead, a median regression model is
employed to achieve robust estimates of parameters in the measurement equation while persisting
its parsimonious [12].

As it was previously shown that the quantile SEM can overcome many of the problems faced by
the traditional SEM, which is first by focusing on the conditional mean and since the traditional SEM
ignore all the information about the tails of the distribution that may be important in the research,
and on the contrary, the quantile SEM is Of more comprehensive importance is the relationships
between the latent variables in all response levels, including the upper and lower tails and the central
tendency, as well as in many cases the error term distribution is not normally consistent with equal
variances, and this fails the traditional SEM assumptions, leading to inaccurate results.

Conventional(SEM) are sensitive to error terms with heavy-tailed distributions and extreme out-
liers, which can distort the results significantly. On the contrary, quantile regression is widely re-
garded as a robust method, which is less vulnerable to outliers and extreme distributions of error
terms. It should be emphasized that quantile SEM is not a replacement for conventional SEM but
rather a supplement to it. In substantive study, if the effects of explanatory variables on the entire
distribution of the response is of interest, quantile SEM is a good choice. Alternatively, one could
conduct both conventional SEM and quantile SEM and use the results for a highly comprehensive
analysis [12].
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4. Bayesian inference of QSEM model

The Bayesian approach to SEM has increase in popularity in recent years for establishing efficient
and rigorous statistical approaches, and solving practical problems. As a result, we use the Bayesian
method to analyze quantile SEM due to its ease of use when dealing with complex models and the
convenience of inference with Markov chain Monte Carlo (MCMC) methods.

However, because the distribution of the error term δi in structural equation (3.2) is not specified,
the likelihood function, which is essential in Bayesian analysis, is also unspecified. Therefore, the
ALD is introduced to address this problem, where [15] assumed (regardless of the real distribution
of the data) the Asymmetric Laplace Distribution

A random variable y is distributed as Asymmetric Laplace Distribution (AL(µ, σ, τ)), the prob-
ability density function It can be expressed in the following form [12]

f (y\µ, σ, τ) = τ(1− τ)

σ
exp

{
−ρτ

(
y − µ

σ

)}
Where µ is the location parameter, σ is the scale parameter and τ is the skewness parameter,

the ρτ (x) = x(τ − I(x < 0)) is called check function.
As mentioned earlier [15] discovered the link between quantile regression and Asymmetric Laplace

Distribution (ALD) in the following quantile regression model:

Qτ (yi\Xi) = XT
i βτ , i = 1, . . . ., n

Where yi is the response variable and Xi is the explanatory variable , Qτ (yi\Xi) is the conditional
τ - quantile of (yi\Xi), and βτ contains quantile- specific regression coefficients.
According to Koenker and Bassett(1978) [7],the frequentist approach to coefficient estimation is to
solve the following optimization problem [4].

min
β

n∑
i=1

ρτ
(
yi − xTi β

)
(4.1)

The likelihood function for the model is showed by [15] by assuming that the error terms are inde-
pendent and identically distributed isAL(0, 1, τ) as following:

L (β; y, τ) = τn(1− τ)n exp

{
−

n∑
i=1

ρτ (yi − xTi β)

}

Apparently the maximum likelihood estimation of β is equivalent to the solution of equation (4.1).

They also proposed a Bayesian approach by imposing an improper uniform prior for all of the
components of β, resulting in a proper joint posterior distribution. The posterior mode is also
demonstrated to be equal to equation 5’s solution. As a result, using Asymmetric Laplace Distribu-
tion (ALD) for the error terms is a natural technique to approach the Bayesian quantile regression
problem.

The ALD is not a standard distribution and dose not have a conjugate prior, unlike the gamma or
Gaussian distributions. As a result of the complexity of the likelihood function, the resultant posterior
density for β is not analytically tractable. For posterior inference, different MCMC methods have
been proposed. There are many attempts by researchers to use different types of MCMC methods,
the first of which is [15] attempts, where they used a random-walk Metropolis algorithm to simulate
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from posterior distributions, By employing a mixture representation of ALD, [9], considered Gibbs
sampling approaches for quantile regression.
Then, if y is a random variable distributed AL(µ, σ, τ) then it can be represented as following:

y = µ+ k1e+
√
k2σeς

Where k1 =
(1−2τ)
(τ(1−τ))

, k2 =
2

τ(1−τ)

c ∼ N [0, 1], e ∼ exp(1/σ)
The resulting conditional distribution of y is normal, with a mean ( µ+ k1e) and variance (k2σe).

And the latent variable e is augmented to y. therefore, the augmentation makes it possible to use
the usual normal prior of the coefficient β. According to [9], the developed Gibbs sampling algorithm
is preferable to the Metropolis algorithm because it avoids the inconvenience of choosing the proposal
distribution, and thus improves the estimation result as well as the efficiency of the MCMC sampler
[12].

5. Bayesian inference

In order to speed up and increase the performance of the Bayesian method in the analysis of the
QSEM model, and for the reasons mentioned previously, this research was based on the proposal
of [12] in using the mixed representation of the skewed Laplace distribution (AL) for random error
in the model. According to Wang’s [12] assumption that will be adopted in this research for the
error terms, specifically ϵij the k

th component of the error terms ϵi is distributed AL(0, σyk, 0.5) for
measurement equation (3.1) the median regression, and σi is distributed AL(0, σyk, τ)) for structural
equation (3.2) the τ -quantile regression. Noting that the variables eyik and eηi are the nuisance
variables for augmenting ϵij and δi.
Let θ1y the unknown parameters in equation (3.1), and θω unknown parameters in equation (3.2),
and θ = (θ1y, θ1ω) ,then the Bayesian for Quantile SEM by the following hierarchical representation:

(yi\ηi, ξi, θ1y, eyi) ∼ Np (Aci + Λωi ,Ψi) (5.1)

(ηi\ξi , θ2ω, eηi) ∼ N ( Bτdi + Γτξi + k1eηi , k2σηeηi) (5.2)

The unknown parameters in the measurement equation (3.1) let θ1y = (A,Λ) = (λykj) and in the
structural equation (3.2), the unknown parameters are θ2ωτ = (Bτ ,Γτ ).
Some elements of θ1y must be fixed for identification purposes ,for measurement equation, an index
matrix M = (Iykj) as its identification matrix is created as follows

Iykj =

{
1 λykj is (free)

0 λykj is (fixed)

When Iykj = 1 if Λykj is subject to estimation and Iykj = 0 if the value of Λykj is prefixed for
identification purpose

eyik ∼ Exponential (σyk)

eηi ∼ Exponential (ση)

ζi ∼ N(0,Φ)

Where eyik = (eyi1, . . . , eyip)
T , ψ = diag(8σy1eyi1, . . . , 8σypeyip), and eη = (eη1 , . . . , eηn)

T

The following conjugate prior distribution in Bayesian quantile SEM are:
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- For measurement equation as follows :

θ1yk ∼ Nr1+q(Λ0yk, Ḩ0yk)

σ−1
yk ∼ Gamma(a0yk, b0yk)

(5.3)

- For structural equation as follows :

θ2ωτ ∼ Nr2+q2(Λ0ω, Ḩ0ω)

σ−1
η ∼ Gamma(a0σ, b0σ)

Φ−1 ∼ Wishart (R0, ρ0)

(5.4)

where (Λ0yk, a0yk, b0yk,Λ0ω, a0σ, b0σ are hyperparameters and the positive-definite H0yk, H0ω are also
hyperparameters, Noting that the values are given from previous research or professional knowledge.
letY = (y1, . . . , yn), C = (c1, . . . , cn), D = (d1, . . . .dn) and ω = (ω1, . . . , ωn) be the matrix of latent
variable. Given the complexity of the model, direct inference of the common posterior distribution
p(ω, θ\Y,C,D, eη) is difficult and complex. However, the full conditional distributions of the latent
variables and all parameters are common distributions. Therefore, the Gibbs sampling method is
used as an easy and uncomplicated method in obtaining Bayesian estimators so that the Gibbs
sampling tool can be implemented easily, and a Bayesian estimate is taken for each parameter to be
the average of the sample random observations derived from each iteration.

As is well known the Bayesian estimate of parameters are obtained from the joint posterior dis-
tribution p(Ω, θ|Y,C,D, eη) by drawing samples iteratively for parameters and latent variables, each
component of the posterior distribution is generated by the Gibbs sampling method from its full
conditional posterior distribution in an iteratively. The Bayesian estimates of θ and Ω is taken to be
the sample mean of the random observations generated.

As mentioned earlier, the main objective is to use MCMC methods to obtain the Bayesian es-
timates of θ and Ω, for this reason a sequence of random observations from the joint posterior
distribution [θ,Ω/Y ] will be generated via the Gibbs sampler which is implemented as follows: At
the jth iteration with current value θ(j) [11] :

(a) Generate a random variate Ω(j+1) from the condition {ω/y, θj}
(b) Generate a random variate θ(j + 1) from the condition {θ/y,Ω} and return to step a if necessary

Then the full conditional posterior distribution for Bayesian quantile SEM (BQSEM) as follows:

The Gibbs sampling algorithm is implementing with following full conditional posterior distribu-
tion of parameters and latent variable [12]. Let θ1y = (A,Λ), θ2ω = (Bτ ,Γτ ), ui = (ciT , ωT

i )
T , vi =

(diT , ζTi )
T , U = (u1, . . . , ui) where Uk be its submatrix with rows corresponding to Iykj = 0 are

deleted, Y ∗
k = (y∗1k, . . . , y

∗
nk) where

y∗ik = yik −
r1+q∑
j=1

λykj uij (1− Iykj)

1- The full conditional posterior distribution of the latent variable Ω
As shown in equation (5.1), the y distribution ia as follows:

(yi\θ1y, ηi, ξi, eyi) ∼ Np (Aci + Λωi ,Ψi)

p(Y \θ1y, ηi, ξi, eyi)ηi = (Ψi)
−n
2 exp

{
−1

2

n∑
i=1

( yi − θ1yui)
TΨ−1

e (yi − θ1yui)

}
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It is known that
p(ωi/θ1yi , θy) ∝ p(ωi/θy) p(yi/ωi, θy)

Then, The full conditional posterior distribution of the latent variable is

( ωi\yiσyieyiθ1yσηeηiΛωΦ) ∼ Nq( µi,Σ
−1∗
i )

Where

µi = Σ∗−1
i ΛTψ−1

i (yi − Aci) + Σ∗−1
i Σ−1

ωi

(
Bτdi + k1eηi

0

)
Σ∗

i = Σ−1
ωi

+ ΛTψ−1
i Λ

Σωi
=

(
ΓτΦΓ

T
τ + k2σηeηi ΓτΦ
ΦΓT Φ

)
ψi = diag(8σy1eyi1 , . . . , 8σypeyio)

2- The full conditional posterior distribution of the eyik : for (i = 1, . . . , n, k = 1, . . . , p)

p
(
e−1
yik

\yik, ωi, θ1yk, σyk
)
∝ f (yik, ωi, θ1yk, σyk) f(eyik\σyk)

p
(
e−1
yik

\yik, ωi, θ1yk, σyk
)
∝

{
2σ−1

yk

2π(e−1
yik

)3

} 1
2

exp


2σ−1

yk

(
e−1
yik

− 4

|yik−θ1ykui|

)2

2
[
4 |yik − θ1ykui|−1 ]2 e−1

yik


Thus, the full conditional distribution of eyih is a inverse Gaussian distribution (4 |yik − θ1ykui|−1 , 2σ−1

yk )
3- The full conditional posterior distribution of the θ1y : for (k = 1, . . . , p)

p (θ1yk\Y, eyik , σyk) ∝
(
Σ−1

θ1k

)−1
2 exp

(
−1

2
(θ1yk −MuΛk)

T (Σ−1
Λk

)−1
(θ1yk −MuΛk)

)
Where MuΛk

= Σ−1
Λk
( Ḩ−1

0y Λoy +
∑n

i=1
yikui

8σykeyik
) and ΣΛk = Ḩ−1

0y +
∑n

i=1
uiu

T
i

8σykeyik

Thus, The full conditional posterior distribution of the θ1y is a normal distribution (MuΛk
, σ−1

Λk
)

4- The full conditional posterior distribution of the σyk : for (k = 1, . . . , p)

p
(
σ−1
yk \Y, U,Λyk

)
∝
(
σ−1
yk

)n+aoyk−1 exp

{(
boyk +

1

2

n∑
i=1

|yik − θ1ykui|

)
σ−1
yk

}
Thus, The full conditional posterior distribution of the σyk is Gamma distribution

(n+ aoyk, boyk +
1

2

n∑
i=1

|yik − θ1ykui|)

5- The full conditional posterior distribution of the Φ :

p(Φ\Ω2) ∝ p(Φ)
n∏

i=1

p(ξi\Φ)

p(Φ\Ω2) ∝ |Φ|
−(n+ρ0+q2+1)

2 exp

{
−1

2
tr
[
Φ−1(Ω2Ω

T
2 +R−1

0 )
]} (5.5)
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Since the right-hand side of (5.4) is proportional to the density function of an inverted Wishart
distribution (Zellner,1971), it follows that the conditional posterior distribution of (Φ\Ω2) is given
by

[Φ\Ω2] ∼ IWq2

[(
Ω2Ω

T
2 +R−1

0

)
, n+ ρ0

]
6- The full conditional posterior distribution of the eηi : for (i = 1, . . . , n)

p
(
e−1
ηi
\ ωi, θ2ω, ση

)
∝ f

(
ωi, θ2ω, e

−1
ηi
, ση
)
f(e−1

ηi
\σyk)

(
e−1
ηi
\ωi, θ2ω, ση

)
∝

{
k2
4ση

2π(e−1
ηi
)3

} 1
2

exp


k2
4ση

(
e−1
ηi

− k2
2|ηi−Bτdi−Γτ ξi|

)2
2
[

k2
2|ηi−Bτdi−Γτ ξi|

]2
e−1
ηi


Thus, The full conditional posterior distribution of the eηi is a inverse Gaussian distribution(

k2
2 |ηi −Bτdi − Γτξi|

,
k2
4ση

)
7- The full conditional posterior distribution of the θ2ωτ

p (θ2ωτ\Ω, eη, ση) ∝
(
Σ−1

θ2ω

)−1
2 exp

(
−1

2
(θ2ωτ −Muθ2ω)

T (Σ−1
θ2ω

)−1
(θ2ωτ −Muθ2ω)

)
where Muθ2ω = Σ−1

θ2ω

(
Ḩ−1

oω θ2ωτ +
∑n

i=1

(ηi−k1eηi)vi
k2σηeηi

)
and Σθ2ω = Ḩ−1

0ω +
∑n

i=1
viv

T
i

k2σηeηi

Thus, The full conditional posterior distribution of the θ2ω is a normal distribution (µθ2ωτ , σ
−1
θ2ωτ )

8- - The full conditional posterior distribution of the ση :

p
(
σ−1
η \Ω,θ2ωτ

)
∝(σ−1

η )
n+a0δ−1

exp

{(
b0δ+

n∑
i=1

ρτ |ηi−θ2ωτvi|

)
σ−1
η

}

Thus, The full conditional posterior distribution of the ση is Gamma distribution (n + aoδ, boδ +∑n
i=1 ρτ |ηi − θ2ωτvi|)

6. Simulation study

In this section, We employ simulation to evaluate the Bayesian quantile SEM’s empirical perfor-
mance. We generated the data set from SEM:

yi = Aci+ Ωωi + ϵi

ηi = b1di+ γ1 + ξi1 + γ2ζi2 + δi Where p = 9, q = 3 (q1 = 1, q2 = 2) and r1 = r2 = 1.

Where yi = (y1i, . . . , , y9i)
T , A = (a1, . . . , a9)

T , ci = c1i, ϵi = (ϵ1i, . . . , ϵ9i) and ωi = (ηi, ζi)
The simulation study’s main purpose is to estimate the quantile regression coefficients b1,γ1 andγ2
under different quantiles with small sample size and compare them to their theoretical values.

We are choose three small sample size n = (25, 50, 100) and the quantile we choose τ = 0.25, 0.5, 0.75.
The factor loading matrix Λ has the common non-overlapping structure

ΛT =

1∗ λ21 λ31 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 1∗ λ52 λ62 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1∗ λ83 λ93
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Where the zero and ones marked with an asterisk(*) are fixed in advance to allow for a clear inter-
pretation of latent variables and model identification, while the other Λjk are unknown parameters.
The true vales of parameters Λjk and aj in the measurement equation are taken to be Λ21 = Λ31 =
Λ52 = Λ62 = Λ83 = Λ93 = 0.7, then the factor loading matrix Λ will be in the following

ΛT =

1∗ 0.7 0.7 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 1∗ 0.7 0.7 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1∗ 0.7 0.7


And A = a1 = . . . = a9 = 0.5. The true values of parametersBτ = (b1) = (0.1) and Γτ = [γ1, γ2] =
[0.1, 0.3], and the explanatory latent variable ζi = (ζi1 , ζi2)

T is assumed to follow a normal distribution

N(0,Φ) where Φ =

[
2 0.3
0.3 2

]
, and the fixed covariates c1i and di are independently generated from

standard normal distribution N(0, 1).
Also, the prior distributions that specified within equation (5.2) and (5.3), and the hyperparameters
are as follows:
for the conjugate prior of Λyk ∼ Nr1+q(Λ0yk, Ḩ0yk), the free elements in the prior mean Λ0yk and Ḩ0yk

is taken as a diagonal matrix with diagonal elements (10), As well for structural equation the Λω the
prior mean Λ0ω = (1, 0.7, 0.7) and the covariance matrix Ḩ0ω = 10 an identity matrix.
And for the conjugate inverse gamma prior of σyk = (a0yk, b0yk) = (1, 1) and ση = (a0σ, b0σ) = (1, 1).
And for the inverse Wishart prior of Φ , we set ρ0 = 4, R0 = 5I2.
For the error terms for SEM ϵi and δi, we consider the following different distribution

(i) ϵi and δi ’s follow the normal distributionN(0, 0.4).
(ii) ϵi and δi ’s are distributed as the heavy- tailed central t-distribution t(5)
(iii) ϵi and δi ’s are distributed as the skewed lnN(0, 0.35).

In the case (i), the normal distribution was chosen for the error terms as it aligns with that of
traditional SEM., In the case (ii), the heavy-tailed t-distribution is used to assess the quantile SEM’s
performance in the presence of outliers in both the observed and latent variables. In Case (iii), the
quantile SEM with skewed outcome latent variables is evaluated using a log-normal distribution we
run10, 000 iterations with the initial 2,000 observations dropped in the burn-in phase on the basis
of 100 replications where the program was written in R language. The performance of the Bayesian
quantile structured equation model (QSEM) is assessed using the bias and root mean square error
(RMS) ,where:

Bias
(
θ̂
)
= E

(
θ̂
)
− θ

and root mean square error (RMS) is:

RMS
(
θ̂
)
=
{

1
n

∑n
i=1

(
θ̂ − θ

)} 1
2

the estimation result is compared with that of the conventional linear structured equation model.
For it the estimates of regression coefficients in the structural equation, Which is the main goal are
presented in Table 1 and 3 in comparison to the result of the conventional structural equation model.
The estimates of other parameters are shown in Table 2 and 4
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Table 1: Bayesian estimates of the regression coefficients for structural equation for sample size n=25
ϵi ∼ N (0, 0.4)

n= 25

Error terms τ b1τ Γ1τ Γ2τ
RMS Bias RMS Bias RMS Bias

δi ∼ N(0, 0.4)
BQSEM 0.25 0.07907737 -0.02253345 0.08403401 0.07595055 0.56830961 0.56685200

0.5 0.10115009 0.09701302 0.07514715 0.07511159 0.61023296 0.60613099
0.75 0.27155771 0.22295662 0.08985901 0.08632475 0.72082010 0.71788708

Classical SEM 0.060251 0.081995 0.006198 0.0700285 0.5117301 0.5501241
δi ∼ t(5)
BQSEM 0.25 0.07625216 -0.02185594 0.08619419 0.07389584 0.55859595 0.55707620

0.5 0.09111530 0.089224047 0.07659086 0.07625003 0.61088063 0.604798187
0.75 0.2825732 0.2308178 0.1181471 0.1111511 0.7243099 0.7209314

Classical SEM 0.294428 -0.0190437 0.120462 0.1199032 0.766801 0.7938144
δi ∼ lnN(0, 0.5)
BQSEM 0.25 0.07815844 -0.02175021 0.08833374 0.07366192 0.55181876 0.55076762

0.5 0.10682500 0.103767993 0.09279538 0.092011884 0.61308815 0.608375589
0.75 0.2879212 0.2423950 0.1181316 0.1128416 0.7388622 0.7341831

Classical SEM 0.3100367 -0.0118537 0.211769 0.1308377 0.744418 o. 481077

Table 2: Bayesian estimates of the parameters for measurement equation for sample size n= 25 with
ϵi ∼ N (0, 0.4)

Bayesian Quantile SEM (BQSEM) Classical SEM
τ = 0.25 τ = 0.5 τ = 0.75

parameter RMS Bias RMS Bias RMS Bias RMS Bias
λ21 0.2697962 0.2235111 0.2790897 0.2318790 0.262098 0.2217202 0.259562 0.219983
λ31 0.1846035 0.1523480 0.1978101 0.1625291 0.1903749 0.1588405 0.184100 0.159322
λ52 0.1936832 0.1936815 0.1975364 0.1974831 0.192408 0.1923511 0.1923901 0.1921141
λ62 0.1143613 0.1071646 0.1221041 0.1142222 0.1128328 0.1082963 0.112995 0.1064492
λ83 0.2313131 0.2311828 0.2243311 0.2243307 0.2163074 0.2163022 0.215840 0.2159948
λ93 0.4306284 0.4305967 0.4201381 0.4200725 0.4100501 0.4095631 0.409223 0.4004823
a1 0.6346445 -0.6139620 0.8111362 -0.8054472 0.7677844 -0.7647434 0.600572 -0.9207726
a2 0.6478146 -0.6010030 0.7913873 -0.7633368 0.7500643 -0.7281257 0.630446 -0.7707318
a3 0.7026507 - 0.6493849 0.8284873 -0.7970920 0.7943271 -0.7675296 0.700572 -0.8005831
a4 0.6188674 -0.5748930 0.6918025 -0.6350983 0.6306503 -0.5940988 0.601764 -0.6504419
a5 0.5517148 -0.5252306 0.6152347 -0.5774228 0.5609859 -0.5409852 0.550584 -0.7848160
a6 0.7383686 -0.7084734 0.7947926 -0.7573358 0.7519067 -0.7259338 0.730992 -0.7603381
a7 0.6785300 -0.6615303 0.7662372 -0.7459725 0.6999516 -0.6867111 0.670336 -0.8104472
a8 0.5930336 -0.5529379 0.6650815 -0.6233569 0.6108447 -0.5804727 0.588301 -0.6503291
a9 0.6625122 -0.6489197 0.7658687 -0.7476199 0.7038860 -0.6944282 0.652876 -0.7801562
Φ11 0.9826032 0.6626182 0.9513067 0.6437265 0.9625991 0.6609021 0.950773 -0.6399106
Φ11 0.7359126 -0.2509661 0.7365012 -0.2743960 0.7420674 -0.2494504 0.729180 -0.2807718
Φ21 0.7359126 -0.2509661 0.7365012 -0.2743960 0.7420674 -0.2494504 0.730712 -0.2807718
Φ22 0.8450573 0.7958273 0.8277118 0.7889141 0.8653089 0.8188990 0.750711 0.7206687

Table 3: Bayesian estimates of the regression coefficients for structural equation for sample size n=50
n=50

Error terms τ b1τ Γ1τ Γ2τ

RMS Bias RMS Bias RMS Bias
δi ∼ N(0, 0.4)
BQSEM 0.25 0.3659611 0.2540730 0.4114689 0.3356063 0.6496669 0.6367243

0.5 0.35147395 0.276279100 0.43911876 0.361449468 0.58924238 0.588156606
0.75 0.3955633 0.3556238 0.4166909 0.3605078 0.6065419 0.6050769

Classical SEM 0.340291 0.241855 0.3016691 0.285319 0.510996 0.4928783
δi ∼ t(5)
BQSEM 0.25 0.3612821 0.2476817 0.4150795 0.3354939 0.6470759 0.6330410

0.5 0.34096969 0.26675727 0.44275604 0.36310566 0.59626770 0.59530398
0.75 0.3871850 0.3423514 0.4114402 0.3505616 0.6278267 0.6260782

Classical SEM 0.410663 0.590772 0.570992 0.460339 0.7118923 0.722691
δi ∼ lnN(0, 0.3)
BQSEM 0.25 0.3739504 0.2574705 0.4260287 0.3448913 0.6412085 0.6293570

0.5 0.35954568 0.28115723 0.43140434 0.35165318 0.59729556 0.5965017
0.75 0.3947921 0.3551088 0.4090277 0.3456804 0.6252271 0.6233558

Classical SEM 0.4210591 0.3905588 0.4804912 0.3901178 0.7744193 0.6948271

The results will be compared with the results of the traditional structural equations model in
the Bayesian method, It is shown in Tables 1, 2, 3 and 4. The normally distributed error terms
(ϵi and δi ∼ N (0, 0.4) in Case 1 that show in table 1 and 2 is matches with the conventional
structured equation model’s assumption, whereas the error terms in the quantile structured equation
model are misspecified, so the conventional structured equation model performs slightly better than
expected, but the results are very close For all assumed quantiles and for all sample sizes.

The estimates of the Classical structural equation model in Cases 2 and 3 are clearly skewed due
to the heavy-tailed or skewed error terms. The quantile structured equation model, on the other
hand, produces estimates with substantially lower bias and RMS, demonstrating the robustness of
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Table 4: Bayesian estimates of the parameters for measurement equation for sample size n= 50 with
ϵi ∼ N (0, 0.4)

Bayesian Quantile SEM (BQSEM) Classical BSEM

τ = 0.25 τ = 0.5 τ = 0.75
parameter RMS Bias RMS Bias RMS Bias RMS Bias
λ21 0.2411926 .2383786 0.2507788 0.2483686 0.2494235 0.2480190 0.2406693 0.2201729
λ31 0.2170544 0.2165038 0.2222833 0.2219468 0.2205673 0.2199341 0.2205582 0.2318964
λ52 0.1939486 0.1924313 0.2027062 0.2011214 0.2043317 0.2015585 0.1900587 0.1901958
λ62 0.1906013 0.1689870 0.2046297 0.1801278 0.1985721 0.1751165 0.1984131 0.1938617
λ83 0.1946569 0.1925195 0.1921702 0.1903019 0.1935480 0.1926372 0.1948472 0.9200580
λ93 0.3183845 0.3066871 0.3167914 0.3050555 0.3133657 0.3041963 0.3011863 0.3050811
a1 0.6041172 -0.6026840 0.7495838 -0.7486536 0.8133972 -0.8089450 0.6006817 -0.8206944
a2 0.6197687 -0.6195902 0.7589573 -0.7587590 0.8116690 -0.8090528 0.61186397 -0.792677
a3 0.5644576 -0.5558977 0.6924816 -0.6850060 0.7436408 -0.7285041 0.7903729 -0.730118
a4 0.6419527 -0.6398631 0.6901847 -0.6860199 0.6851028 -0.7285041 0.693193 -0.731883
a5 0.5128443 -0.5120956 0.5479911 -0.5479478 0.5460172 -0.5457094 0.545902 -0.593910
a6 0.6319135 -0.6195669 0.6652681 -0.6572180 0.6658061 -0.6563945 0.633119 -0.705583
a7 0.6563760 -0.6549768 0.7305370 -0.7299345 0.7035828 -0.7029385 0.7308811 -0.732976
a8 0.5932387 -0.5921227 0.6610297 -0.6590103 0.6412507 -0.6394662 0.589532 -0.6700319
a9 0.6297601 -0.6263057 0.7060993 -0.7041201 0.6895409 -0.6873600 0.620048 -0.710489
Φ11 0.5411528 0.5117659 0.5197178 0.4872096 0.5203293 0.4864295 0.5077318 0.472954
Φ11 0.2682921 -0.2600433 0.2690989 -0.2609211 0.2783134 -0.2672446 0.259736 -0.270281
Φ21 0.2682921 -0.2600433 0.2690989 -0.2609211 0.2783134 -0.2672446 0.259187 -0.270281
Φ22 0.6912210 0.6844864 0.6913565 0.6844438 0.6914934 0.6792883 0.683711 0.661184

the suggested approach. When the sample size is increased from 25 to 50, the bias and RMS almost
always decrease.

7. Conclusion

In this article, a quantitative structured equation model (SEM) technique was used to provide a
comprehensive analysis of the interrelationships between latent variables. A Bayesian approach based
on ALD theory was used for statistical inference. The simulation study shows that the quantitative
values are SEM with small sample sizes with computational efficiency and lead satisfactorily in
estimating parameters when the error term distribution is different distributions and non-normal
distribution and this matches with the quantile regression hypothesis so it is more efficient
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