
Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 2179-2194
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.5914

Efficient image encryption via chaotic hight
algorithm

Woud M. Abeda,∗

aDepartment of Basic Sciences, College of Dentistry, University of Baghdad, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

This paper is devoted to introducing a new three dimensions hyperchaotic system and adapting it
to enhance the Hight algorithm. The proposal hyperchaotic system with one equilibrium point is
mainly derived from the Lorenz system, which we called (3D-NSC). The dynamic analysis of 3D-
NSC presents some properties such as; stability of symmetric equilibria; phase diagram, bifurcation
and Lyapunov exponents (LE), which are all investigated analytically and numerically. Also, the
circuit design of the 3D-NSC is introduced with some properties. The proposed system is occupied
with improving the Hight algorithm. The main propose system is to create a key schedule for the
chaotic Hight algorithm. This system is then applied to encrypt different images types. Our proposed
system showed high encryption efficiency compared to systems, based on some performance analyzes
such as; histogram, pixel change rate (NPCR), standardized variable mean intensity (UACI), pixel
correlation, and entropy.

Keywords: Chaotic system, Hyperchaotic, Image encryption, Hight algorithm, Circuit Design.

1. Introduction

In recent years, the means of communication via the internet of various kinds becomes a reality
for our lives and becomes a means of transmitting and receiving all information. Therefore, pre-
serving this information is necessary. In other words, the confidentiality of information through the
transmission of data is a significant issue. As a consequence, many researchers and security agencies
have introduced many encryption methods such as RSA, Data Encryption Standard (DES), and
Advanced Encryption Standard (AES), which are considered the traditional methods and inade-
quate for securing. This is due to their distinguishing features, such as including bulk data capacity,
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high redundancy [20]. After that, several researchers introduced many various algorithms which are
stronger more than its predecessor from the traditional algorithm, such as, compressive sensing [40];
wavelet transmission [34]; affine transformation[25]; neural network [23]; fractal theories [4, 5, 3],
and chaotic algorithms [14, 36, 15]. Virtually, chaotic systems in cryptography are considered more
efficient than the other method. Chaotic systems have randomness, complexity, and mixing that
achieves Shannon’s principles of cryptography, diffusion and confusion [24, 31].

In the 1970s mathematicians used a new term for systems that are complex and unpredictable
called dynamical systems. As these systems contain some characteristics, including ergodicity, and
a sensitivity dependence on initial values and parameters. These chaotic systems have been used
and become known to many physicists and mathematicians, the most prominent of these scientists
Poincare [29].

Two types of chaotic systems, a discrete-time and continuous-time systems. The discrete-time
chaotic systems can be described by difference equations, whereas the continuous-time chaotic sys-
tems can be described by partial differential equations and ordinary differential equations [32].
Chaotic systems have some features such as unpredictability, which made them useful for other fields
such as information theory, engineering, communications, power system protection, etc. [26, 27].

Chaotic systems have been used in cryptographic systems, and the essential reason is the extreme
chaoticity and high randomness, which is mainly used in the formation of strong keys, therefore
many researchers have introduced several algorithms with fast performance and high security. Some
researchers such as, Liu et al. [21], Hua et al. [14], Diab et al. [10], and Koppu et al. [19]
introduced new algorithms for image encryption based essentially on 2- dimensions chaotic maps.
Others continued to provide encryption algorithms based mainly on chaotic systems, for example,
Hayder et al. [28], Hua, Zhongyun, et al. [16] and Cao et al. [9]. In 2019, Alawida, M. et al. [1]
presented a new proposed of image encryption based on hybridizing digital chaos and finite state
machine. In the same year, Ali, D. S.[2] proposed a new 2D- hyperchaotic map called Henon, logistic,
iterative chaotic map with infinite collapse (ICMIC) maps (2D-HLCM), which was adopted to design
a new encryption algorithm for an image. Khan, M. et al. [17] introduced a new technique for
image encryption essentially based on a hybrid method that combines chaotic systems and Brownian
motion. In 2021, Was, M. T. et al. [3] proposed a novel algorithm called the image splitting algorithm
based mainly on three chaotic maps are combined together to generate a new 2D- chaotic map called
2D-LCHM. Additionally, several investigators proposed encryption algorithms based on a 3D-chaotic
system, such as Farhan et al. [11] presented a new proposed for image encryption based on 3D chaotic
maps containing a unique feature of repeatedly crossing inside and outside a cylinder. In 2021 Yan,
W. et al. [37] introduced a new encryption algorithm based on a novel 3D-infinite collapse map (3D-
ICM). In the same year, Alwan, N. A. et al. [6] proposed a chaotic RSA encryption algorithm based
essentially on a 3-D chaotic dynamic system derived from 3D-Memristor and 3D-Sprott’s chaotic
systems. Asl, A. M. et al. [7] proposed an image encryption system for scale-invariant digital colour
using a 3D-modular chaotic system.

In this effort, a three-dimensional hyperchaotic system derived from the Lorenz system, called
(3D-NSC), which has highly distributed and complex behavior, and better ergodicity is proposed.
We also designed an electronic circuit for our chaotic system using the program proteus design suite.
Through the 3D-NCS, the secret key’s initial values are produced; it is then used to produce a
pseudo-random number generator (PRNG) which is used to generate a key schedule for the hight
algorithm that realized confusion and diffusion. Our encryption system is used to encrypt multiple
types of colour and grayscale images. The proposed system is analyzed to evaluate its performance
using much analytics such as; histogram, correlation pixels, and Shannon entropy analyses. The
analysis results from the proposed encryption system have high security and high efficiency. The
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remainder of this paper is organized as follows. The design and the performance of the 3D-NCS,
such as a phase diagram, bifurcation and LE, are described in section 2. AS well, the circuit design
is also is presented in this section. Section 3 introduced the encryption system includes the hight
encryption algorithm traditional, and algorithm of hight encryption developed. Simulation results
and an analysis of the security are introduced in Section 4. Then in Section 5 the conclusion of this
article.

2. A new 3-dimensions chaotic system and its properties

The new 3-dimensions chaotic system (3D-NCS) derived from Lorenz system [22] is defined by
the following differential equation:

ẋ = cy − x− bz,

ẏ = axz − xy − bx,

ż = xy − bz,

(2.1)

where x, y, z and a, b, c are state variables, parameters, respectively.
Initial values of the system are x(0) = 0, y(0) = 0, z(0) = 0, and the parameters values intervals are
a ∈ (10, 100), b ∈ (30, 150), and c ∈ (10, 100).

2.1. Equilibrium point of 3D-NCS

Th equilibria point of 3D-NCS, can be obtained by setting the right-hand side of (2.1) equals
zero.

cy − x− bz = 0,

axz − xy − bx = 0,

xy − bz = 0,

(2.2)

After simple arithmetic, the equilibrium point are E
(

b(b+1)
a

, b2, b
2(b+1)

a

)
, where a > 0. Via Jacobian

matrix can be investigated about the local behaviour of the system 3D-NCS around the equilibrium
point:

Jac(x, y, z) =

 −1 c −b
az − y − b −x ax

y x −b

 (2.3)

The Jacobian matrix for equilibrium point E become:

Jac(E) =

 −1 c −b
b3 − b − b(b+1)

a
b(b+ 1)

b2 b(b+1)
a

−b

 (2.4)

The eigenvalue of 3D-NCS is obtained from det(λI − Jac(E)) = 0, where det refers to matrix
determinant, and I refers to identity matrix. The characteristic polynomial of E is obtained from
the Jacobian matrix for equilibrium point E is:

λ3 +m1λ
2 −m2λ−m3 = 0 (2.5)

where m1 = (a−b+ab−b2)
a

,m2 = b−ab−ab3+3b2+3b3+b4−abc+ab3c
a

, and m3 = 2b2+4b3+3b4−b6−ab2c+ab3c+2ab4c
a

,
where a > 0.
Then the eigenvalues of the above characteristic polynomial are:
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for E(226.5, 22500, 33748.5): where a = 100, b = 150, and c = 100;

λ1 = 18209.12;

λ2 = −18627.410;
λ3 = 40.78;

for E(755, 22500, 112495): where a = 30, b = 150, and c = 30;

λ1 = −12434.34;
λ2 = 7940.27;

λ3 = 3588.067;

We have complex eigenvalues where values a ∈ (10, 19), and c ∈ (10, 19) for example
E(2059.09, 22500, 306804.54), where a = 11, b = 150, and c = 11;

λ1 = −13649.086 + 0i;

λ2 = 5719.497 + 6583.578i;

λ3 = 5719.497− 6583.578i;

3. Dynamical Analysis of the 3D- new chaotic system

In this section, we introduced the performance of (2.2) via an phase diagram, bifurcation and
expansion Lypencove (LE) shows in Figures (1, 2, 3), respectively.

3.1. Phase diagram

A dynamic attractor system is to draw a path for the system via a set of points that describe
the behaviour of the system and track its motion, starting with the initial point and the effect of the
parameters. The parameter set of 3D-NCS a,b, and c to guarantee the trajectory maximum range
spread, where a ∈ (10, 100), a ∈ (30, 150), and a ∈ (10, 100). For the initial variables of 3D-NCS
with one equilibrium given as (x0, y0, z0) = (0, 0, 0). Figure 1 (a)-(d) shows the attractor of x-y-z,
x-y ,x-z, and y-z, of 3D-NCS, respectively. where the initial variables is (0, 0, 0), shows the attractor
of where parameters are a = 100; b = 150, and c = 100.

Figure 1: Different orientations on 3D-NCS attractor for the initial variables (0, 0, 0), and the parameters values of a;
b and c are: (a) 100; 150, and 100, respectively. (a)x-y-z attractor; (b) x-y attractor; (c) x-z attractor; and (d) y-z
attractor.
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3.2. Chaotic behavior using Bifurcation and Lyapunov exponents

There are many measures to describe the chaotic dynamic systems, the most famous are bifurca-
tion and Lyapunov exponents. The bifurcation is a study of changes in the qualitative or topological
structure of a chaotic system that refers to the phenomenon of a system exhibiting new behavior as
varying parameters.

Figure 2: The bifurcation diagram of 3D-NCS for the initial variables (0, 0, 0), and the parameters values of a; b
and c are: (a) when b = 150, c = 100, and a ∈ [99 : 100] step = 0.01, respectively, (b) when a = 100, c = 100, and
b ∈ [149 : 150] step = 0.01, respectively, and (c) a = 100, b = 150, and c ∈ [99 : 100] step = 0.01, respectively.

To describe the dynamical behavior of 3D-NCS, used Lyapunov exponents (LE), which is the
rate that measures the divergence or convergence between two neighboring trajectories. LE can be
defined mathematically as [33]:

λ ∼=
1

t
ln
∥ δx(t) ∥
∥ δx(0) ∥

(3.1)

where ∥δx(t)∥
∥δx(0)∥ is the distance between two neighboring trajectories.

Any system is called chaotic if the LE includes at lest one positive trajectory, or hyperchaotic if LE
includes two or more positive trajectory [33].
Figure 3 depicts the LE of 3D-NCS of some states, where the parameters are set as a = 100, c = 100,
and 30 ≤ b ≥ 150, and the initial variables are (x, y, z) = (0, 0, 0). This figure clearly shows the
dynamical system of 3D-NCS is hyperchaotic. In Figure 3(a) the first LE (blue line) is positive, the
second LE (red line) is positive with large values, and the third LE (yellow line) is negative, in the
same Figure 3(b) shows the first and second LE (blue red line) is zero, resectovely, while the third
LE is negative, in the range 0.2 to 0.68. whereas in the range 0.68 to 1, the values of the first and
second LE are rise up while the third LE continues to be negative.

Figure 3: The Lyapunov exponents of 3D-NCS for the initial variables (0, 0, 0), and the parameters values of a; b and
c are: (a) when a = 100, b = 150, and c = 100, respectively, and (b) when a = 100, b = 300, and c = 100, respectively.
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4. Analog Circuit Design

Many chaotic circuits have recently been created to induce chaos. The ability to synchronize
chaotic circuits offers up a variety of uses for them, including signal masking and communication
security. A circuit diagram for the proposed driven is built using system (2.2), as illustrated in
Figure 4. The circuit is mostly made up of 5 op-amp (TL084ACN), 3 multipliers, 3 capacitors, and
12 Resistors.

Figure 4: Circuit design of 3D-NCS.

According to the Figure 4, one gets the state equation as follows:

dx

dt
=

1

C1

(
y

R1

− (
x

R2

)(
R5

R4

)− (
z

R3

)(
R12

R11

)
dy

dt
=

1

C2

(
xz

10 R6

−
(

xy

10 R7

)(
R5

R4

)
−
(

x

R8

)(
R5

R4

))
dz

dt
=

1

C3

(
xy

10 R9

− z

R10

)

(4.1)

Comparing equation (2.1) with the proposed chaotic map, one gets R1 = R7 = R9 = 1kΩ, R4 =
R5 = R11 = R12 = 100kΩ, and R3 = R8 = R10 = 0.6666kΩ, where C1 = C2 = C3 = 100nf.
According to Figure 1, the circuit implementation results of the proposed analog circuit system’s
simulation results are provided here by the Multisim 12 software and implemented on a computer
with specifications Core i3-2.00 GHz, Intel CPU, and 4 GB RAM. Figures 6( a-c) shows the simulation
results of the chaotic map’s suggested circuit’s attractors. the time domain plots of x, y; z chaotic
signals are shown in Figure 6 (a-c).
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Figure 5: The attractors of the proposed chaotic map (a) xy, (b) xz, and (c) yz.

Figure 6: Time domain of :(a)xy, (b) xz, and (c) yz.

5. Encryption system

One of the most important security mechanisms is the Hight encryption algorithm for encrypting
images or text compared with the other block algorithm such as AES. This section introduced a
new proposed for image encryption based on the enhancing of the Hight encryption algorithm for
3D-NCS which is called the enhanced chaotic Hight encryption algorithm (ECHE). For more details
about the original algorithm of Hight, we refer the reader to see [13, 18].

5.1. The proposed chaotic Hight algorithm cryptosystem

This section, introduced the improved Hight algorithm based on the 3D-NCS, we called it, chaotic
Hight algorithm (CHA). Before that 3D-NCS is used to generate PRNG sequence, which is adapted
to generate the chaotic key schedule (CKS). S-box will be the key schedule of the (CHA).

5.1.1. Design a new Key schedule of (CAH)

This part introduced a new algorithm to generate a chaotic key schedule (CKS) for (CHA) based
on 3D-NCS.
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(a) Pseudo-random number generator based on the 3D-NCS

One of the most important applications that use chaotic systems is encryption, which is used to
generate of pseudo-random number generator (PRNG) based on chaotic systems. In fact, designing
a sequence of PRNG is utilized in several applications of cryptography such as; digital signatures,
cryptosystems using keys and data hiding [38, 8]. The NIST tests are used to illustrate some random-
ness properties of the generated sequence from 3D-NCS, which after that adopted in the encryption
algorithm. A new proposal are introduced to generate PRNG based on 3D-NCS. Four chaotic at-
tractors are applied to generate PRNG are called NC(1),NC(2), NC(3) and NC(4), which turned
out to have a high sensitivity and complexity in performance. Algorithm 2.2.1 shows the procedure
to generate (PRNG).

Algorithm 1: PRNS based on 3D-NCS

Input: The initial values (x0, y0, z0) = (0, 0, 0), when (a, b, c) = (100, 150, 100).
Output: Four PRNG, namely, NC(1), NC(2), NC(3) and NC(4), each of them with length
32-bits;

For i = 1 : 3 do Generate the chaotic sequences X, Y , and Z from system (2).
Convert the floating number of X, Y , and Z into 32-bit binary;
Shift 3-bits left rotation X, Y , and Z sequences ;
Generate Sequences XY = X ⊗ Y ,
XZ = X ⊗ Z, and YZ = Y ⊗ Z;
Generate Sequence XYZ = XY ⊗XZ ⊗ Y Z;
Generate Sequence
XYZ = [XYZ XYZ], with length 64-bits;
For j = 1 : 64 do
NC(i) = XYZ(j);
End
end

Additionally, we used NIST-800-22 [30] to assure that the four sequences are random. NIST-800-
22 contains 16 test of different statistical. The results of a statistical test are illustrated in Table 1.
For the test, if the p− value > 0.01, then the generated sequence is passed, otherwise, the sequence
is non-random. The initial values of the 3D-NSC of the test is to be (x0, y0, z0) = (0, 0, 0), with the
parameters (a, b, c) = (100, 150, 100).

(b) Key schedule

After generated PRNG, the key schedule values are acquired from the entries of PRNG, then
these values are scrambled to generate a chaotic key schedule (CKS). We rearrange the entries of
PRNG NC(1),NC(2),NC(3), and NC(4), in Bk row, where Bk = b1, b2, · · · , b128, and k = 1, · · · , 32
such that each row of table has Bk = [NC(1),NC(2),NC(3), and NC(4)] with size 128- bits. Each
element bi of Bk essentially is corresponding a binary number of sequence. The final step is to choose
64-bits from each row Bk, through choosing the first bit, skipping the second, choosing the third,
skipping the fourth, and so on in each series of the table. Algorithm 2.2.2 and Figure 7 shows the
flowchart of the proposed key schedule.
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Table 1: The result of NIST statistical test of the sequences NC(1), NC(2), NC(3) and NC(4).

NIST-test NC(1) NC(2) NC(3) NC(4) Results

Frequency 0.8625 0.2032 0.7532 0.4251 Passed

Block-Frequency 0.1723 0.3720 0.7325 0.658 Passed

Cumulative-Sums 0.9873 0.9146 0.1032 0.3386 Passed

Runs 0.5715 0.7132 0.8319 0.7631 Passed

Longest-Run 0.5451 0.3251 0.6322 0.6791 Passed

Binary Matrix Rank 0.2017 0.6191 0.7613 0.8691 Passed

Discrete Fourier Transform 0.4211 0.0431 0.1198 0.1128 Passed

Non-Overlapping Templates 0.5353 0.4183 0.3386 0.3491 Passed

Overlapping, Templates 0.1658 0.8641 0.2297 0.2631 Passed

Maurers Universal Statistical 0.2414 0.1978 0.2157 0.2169 Passed

Approximate Entropy 0.1527 0.7387 0.7020 0.6121 Passed

Random-Excursions 0.9374 0.8551 0.8211 0.9232 Passed

Random-Excursions Variant 0.4167 0.4142 0.6422 0.7910 Passed

Serial Test-1 0.3122 0.04512 0.5357 0.6759 Passed

Serial Test-2 0.8122 0.6913 0.0769 0.723 Passed

Linear-Complexity 0.7523 0.2997 0.6652 0.3727 Passed

Algorithm 1: Chaotic key schedule (CKS)

Input: Bk where k = 1, · · · , 34;
Output: Key schedule, with size 34-rows and 64-bits;
For k = 1 : 34 do
For j = 1 : step 2 : 128 do
key(k, j) = Bk,j;

End
end

Figure 7: The flowchart of the proposed key schedule.
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6. Chaotic Hight Algorithm

Encryption algorithms are divided into types or sets; The first type of these algorithms is called
traditional algorithms which depended essentially on the blocks and its bitstream, such as; Encryption
Standard (AES) [12], and Data Encryption Standard (DES) [32]. The other type is the modern
algorithms such as; wavelet transform, chaotic systems, etc. Chaotic systems show high performance
in encryption techniques [11]. In this section, we introduced an improved Hight algorithm with a
new key schedule based essentially on system (2.2). After creating the (CKS) in the previous section,
now is possible to hybridize the Hight algorithm with the (CKS). Figure 8 and algorithm 9 shows
the procedure of the chaotic Hight algorithm (CHA).

Figure 8: Chaotic Hight Algorithm.
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Algorithm 1: Chaotic Hight Algorithm (CHA)

Input: Plaintext, key;
Output: Ciphertext;
Initial Transformation Palintext, key;
X0,0 ← P0 ⊗ k0;
X0,1 ← P1;
X0,2 ← P2 ⊗ k1;
X0,3 ← P3;
X0,4 ← P4 ⊗ k2;
X0,5 ← P5;
X0,6 ← P6 ⊗ k3;
X0,7 ← P7;
Round transformation
For i=1 to 32 do
Xi+1,1 ← X1,0;
Xi+1,3 ← Xi,2;Xi+1,5 ← Xi,4;
Xi+1,7 ← Xi,6;
Xi+1,0 = Xi,7 ⊗ k4i+3 ;
Xi+1,2 = Xi,1 ⊗ k4i+2;
Xi+1,4 = Xi,3 ⊗ k4i+1 ;
Xi+1,6 = Xi,5 ⊗ k4i;
Final transformation
C0 ← X32,1 ⊗ k38;
C1 ← X32,2;
C2 ← X32,3 ⊗ k39;
C3 ← X32,4;
C4 ← X32,5 ⊗ k40;
C5 ← X32,6;
X0,6 ← X32,7 ⊗ k41;
C7 ← X32,0;
Ciphertext (C0, C1, C2, C3, C4, C5, C6, C7);

7. Cryptanalysis and Experimental Results

In this section, we introduced the cryptanalysis results of the proposed encryption system. In this
simulation, we used a the dataset from the USC-SIPI image dataset with standard image processing.
High ability to encrypted different types of images by transforming the pixels of images into random
pixels difficult to recognize without any information about the plaintext images. The system of
encryption for some images (color and grayscale images) are shown in Figure 10. Besides, Figure
11 and 12 illustrates plain (color and grayscale images) histograms, which have specific patterns,
respectively.

http://sipi.usc.edu/database/
http://imageprocessingplace.com/root files V3/image databases.htm
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Figure 9: The results of simulation for the 3D-NCS: (a) Plain color and grayscale images; (b) the histogram of (a);
(c) the cipher images of (a); and (d) the histogram of (c).

7.1. Histogram analysis

The histogram measure represents the distribution of the image’s pixel intensity values. Figures
11 and 12 illustrate the histogram of colour and grayscale images, respectively. They also show how
the proposed encryption system achieve confusion property, where the original image is indiscernible.

Figure 10: Histogram for the colour image: (a) plain image; (b) histogram of (a); (c) encryption of (a); (d)-(f)
histograms of (c) red, green and blue components, respectively.
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Figure 11: Distribution of the grayscale image pixel intensity values: (a) plain image; (b) histogram of (a); (c)
encryption of (a); and (d) histogram of (c).

7.2. Correlation Analysis

Correlation measure can be essentially defined as the relationship between two existing random
variables. In image processing, it can be defined as the relation between two adjacent pixels in the
image. Therefore, the encryption proposed is used to shatter the correlation between image adjacent
pixels. Therefore, the correlation value after encryption refers to the efficiency of the encryption
system. The results of the correlation of parrot images in three directions (horizontal, vertical, and
diagonal) are shown in Figure 13. Table 2 illustrates the results of some previous work. The measure
of correlation can be defined as follow:

CC =
E(x− E(x))E(y − E(y))√

D(x)
√
D(y)

(7.1)

where

E(x) =
1

N

N∑
i=1

xi and D(x) =
1

N

N∑
i=1

(xi − E(x))2

Figure 12: Correlation of pixels: (a) plain image and its cipher image, along with the (b) horizontal, (c) vertical, and
(d) diagonal directions, respectively.
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Table 2: Correlation of several images.

Name Original image Cipher image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.960820 0.981383 0.947176 -0.002032 -0.012426 -0.000198

Female 0.957683 0.983928 0.944619 -0.002351 -0.003171 -0.000239

Man 0.986980 0.990941 0.975238 -0.001038 -0.002357 -0.001534

Tree 0.963143 0.942524 0.925999 -0.001129 -0.003102 -0.001762

Moon 0.902036 0.938978 0.903738 -0.000113 -0.001812 -0.000723

7.3. Shannon entropy Shannon entropy

Shannon C. in 1948, introduced a new measure of haphazardness to identifies the predicted infor-
mation value in a message, it measures in bits units. This measure is named after its name (Shannon
entropy), after that become one of the essential measures in information theory. In mathematics of
Shannon entropy can be expressed as:

H(e) =
E∑
i=1

p(ei)log
1

p(ei)
(7.2)

where E is the total number of symbols ei, and p(ei) denotes the probability of ei. The entropy for
Lena, Peppers, Tree and Couple images show in Table 3. Also, Table 4 illustrates the entropy of
Lena image’s with previous schemes.

Table 3: Entropy for different images.

Image Plain-image Cipher image

Lena 7.4429 7.9998

Peppers 6.5835 7.9997

Tree 7.5371 7.9989

Couple 6.2945 7.9998

Table 4: The information entropy results.

Image name Plain image Cipher image

Our system [33] [? ] [36] [35]

Lena 7.4429 7.9998 7.9977 7.9972 7.9972 7.9968

8. Conclusion

In this effort, a new 3D-hyperchaotic system is proposed with one equilibrium point, which we
called 3D-NCS. Some performance measures of chaos are used to show the performance of 3D-NCS
included phase diagram, LE, and Shanon entropy. Also, designed an electronic circuit for our chaotic
system using the program proteus design suite. This system is then used to produce a pseudo-random
number generator (PRNG), which is used to generate a key schedule for hight algorithm that realized
confusion and diffusion. Our encryption system is used to encode multiple types of color and grayscale
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images. Several analyzes evaluate the performance of our system through the use of many analytics
such as; histogram, correlation pixels, and analyses of Shannon entropy. The proposed encryption
system showed results of its analysis have high security and high efficiency compared with some other
systems are highly performed. Besides, it has high efficiency and complexity compared to some other
related works.
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