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Abstract

In this paper, the local bifurcation conditions that occurrence near each of the equilibrium points
of the eco-epidemiological system of one prey population apparition with two diseases in the same
population of predator have been studied and analyzed, near E1, E2, E3, E4 and E5, a transcritical
bifurcation can occurred, a saddle-node bifurcation happened near E5. Pitchfork bifurcation was
occurrences at E2, E3, E4 and E5. Moreover conditions for Hopf- bifurcation was studied near both
of one disease stable point E3, E4 and E5 . About elucidation the status of local bifurcation the
associated of the set of hypothetical of parameters with numerical results which assert our analytical
results of this model.

Keywords: Eco-epidemiological model, Local bifurcation, Hopf-bifurcation, SIS disease, SI
disease, Sotomayor’s theorem.

1. Introduction

There is no doubt that the development of work in biological mathematics and the great merger
that followed in tracing the life forms of life for various competing neighborhoods within the animal
community has a great impact on understanding many facts that biologists have benefited from
by modeling those working in mathematics into real models of competing neighborhoods. Many
researchers have worked on a variety of environmental models with different influences and did not
neglect the research on the dynamic characteristics of those models, for example, [18, 19, 1, 8, 13, 10,
14, 15, 11, 12, 23, 16]. The concept of an ecosystem is studied by representing it with a mathematical
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model using data related to that system from the environment in which the research group lives.
The purpose of the above concept is to develop a reasonable conception of the dynamics of the real
system that the environment represents. While the concept of epidemics has an urgent need because
of the interest in studying the ways and factors of the spread of epidemics understudy that include
all kinds of organisms, and thus give a logical perception about predicting what those epidemics are
and the extent of their long-term impact through modeling those epidemiological models.

Systems involving epidemics have become an interesting topic, especially when they overlap with
models of prey and predators. Among those interested in the ecological and epidemiological issue,
which links the effect of diseases on the dynamic behavior of animals in the animal life system,
was Anderson and May [2] in his work that combined the model of Lutka- Volterra, Carmack and
Mackendrick, that is, they combined ecological and epidemiological models. Therefore, a new trend
appeared in this study, which was later called ecological and epidemiological processes [4]. There are
a lot of research studies on this same content of work as such [3, 5, 6, 21]. When studying, in general,
systems of ordinary differential equations, we notice that they contain random variables in addition
to a set of parameters that will have an effective effect on the nature of those equations and their
solutions, as any set of parameters will have an effect on the behavior of those solutions to these
systems that differs from the other group. When a small smooth made to the parameter values, the
bifurcation occurred causes a sudden qualitative or topological change in its behavior. This is mean at
the equilibrium, periodic orbits or other invariant sets the local, stability properties will be changed.
The bifurcation theorem worthy of attention impression which appears on the dynamic systems such
as local bifurcation and Hopf- bifurcation of proposed eco-epidemiological systems that be composed
of numerous effects, each as stated by the model, see [17, 24, 20]. Right now, the destination is to
discuss the occurrence of local bifurcation of the Eco-epidemiological model proposed by Kadhim
and Majeed [9].

2. Model Formulation [9]

The following model:

dP

dT
= rP

(
1− P

KP

)
− aPS − C1PH

b1 + P
− C2PV

b2 + P
,

dS

dT
= θ1aPS + γH − θSH − βSV − αS − d1S,

dH

dT
= θSH − γH − d2H +

e2C1PH

b1 + P
,

dV

dT
= βSV − αS − d3V +

e3C1PV

b2 + P
.

(2.1)

Now, Table 1 explain the variables and parameters of the model.
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Table 1: The parameters and positive variables by appearing in the mathematical model

P The prey population size at time T
S The susceptible predator population size at time T
H The first infected SIS predator population size at the time T
V The second infected SI predator population size at the time T
r > 0 The growth rate of prey
Kp > 0 The carrying capacity
a > 0 predation rate of the susceptible predator on the prey
di, i = 1, 2, 3 The death rates of the susceptible, the first infected SIS and the

second infected SI predator respectively
0 < ei < 1, i = 1, 2, 3. The rates of conversion of food to the susceptible, first infected

SIS and the second infected SI predator respectively
θ > 0 The infected rate of the first SIS disease in predator population
γ > 0 The recovery rate of the first SIS disease in predator population
ci > 0, i = 1, 2 Maximum attack rate of the first infected SIS disease and the sec-

ond infected SI disease in predator population respectively.
bi > 0, i = 1, 2 half saturation rate of the first infected SIS disease and the sec-

ond infected SI disease in predator population respectively.
β > 0 The infected rate of the second disease SI in predator population.
α > 0 The external source rate of the second disease in predator popula-

tion.

System (2.1) is dimensionalized in the following system which is given in [9]:

dP

dt
= P (1− p)− u1PS − u2ph

u4 + P
− u3pv

u5 + P
= f1(p, s, h, v)

ds

dt
= u6PS + u7h− u8sh− u9sv − (u10 + u11)s = f2(p, s, h, v)

dh

dt
= −u7h+ u8sh− u12h+

u13ph

u4 + P
= f3(p, s, h, v)

dv

dt
= u10s+ u9sv − u14v +

u15pv

u5 + P
= f4(p, s, h, v)

(2.2)

where

u1 =
akp
r

, u2 =
c1
r
, u3 =

c2
r
, u4 =

b1
kp

, u5 =
b2
kp

, u6 =
e1akp
r

, u7 =
γ

r
, u8 =

θkp
r

u9 =
βkp
r

, u10 =
a

r
, u11 =

d1
r
, u12 =

d2
r
, u13 =

e2c1
r

, u14 =
d3
r
, u15 =

e3c2
r

3. The Local bifurcation analysis

In this section, the using of Sotomayor’s Theorem [22] to debate local bifurcation of the system
(2.2), since the necessary but not sufficient condition for the bifurcation to happen is the nonhyper-
bolic property of the equilibrium point.

The Jacobian matrix which is given in [22]:

J = [aij]4×4 =


1−2p−u1s− u2u4h

(u4+p)2
− u3u5v

(u5+p)2
−u1p

−u2p
u4+p

−u3p
u5+p

u6s u6p−u8h−u9v−(u10+u11) u7−u8s −u9s
u13u4h

(u4+p)2
u8h u8s−(u7+u12)+

u13p
u4+p

0

u5u15v

(u5+p)2
, u9v+u10 0 u9s−u14+

u15p
u5+p

 (3.1)



2198 Kadhim, Majeed

Checking that for any non-zero vector Ω = (ω1, ω2, ω3, ω4)
T we have:

D2fµ (ℵ, µ) (Ω,Ω) = [αi1]4×1 , (3.2)

where, α11 = −2ω1

[(
1− u2u4h

(u4+p)3
− u3u5v

(u5+p)3

)
ω1 + u1ω2 +

u2u4

(u4+P )2
ω3 +

u3u5

(u5+P )2
ω4

]
,

α21 = −2ω2 [−u6ω1 + u8ω3 + u9ω4] , α31 = −2
[

u4u13h
(u4+p)3

ω2
1 − u4u13

(u4+p)2
ω1ω3 − u8ω2ω3

]
,

α41 = −2
[

u5u15v
(u4+p)3

ω2
1 − u5u15

(u4+p)2
ω1ω4 − u9ω2ω4

]
.

D3fµ (ℵ, µ) (Ω,Ω,Ω) = [βi1]4×1 , (3.3)

where, β11 = −6ω2
1

[(
u2u4h
(u4+p)4

+ u3u5v
(u5+p)4

)
ω1 +

u2u4

(u4+P )3
ω3 +

u3u5

(u5+P )3
ω4

]
, β21 = 0,

β31 = −6ω2
1

[
−u4u13h
(u4+p)4

ω1 − u4u13

(u4+p)3
ω3

]
, β41 = −6ω2

1

[
−u5u15

(u4+p)4
ω1 − u5u15

(u4+p)4
ω4

]
.

Theorem 3.1. Assume that the stability conditions (3.2) and (3.3) as in [9] hold. Then system
(2.2) near the equilibrium point E1 has a transcritical bifurcation at the parameter (u∗

11 = u6 − u10) ,
under the authority of conditions:

u6 > u10 (3.4)

Z1 ̸= Z2 (3.5)

where,

Z1 =
u3u6

u5+1
, Z2 = −

(
u15
u5+1

−u14

u10

)
(u6 + u9).

Otherwise, neither saddle-node nor pitchfork bifurcation could be happened atE1.
Proof . using E1 = (1, 0, 0, 0) and (u∗

11 = u11) in the Jacobian matrix given in Eq. (3.1), thus
zero eigenvalue ( λ1s = 0) can be appearing in the characteristic equation of J1 .
Contingent on condition (3.4), u∗

11 > 0

Let, Ω[1] =
(
ω
[1]
1 , ω

[1]
2 , ω

[1]
3 , ω

[1]
4

)T
eigenvector of J∗

1 affiliated to the eigenvalue λ1s = 0

Thus: (J∗
1 − λ1sI) Ω

[1] = 0, where: J∗
1 = J(E1, u

∗
11) ω

[1]
1 = −

(
u14− u15

u5+1

u10
+ u3

u5+1

)
ω
[1]
4 ,

ω
[1]
2 =

(
u14− u15

u5+1

u10

)
ω
[1]
4 and ω

[1]
4 any non zero real number.

Let, H[1] =
(
ℏ[1]1 , ℏ[1]2 , ℏ[1]3 , ℏ[1]4

)T
be the eigenvector of J∗

1
T affiliated to λ1s = 0, of the matrix J∗

1
T .

Then:
(
J∗
1
T − λ1sI

)
H[1] = 0, Give us H[1] =

[
0, ℏ[1]2 ,

(
u7

u7+u12− u13
u4+1

)
ℏ[1]2 , 0

]T
and ℏ[1]2 any nonzero

real number.
Since, ∂f

∂u11
= fu11 (ℵ, u11) =

(
∂f1
∂u11

, ∂f2
∂u11

, ∂f3
∂u11

, ∂f4
∂u11

)
= (0,−s, 0, 0)T ,

hence fu3 (E1, u
∗
11) = (0, 0, 0, 0)T . Therfore H[1] fu11 (E1, u

∗
11) = 0.

The detecting of Sotomayor’s Theorem [22] appears the happening of the saddle-node bifurcation
cannot be occurring at E1 . Moreover,

since,Dfu11 (ℵ, u11) =


0
0
0
0

0
−1
0
0

0
0
0
0

0
0
0
0

 ,
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Accompanied by the vector ℵ = (p, s, h, v)T , Dfu11 (ℵ, u11) exemplify derivative of fu11 (ℵ, u11).
Therefore, we have:

Dfu11 (E1, u
∗
11) Ω

[1] =


0
0
0
0

0
−1
0
0

0
0
0
0

0
0
0
0



−
(

u14− u15
u5+1

u10
+ u3

u5+1

)
ω
[1]
4(

u14− u15
u5+1

u10

)
ω
[1]
4

0
0

 =

−
0(

u14− u15
u5+1

u10

)
ω
[1]
4

0
0

 ,

so, by condition (3.3) as in [9] we obtain that:(
H[1]

)T [
Dfu11 (E1, u

∗
11) Ω

[1]
]
= −

(
u14− u15

u5+1

u10

)
ω
[1]
4 ℏ[1]2 ̸= 0,

Plugging Ω[1] in equation (3.2), we get:

D2fu11 (E1, u
∗
11) (Ω

[1],Ω[1]) =


2
(
ω
[1]
4

)2(u14−
u15
u5+1

u10
+

u3
u5+1

)[
−
(

u14−
u15
u5+1

u10
+

u3
u5+1

)
−u1

(
u14−

u15
u5+1

u10

)
+

u3u5
(u5+1)2

]

−2
(
ω
[1]
4

)2(u14−
u15
u5+1

u10

)[
u6

(
u14−

u15
u5+1

u10
+

u3
u5+1

)
+u9

]
0

−2
(
ω
[1]
4

)2[
u9

(
u14−

u15
u5+1

u10

)
+

(u5u15)

(u5+1)2

(
u14−

u15
u5+1

u10
+

u3
u5+1

)]

 .

So, contingent on (3.2) and (3.3) as in [9] with condition (3.5), (Z2 > 0)

Thus,
(
H[1]

)T
D2fu11 (E1, u

∗
11)
(
Ω[1],Ω[1]

)
= −2

(
ω
[1]
4

)2
ℏ[1]2

[
u7

u7+u12− u13
u4+1

]
[Z1 − Z2] ̸= 0.

The detecting of Sotomayor’s Theorem [22] appears the happening of a trancecritical bifurcation at
system (2.2) near E1.
Opposite of condition (3.3) as in [9] (Z2 < 0 → Z1 − Z2 > 0)
Either, condition (3.5) holds. Then By Sotomayor’s Theorem [22], system (2.2) near E1 possesses a
trancecritical bifurcation.

Or,
(
H[1]

)T
D2fu11 (E1, u

∗
11)
(
Ω[1],Ω[1]

)
= 0,

Plugging Ω[1] in equation (3.3), we get:

D3fu11 (E1, u
∗
11)
(
Ω[1],Ω[1],Ω[1]

)
=


−6

[
u3 u5

(u5+1)3

(
u14− u15

u5+1

u10
+ u3

u5+1

)(
u14− u15

u5+1

u10

)
ω3
4

]
0
0

−6

[
−u5 u15

(u5+1)4

(
u14− u15

u5+1

u10
+ u3

u5+1

)(
u14− u15

u5+1

u10

)
ω3
4

]

,
Thus,

(
H[1]

)T
D3fu11 (E1, u

∗
11)
(
Ω[1],Ω[1],Ω[1]

)
= 0,

The detecting of Sotomayor’s Theorem [22] appears the happening of pitchfork bifurcation at system
(2.2) near E1 cannot occur. □

Theorem 3.2. Assume that the stability condition (3.6a) as in [9] hold. Then system (2.2) near

E2 = (p̂, ŝ, 0, 0) possesses a transcritical bifurcation at the parameter value
(
û12 = u8ŝ+

u13p̂
u4+p̂

− u7

)
,
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according to the following condition:

u7 < u8ŝ+
u13p̂

u4 + p̂
(3.6)

u7

u8

< ŝ (3.7)

(−u1p̂)

(
u9ŝ− u14 +

u15p̂

u5 + p̂

)
> u10

(
u3p̂

u5 + p̂

)
(3.8)

Ẑ1 ̸= Ẑ2 (3.9)

Otherwise, no saddle-node happens, but pitchfork bifurcation can occur at E2.
where,

Ẑ1 =
u2u4

(u4 + p̂)2

−b̂13

(
b̂24b̂42 − b̂22b̂44

)
− b̂14b̂23b̂42

b̂44

(
b̂11b̂23 − b̂13b̂21

)
+ u8,

Ẑ2 =
−u2u4

(u4 + p̂)2

 b̂12b̂23(
b̂11b̂23 − b̂13b̂21

)
 .

Proof . By substituting E2 = (p̂, ŝ, 0, 0) with (û12 = u12) in the Jacobian matrix given in Eq.

(3.1), the characteristic equation of Ĵ2 , where Ĵ2 = J2 (E2, û12) has zero eigenvalue ( λ2h = 0) .
Provided condition (3.6), û12 > 0

Let, Ω[2] =
(
ω
[2]
1 , ω

[2]
2 , ω

[2]
3 , ω

[2]
4

)T
be the eigenvector of Ĵ2 affiliated to the eigenvalueλ2h = 0 thus,(

Ĵ2 − λ2hI
)
Ω[2]=0, which gives: ω

[2]
1 = ϵ1ω

[2]
2 , ω

[2]
3 = ϵ2ω

[2]
2 , ω

[2]
4 = ϵ3ω

[2]
2 and ω

[2]
2 any nonzero real

number
where,

ϵ1 =
−b̂23(b̂12b̂44+b̂14b̂42)−b̂13(b̂24b̂42−b̂22b̂44)

b̂44(b̂11b̂23−b̂13b̂21)
, ϵ2 =

b̂11(b̂24b̂42−b̂22b̂44)+b̂21(b̂12b̂44+b̂14b̂42)
b̂23b̂44

> 0

and ϵ3 =
−b̂42
b̂44

,

Let, H[2] =
(
ℏ[2]1 , ℏ[2]2 , ℏ[2]3 , ℏ[2]4

)T
be the eigenvector of Ĵ2

T
affiliated to λ2h = 0, of the matrix ĴT

2 then:(
ĴT
2 − λ2hI

)
H[2] = 0, Give us H[2] =

(
0, 0, ℏ[2]3 , 0

)T
where ℏ[2]3 any nonzero real number.

Since, ∂f
∂u12

= fu12 (ℵ, u12) =
(

∂f1
∂u12

, ∂f2
∂u12

, ∂f3
∂u12

, ∂f4
∂u12

)
= (0, 0,−h, 0)T ,

hence fu12 (E2, û12) = (0, 0, 0, 0)T , therefore,
(
H[2]

)T
fu12 (E2, û12) = 0.

Then by Sotomayor’s Theorem [22], the saddle-node bifurcation cannot take place at E2 . Moreover,

since,Dfu12 (ℵ, u12) =


0
0
0
0

0
0
0
0

0
0
−1
0

0
0
0
0

 ,

with the vector ℵ = (p, s, h, v)T , Dfu12 (ℵ, u12) exemplify derivative of fu12 (ℵ, u12).
And then we have:

Dfu12 (E2, û12) Ω
[2] =


0
0
0
0

0
0
0
0

0
0
−1
0

0
0
0
0



ε1ω

[2]
2

ω
[2]
2

ε2ω
[2]
2

ε3ω
[2]
2 0

 =


0
0

−ε2ω
[2]
2

0

.
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Under the authority of conditions, (3.6a) as in [9], with conditions (3.7) and (3.8), we have(
H[2]

)T [
Dfu12 (E2, û12) Ω

[2]
]
= −ε2ω

[2]
2 ℏ3[2] ̸= 0, (ε2 > 0)

Plugging Ω[2] in Eq. (3.2), we get:

D2fu12 (E2, û12) (Ω
[2],Ω[2]) =



−2
(
ω
[1]
2

)2
ϵ1

[
ϵ1 + u1 +

u2u4

(u4+P̂)
2 ϵ2 +

u3u5

(u5+P̂)
2 ϵ3

]
−2
(
ω
[1]
2

)2
[−u6ϵ1 + u8ϵ2 + u9ϵ3]

−2
(
ω
[1]
2

)2
ϵ2[ − u4u13

(u4+P̂)
2 ϵ1 − u8]

−2
(
ω
[1]
2

)2
ϵ3

[
(u5u15)

(u5+P̂)
2 ϵ1 − u9

]


,

Contingent on conditions (3.6a) as in [9] and (3.7)-(3.9), we have(
H[2]

)T
D2fu12 (E2, u12)

(
Ω[2],Ω[2]

)
= 2ϵ2 ℏ3[2]

(
ω
[2]
2

)2
[ Ẑ1 − Ẑ1] ̸= 0.

The detecting of Sotomayor’s Theorem [22] appear the happening of a transcritical bifurcation at
system (2.2) near E2 with (û12 = u12) .
Opposite of condition (3.9) and plugging Ω[2] in Eq. (3.3), we get:

D3fu12 (E2, û12) (Ω
[2],Ω[2],Ω[2]) =



−6ϵ21

(
ω
[2]
2

)3 [
u2u4

(u4+P̂)
2 ϵ2 +

u3u5

(u5+P̂)
3 ϵ3

]
0

6
(
ω
[2]
2

)3
[ u4u13

(u4+P̂)
3 ϵ2]

6
(
ω
[2]
2

)3 [
(u5u15)

(u5+P̂)
2 ϵ3

]


,

Again contingent on condition (3.6a) as in [9] with conditions (3.7) and (3.8), we have(
H[2]

)T
D3fu12 (E2, û12) (Ω

[2],Ω[2],Ω[2]) = 6
(
ω
[1]
2

)3 [
u4u13

(u4+P̂)
3 ϵ2

]
̸= 0. (ε2 > 0)

The detecting of Sotomayor’s Theorem [22] appear the happening pitchfork bifurcation near E2 with
(û12 = u12) .
□

Theorem 3.3. Assume that the local stability conditions (3.7b-3.7f) as in [9] hold. Then system
(2.2) near the equilibrium point E3 = (p, s, h, 0) possesses a transcritical bifurcation at the parameter

value
[
u14 = u9s+

u15p
u5+p

− A
]
, according to the following conditions.

c14c23 > c13c24 (3.10)

Z1 ̸= Z2 (3.11)

Z3 ̸= Z4 (3.12)

Otherwise, no saddle-node occurred but pitchfork bifurcation can be occurred at E3.
Where,

A =
c31c42 (c14c23 − c13c24)

c23 (c12c31 − c11c32) + c13 (c21c32 − c12c31)
, (A < 0)

Z1 = 1 +
u2u4(

u4 + P
)2 ξ2 + u4u13(

u4 + P
)2 ξ2 − u8ξ1ξ2τ2 − u9ξ1ξ2τ3 + u8ξ1ξ2τ1,

Z2 = −
[

u2u4h

(u4 + p)3
− u1ξ1 −

u3u5

(u5 + p)2
ξ3 + u6τ1ξ1 − u9ξ1ξ3τ1 +

u4u13

(u4 + p)2
ξ2τ2 +

u5u15

(u5 + p)2
ξ3τ3

]
,
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Z3 =
u2u4h

(u4 + p)4
+

u2u4

(u4 + p)3
ξ2,

Z4 = −
[
τ2

(
u4u13h

(u4 + p)4
+

u4u13

(u4 + p)3
ξ2

)
+ ξ3τ3

u5u15

(u5 + p)4
− u3u5

(u4 + p)3
ξ3

]
,

ξ1 =
−c31
c32

< 0,

ξ2 =
− [c44 (c21c32 − c22c31) + c24c31c42]

c23c32
−→c 44

> 0

and

ξ3 =
c31c42
c32c44

< 0,

τ1 =
−c13
c23

< 0,

τ2 =
c13c21 − c11c23

c23c31
> 0 and τ3 =

c13c24 − c14c23
c23c44

< 0

Proof . via using E3 =
(
p, s, h, 0

)
in the Eq. (3.1), then the characteristic equation of J3, where J3 =

J3 (E3, u14) given in [9] having zero eigenvalues (λ3v = 0), if and only if M4 = 0 and thus E3

becomes a non-hyperbolic, whenever the parameter takes the value
(
u14 = u9s+

u15p
u5+p

− A
)
.

Such that cij=cij, for all i, j = 1, 2, 3, 4 except c44 = A.
It is clear that u14 > 0 , provided conditions (3.7a -3.7f) as in [9] with condition (3.10).

Let, Ω[3] =
(
ω
[3]
1 , ω

[3]
2 , ω

[3]
3 , ω

[3]
4

)T
be the eigenvector of J3 corresponding to the eigenvalue λ4v = 0

thus,
(
J3 − λ3vI

)
Ω[2]=0, give us:

ω2
[3] = ξ1ω1

[3], ω3
[3] = ξ2ω1

[3], ω4
[3] = ξ3ω1

[3] and ω1
[3] any nonzero real number, where, ξ1, ξ2 and ξ3

are mentioned in state theorem.

Let, H[3] =
(
ℏ[3]1 , ℏ[3]2 , ℏ[3]3 , ℏ[3]4

)T
be the eigenvector of J3

T
affiliated to λ4v = 0, of the matrix J3

T
then:(

J3
T − λ4vI

)
H[3] = 0, Give us H[3] =

(
ℏ[3]1 , τ1ℏ[3]1 , τ2ℏ[3]1 , τ3ℏ[3]1

)T
where ℏ[3]1 any nonzero real number.

Where, τ1, τ2 and τ3 are mentioned in state theorem

since, ∂f
∂u14

= fu14 (ℵ, u14) =
(

∂f1
∂u14

, ∂f2
∂u14

, ∂f3
∂u14

, ∂f4
∂u14

)
= (0, 0, 0,−v)T ,

hence, fu14 (E3, u14) = (0, 0, 0, 0)T . Therefore
(
Ω[3]
)T

fu14 (E3, u14) = 0.
The detecting of Sotomayor’s Theorem [22] appears the happening of the saddle-node bifurcation can-
not be at E3 . Moreover,

since, Dfu14 (ℵ, u14) =


0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
−1

 ,

Dfu14 (E3, u14) Ω
[3] =


0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
−1




ω
[3]
1

ξ1ω
[3]
1

ξ2ω
[3]
1

ξ3ω
[3]
1

 =


0
0
0

−ξ3ω
[3]
1

,
contingent on conditions (3.7d) and (3.7e) as in [9] with condition (3.10), we get(
H[3]

)T [
Dfu14 (E3, u14) Ω

[3]
]
= −ξ3τ3ω

[3]
1 ℏ[3]1 ̸= 0 . (ξ3 < 0 and τ3 < 0 )
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Plugging Ω[3] in Eq. (3.2), we get:

D2fu14 (E3, u14) =



−2
(
ω
[3]
1

)2 [(
1− u2u4h

(u4+p)3

)
+ u1ξ1 +

u2u4

(u4+P)
2 ξ2 +

u3u5

(u5+P)
2 ξ3

]
−2ξ1

(
ω
[3]
1

)2
[−u6 + u8ξ2 + u9ξ3]

−2
(
ω
[3]
1

)2
[ u4u13h
(u4+p)3

− u4u13

(u4+P)
2 ξ2 − u8ξ1ξ2]

2ξ3

(
ω
[3]
1

)2 [
(u5u15)

(u5+p)2
+ u9ξ1

]


,

contingent on conditions (3.7b-3.7f) as in [9] with condition (3.11).

So,
(
H[3]

)T
D2fu14 (E3, u14)

(
Ω[3],Ω[3]

)
= −2

(
ω
[3]
1

)2
ℏ[3]1

[
Z1 − Z2

]
̸= 0.

The detecting of Sotomayor’s Theorem [22] appears the happening a transcritical bifurcation at E3

with (u14 = u14) .
Opposite of condition (3.11) and plugging Ω[3] in eq. (3.3), we get:

D3fu14 (E3, u14) =


−6
(
ω
[3]
1

)3 [
u2u4h
(u4+p)4

+ u2u4

(u4+P)
3 ξ2 +

u3u5

(u5+P)
3 ξ3

]
0

−6
(
ω
[3]
1

)3
[−u4u13h
(u4+p)4

− u4u13

(u4+P)
3 ξ2]

−6
(
ω
[3]
1

)3 [
−u5u15

(u5+p)4
ξ3

]


,

Again contingent on conditions (3.7b-3.7f) as in [9] with condition (3.12).

Thus
(
H[3]

)T
D2fu14 (E3, u14)

(
Ω[3],Ω[3],Ω[3]

)
= −6

(
ω
[3]
1

)2
ℏ[3]1

[
Z3 − Z4

]
̸= 0.

The detecting of Sotomayor’s Theorem [22] appears the happening of pitchfork bifurcation at E3 with
(u14 = u14). □

Theorem 3.4. Assume that the local stability conditions (3.9b-3.9d) as in [9] hold. Then system
(2.2) near the equilibrium point E4 = (¯̄p, ¯̄s, 0, ¯̄v) possesses a transcritical bifurcation at the parameter
value ¯̄u12 = u8 ¯̄s− u7 +

u13 ¯̄p
u4+¯̄p

according to the following conditions:

u7 < u8 ¯̄s+
u13 ¯̄p

u4 + ¯̄p
(3.13)

¯̄s >
u7

u8

(3.14)

¯̄d13
¯̄d24

¯̄d42 > − ¯̄d23

(
¯̄d12

¯̄d44 − ¯̄d14
¯̄d42

)
, (3.15)

¯̄d24
¯̄d41 − ¯̄d21

¯̄d44 > − ¯̄d24
¯̄d42m1, (3.16)

Otherwise, no saddle-node but pitchfork bifurcation can be occurred under the following condition

u4u13(
u4 +

¯̄P
)2 = −u8m1, (3.17)

Where, m1 =
¯̄d23( ¯̄d14 ¯̄d41− ¯̄d11

¯̄d44)− ¯̄d13( ¯̄d24 ¯̄d41− ¯̄d21
¯̄d44)

¯̄d13
¯̄d24

¯̄d42+
¯̄d23( ¯̄d12 ¯̄d44− ¯̄d14

¯̄d42)
(m1 > 0)

Proof . By substituting E4 = (¯̄p, ¯̄s, 0, ¯̄v) in the Eq. (3.1), then the characteristic equation of
¯̄J4, where ¯̄J4 = J4 (E4, ¯̄u12) given in [9] having zero eigenvalues (λ4h = 0),
Contingent on condition (3.13), ¯̄u12 > 0.
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Let, Ω[4] =
(
ω
[4]
1 , ω

[4]
2 , ω

[4]
3 , ω

[4]
4

)T
be the eigenvector of ¯̄J4 corresponding to the eigenvalue λ4h = 0

Thus,
(
¯̄J4 − λ4hI

)
Ω[4]=0, which gives:

w2
[4] = m1ω1

[4], ω3
[4] = m2ω1

[4], ω4
[4] = m3ω1

[4] and ω1
[4] any nonzero real number.

Where, m1 , mentioned in state theorem, m2 =
( ¯̄d24 ¯̄d41− ¯̄d21

¯̄d44)+ ¯̄d24
¯̄d42m1

¯̄d23
¯̄d44

(m2 > 0) and m3 =
−( ¯̄d41+

¯̄d42m1)
¯̄d44

.

Let, H[4] =
(
ℏ[4]1 , ℏ[4]2 , ℏ[4]3 , ℏ[4]4

)T
be the eigenvector of ¯̄J4

T
affiliated to λ4h = 0, of the matrix ¯̄J4

T

then:
(
¯̄J4

T
− λ4hI

)
H[4] = 0, Give us: H[4] =

(
0, 0, ℏ[4]3 , 0

)T
where ℏ[4]3 any nonzero real number.

since, ∂f
∂u12

= fu12 (ℵ, u12) =
(

∂f1
∂u12

, ∂f2
∂u12

, ∂f3
∂u12

, ∂f4
∂u12

)
= (0, 0,−h, 0)T ,

hence, fu12 (E4, ¯̄u12) = (0, 0, 0, 0)T . Therefore
(
H[4]

)T
fu12 (E4, ¯̄u12) = 0.

The detecting of Sotomayor’s Theorem [22] appears the happening of the saddle-node bifurcation can-
not be at E4. Moreover,

since, Dfu12 (ℵ, ¯̄u12) =


0
0
0
0

0
0
0
0

0
0
−1
0

0
0
0
0

 ,

Dfu12 (E4, ¯̄u12) Ω
[4] =


0
0
0
0

0
0
0
0

0
0
−1
0

0
0
0
0




ω
[4]
1

m1ω
[4]
1

m2ω
[4]
1

m3ω
[4]
4

 =


0
0

−m2ω
[4]
1

0

,
contingent on conditions (3.9b-3.9d) as in [9] with conditions (3.14), (3.15) and (3.16).

so,
(
H[4]

)T [
Dfu12 (E4, ¯̄u12) Ω

[4]
]
= −m2ω1

[4]ℏ3[4] ̸= 0,

Plugging Ω[4] in Eq. (3.2), we get:

D2fu12 (E4, ¯̄u12) =



−2
(
ω
[4]
1

)2 [(
1− u3u5 ¯̄v

(u5+¯̄p)3

)
+ u1m1 +

u2u4

(u4+
¯̄P)

2m2 +
u3u5

(u5+
¯̄P)

2m3

]
−2m1

(
ω
[4]
1

)2
[−u6 + u8m2 + u9m3]

2m2

(
ω
[4]
1

)2
[ u4u13

(u4+
¯̄P)

2 + u8m1]

−2
(
ω
[4]
1

)2 [
(u5u15)¯̄v

(u5+¯̄p)3
− (u5u15)

(u5+¯̄p)2
m3 − u9m1m3

]


,

contingent on conditions (3.9b-3.9d) as in [9] with conditions (3.14) and (3.15). ( since m1 > 0)

So,
(
H[4]

)T
D2fu12 (E4, ¯̄u12)

(
Ω[4],Ω[4]

)
= 2m1

(
ω
[4]
1

)2
ℏ[4]3 [ u4u13

(u4+
¯̄P)

2 + u8m1] ̸= 0.

The detecting of Sotomayor’s Theorem [22] appears the happening of a transcritical bifurcation at
system (2.2) near E4 with (¯̄u12 = u12).
Opposite both of conditions (3.9d) in [9] and (3.14), (m1 < 0)
Again by conditions (3.9b-3.9c) as in [9] and condition (3.17), then plugging Ω[4] in Eq. (3.3), we
get:

D3fu12 (E4, ¯̄u12) =


−6
(
ω
[4]
1

)3 [
u3u5 ¯̄v

(u5+¯̄p)4
+ u2u4

(u4+¯̄p)3
m2 +

u3u5

(u5+¯̄p)3
m3

]
0

6
(
ω
[4]
1

)3
[ u4u13

(u4+¯̄p)3
m2]

−6
(
ω
[4]
1

)3 [
−u5u15 ¯̄v
(u5+¯̄p)4

− u5u15

(u5+¯̄p)4
m3

]

,
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contingent on conditions (3.9b-3.9c) as in [9] with condition (3.16) (m2 > 0)

So,
(
H[4]

)T
D3fu12 (E4, ¯̄u12)

(
Ω[4],Ω[4],Ω[4]

)
= 6

(
ω
[4]
1

)3
ℏ[4]3 [ u4u13

(u4+¯̄p)3
m2] ̸= 0,

The detecting of Sotomayor’s Theorem [22] appears the happening of pitchfork bifurcation at system
(2.2) near E4 with (¯̄u12 = u12). □

Theorem 3.5. Assume that the local stability conditions (3.11a-3.11g) as in [9]. Then system (2.2)

near E5 =
(
p̃, s̃, h̃, ṽ

)
, possesses saddle-node bifurcation at the parameter value ũ7 = u7 = R+ u8s̃ ,

according to the following conditions hold:

ẽ31 (ẽ22ẽ44 − ẽ24ẽ42) < −ẽ32 (ẽ24ẽ41 − ẽ21ẽ44) (3.18)

ẽ31 (ẽ12ẽ44 − ẽ14ẽ42) > −ẽ32 (ẽ14ẽ41 − ẽ11ẽ44) (3.19)

Z̃1 ̸= Z̃2 (3.20)

Otherwise, a transcritical bifurcation and pitchfork bifurcation can be occurred at E5, according to
the following conditions hold:

l0 ̸= l1 (3.21)

Z̃3 ̸= Z̃4 (3.22)

Z̃5 ̸= Z̃6 (3.23)

Where

R =
ẽ13 [ẽ31 (ẽ22ẽ44 − ẽ24ẽ42) + ẽ32 (ẽ24ẽ41 − ẽ21ẽ44)]

ẽ31 (ẽ12ẽ44 − ẽ14ẽ42) + ẽ32 (ẽ14ẽ41 − ẽ11ẽ44)
,

Z̃1 = 1− u3u5

(u5 + p̃)2
ẽ41
ẽ44

− u9n0l0
ẽ41
ẽ44

+ l1

(
u4u13h̃

(u4 + p̃)3
− u4u13

(u4 + p̃)2
n1

)
+

ẽ13ẽ24
ẽ23ẽ44

[
u5u15ṽ

(u5 + p̃)3
− u5u15

(u5 + p̃)2
ẽ31ẽ42
ẽ32ẽ44

+ u9n0
ẽ41
ẽ44

]
− ẽ14

ẽ44

[
u5u15

(u5 + p̃)2
ẽ41
ẽ44

− u9n0
ẽ31ẽ42
ẽ32ẽ44

]
Z̃2 = −

{
u2u4h̃

(u4 + p̃)3
+

u3u5ṽ

(u5 + p̃)3
− u1n0 −

u2u4

(u4 + p̃)2
n1 −

u3u5

(u5 + p̃)2
ẽ31ẽ42
ẽ32ẽ44

− n0l0

[
−u6 + u8n1 + u9

ẽ31ẽ42
ẽ32ẽ44

]
+u8n0n1l1 −

ẽ13ẽ24
ẽ23ẽ44

[
u5u15

(u5 + p̃)2
ẽ41
ẽ44

− u9n0
ẽ31ẽ42
ẽ32ẽ44

]
+

ẽ41
ẽ44

[
u5u15ṽ

(u5 + p̃)3
− u5u15

(u5 + p̃)2
ẽ31ẽ42
ẽ32ẽ44

+ u9n0
ẽ41
ẽ44

]}
,

Z̃3 = 1 +
u2u4

(u4 + p̃)2
n1 −

u3u5

(u5 + p̃)2
ẽ41
ẽ44

+ n0l0

[
−u6 + u9

ẽ31ẽ42
ẽ32ẽ44

]
+ l1

[
u2u4h̃

(u4 + p̃)3
− u8n0n1

]
+

l2

[
u5u15

(u5 + p̃)2
ẽ41
ẽ44

− u9n0
ẽ31ẽ42
ẽ32ẽ44

]
,

Z̃4 = −

{
u2u4h̃

(u4 + p̃)3
+

u3u5ṽ

(u5 + p̃)3
− u1n0 −

u3u5

(u5 + p̃)2
ẽ31ẽ42
ẽ32ẽ44

− n0l0

[
u8n1−u9

ẽ41
ẽ44

]
+

u2u4

(u4 + p̃)2
n1l1−

l2

[
u3u5ṽ

(u5 + p̃)3
− u3u5

(u5 + p̃)2
ẽ31ẽ42
ẽ32ẽ44

+ u9n0
ẽ41
ẽ44

]}
,
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Z̃5 =
u2u4h̃

(u4 + p̃)4
+

u3u5ṽ

(u5 + p̃)4
+

u2u4

(u4 + p̃)3
n1 −

u3u5

(u5 + p̃)3
ẽ41
ẽ44

− l2

[
u3u5ṽ

(u5 + p̃)4
− u5u15

(u5 + p̃)3
ẽ31ẽ42
ẽ32ẽ44

]
,

Z̃6 = −

{
l1

(
u4u13h̃

(u4 + p̃)4
+

u4u13

(u4 + p̃)3
n1

)
+ l2

u5u15

(u5 + p̃)3
ẽ41
ẽ44

− u3u5

(u5 + p̃)3
ẽ31ẽ42
ẽ32ẽ44

}
,

n0 =
−ẽ31
ẽ32

, n1 =
ẽ44(ẽ22ẽ31−ẽ21ẽ32)−ẽ24(ẽ31ẽ42−ẽ32ẽ41)

ẽ23ẽ32ẽ44
and n2 =

ẽ31ẽ42−ẽ32ẽ41
ẽ32ẽ44

.

l0 =
−ẽ13
ẽ23

< 0 , l1 =
ẽ23(ẽ14ẽ41−ẽ11ẽ44)−ẽ13(ẽ24ẽ41−ẽ21ẽ44)

ẽ23ẽ31ẽ44
> 0 and l2 =

ẽ13ẽ24−ẽ14ẽ23
ẽ32ẽ44

.

Proof . By substituting E5 =
(
p̃, s̃, h̃, ṽ

)
in the Eq.(3.1), then the characteristic equation of

J̃5, where J̃5 = J5 (E5, ũ7) which is given in [9] having zero eigenvalues (say λ5h = 0), if and only if
K4 = 0 and then E5 becomes a non-hyperbolic, whenever the parameter takes the value (say ũ7 = u7) .
At E5, jacobian matrix of system (2.2) becomes:

J̃5 = J (E5, ũ7) = [ẽij]4×4 , where ẽij = eij for all i, j = 1, 2, 3, 4 given in [9] except ẽ23 = R ,
ũ7 > 0 , contingent on conditions (3.11a-3.11e) as in [9] with conditions (3.18) and (3.19) are hold.

Let, Ω[5] =
(
ω
[5]
1 , ω

[5]
2 , ω

[5]
3 , ω

[5]
4

)T
be the eigenvector of J̃5 affiliated to λ5h = 0. Thus,

(
J̃5 − λ5hI

)
Ω[5]=0,

which gives: ω2
[5] = n0ω1

[5], ω3
[5] = n1ω1

[5], ω4
[5] = n2ω1

[5] and ω1
[5] any nonzero real number.

Where, n0, n1 and n2 are mentioned in state theorem.

Let, H[5] =
(
ℏ[5]1 , ℏ[5]2 , ℏ[5]3 , ℏ[5]4

)T
be the eigenvector of J̃5

T
affiliated to λ5h = 0, of the matrix J̃5

T

then:
(
J̃5

T
− λ5hI

)
H[5] = 0, Give us: H[5] =

(
ℏ[5]1 , l0ℏ[5]1 , l1ℏ[5]1 , l2ℏ[5]1

)T
, where ℏ[5]1 any non-zero

real number. l0, l1 and l2 are mentioned in state theorem,

since, ∂f
∂u7

= fu7 (ℵ, u7) =
(

∂f1
∂u7

, ∂f2
∂u7

, ∂f3
∂u7

, ∂f4
∂u7

)
= (0,−h, h, 0)T , hence, fu7 (E5, ũ7) =

(
0,−h̃, h̃, 0

)T
.

Therefore
(
H[5]

)T
fu7 (E5, ũ7) = −ℏ1h̃ [l0 − l1] ̸= 0 .

Contingent on conditions (3.11a), (3.11c), (3.11d), (3.11e) and (3.11g). (l0 < 0 and l1 > 0 →
l0 − l1 < 0)
Plugging Ω[5] in Eq. (3.2), we get:

D2fu7 (E5, ũ7) =



−2
(
ω
[5]
1

)2 [(
1− u2u4h̃

(u4+p̃)3
− u3u5ṽ

(u5+p̃)3

)
+ u1n0 +

u2u4

(u4+P̃)
2n1 +

u3u5

(u5+P̃)
2n2

]
−2n0

(
ω
[5]
1

)2
[−u6 + u8n1 + u9n2]

−2
(
ω
[5]
1

)2
[ u4u13h̃
(u4+p̃)2

− u4u13

(u4+p̃)2
n1 − u8n0n1]

−2
(
ω
[5]
1

)2 [
(u5u15)ṽ

(u5+p̃)3
− (u5u15)

(u5+p̃)2
n2 − u9n0n2

]


,

contingent on conditions (3.11a-3.11g) as in [9] with condition (3.22).

So,
(
H[5]

)T
D2fu7 (E5, ũ7)

(
Ω[5],Ω[5]

)
= −2

(
ω
[5]
1

)2
ℏ1
[
Z̃1 − Z̃2

]
̸= 0.

The detecting of Sotomayor’s Theorem [22] appear the happening of a saddle-node bifurcation at sys-
tem (2.2) near E5 with (ũ7 = u7), moreover neither transcritical bifurcation nor pitchfork bifurcation
can be occurring at E5.

Opposite of condition (3.11d), we get (ẽ23 > 0),
(
H[5]

)T
fu7 (E5, ũ7) = −ℏ1h̃ [l0 − l1] (l0 > 0 and l1 > 0),

Either, condition (3.21) hold
contingent on conditions (3.11b), (3.11c) and (3.11e) as in [9] with condition (3.18)

so,
(
H[5]

)T [
Dfu7 (E5, ũ7) Ω

[5]
]
= n1l1ω1

[5]ℏ1[5] ̸= 0 (n1 > 0 and l1 > 0 → n1l1 > 0) ,
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Plugging Ω[5] in Eq. (3.2), we get:

D2fu7 (E5, ũ7) =



−2
(
ω
[5]
1

)2 [(
1− u2u4h̃

(u4+p̃)3
− u3u5ṽ

(u5+p̃)3

)
+ u1n0 +

u2u4

(u4+P̃)
2n1 +

u3u5

(u5+P̃)
2n2

]
−2n0

(
ω
[5]
1

)2
[−u6 + u8n1 + u9n2]

−2
(
ω
[5]
1

)2
[ u4u13h̃
(u4+p̃)2

− u4u13

(u4+p̃)2
n1 − u8n0n1]

−2
(
ω
[5]
1

)2 [
(u5u15)ṽ

(u5+p̃)3
− (u5u15)

(u5+p̃)2
n2 − u9n0n2

]


Under authority of conditions (3.11a), (3.11b), (3.11e) and (3.11g) as in [9] with condition (3.22).

so,
(
H[5]

)T
D2fu7 (E5, ũ7)

(
Ω[5],Ω[5]

)
= −2

(
ω
[5]
1

)2
ℏ1[5]

[
Z̃3 − Z̃4

]
̸= 0.

The detecting of Sotomayor’s Theorem [22] appear the happening of a saddle-node bifurcation at
system (2.2) near E5 with (ũ7 = u7) .
Or opposite of condition (3.21), by Sotomayor’s theorem saddle-node bifurcation cannot be occurred
at system (2.2) near E5 with (ũ7 = u7) .
Moreover,

since, Dfu7 (ℵ, ũ7) =


0
0
0
0

0
0
0
0

0
1
0
0

0
0
0
0

 , Dfu7 (E5, ũ7) Ω
[5] =


0
0
0
0

0
0
0
0

0
1
0
0

0
0
0
0




ω
[5]
1

n0ω
[5]
1

n1ω
[5]
1

n2ω
[5]
4

 =


0
0

n1ω
[5]
1

0

,
Under authority of conditions (3.11a), (3.11b), (3.11e) and (3.11g) as in [9] with condition (3.22).

So,
(
H[5]

)T
D2fu7 (E5, ũ7)

(
Ω[5],Ω[5]

)
= −2

(
ω
[5]
1

)2
ℏ1[5]

[
Z̃3 − Z̃4

]
̸= 0.

The detecting of Sotomayor’s Theorem [22] appear the happening of a transcritical bifurcation at
system (2.2) near E5 with (ũ7 = u7) .
Now, opposite of condition (3.22) and plugging Ω[5] in Eq. (3.3) we get:

D3fu7 (E5, ũ7) =


−6
(
ω
[5]
1

)3 [
u2u4h̃
(u4+p̃)4

+ u3u5ṽ
(u5+p̃)4

+ u2u4

(u4+p̃)3
n1 +

u3u5

(u5+p̃)3
n2

]
0

−6
(
ω
[5]
1

)3
[−u4u13h̃

(u4+p̃)4
− u4u13

(u4+p̃)3
n1]

−6
(
ω
[4]
1

)3 [
−u5u15ṽ
(u5+p̃)4

− u5u15

(u5+p̃)3
n2

]

,
Again, according to conditions (3.11a), (3.11b), (3.11e) and (3.11g) as in [9] with condition (3.23).

So,
(
H[5]

)T
D3fu7 (E5, ũ7)

(
Ω[5],Ω[5],Ω[5]

)
= −6

(
ω
[5]
1

)3
ℏ[5]1

[
Z̃5 − Z̃6

]
̸= 0,

The detecting of Sotomayor’s Theorem [22] appears the happening of pitchfork bifurcation at system
(2.2) near E4 with (ũ7 = u7). □

4. The Hopf-bifurcation analysis

In this section, the investigation of Hopf-bifurcation near the equilibrium points of system (2.2)
in the opinion of Hague and Venturino methods [7] as below.

Theorem 4.1. Suppose that the locally conditions (3.7b-3.7f) as in [9] and the following conditions
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hold:

M1M2 > M3, (4.1)

0 < ∆1 (u2) <
M3

1 (u2)

4
, (4.2)

r1 < r2, (4.3)

r3 < r4, (4.4)

r5 > r6, (4.5)

α1 ̸= α2 (4.6)

Where,

r1 = c11c31 [c31 (c11 + c22)− c21c32] ,

r2 = −{c21c32 [c21c32 − c31 (c22 + c44)]} ,
r3 = c14c21c42 [c31 (c22 + c44)− 2c21c32] ,

r4 = −
{
c31c

2
44

(
c211 + c222

)
+ 2c11c13c44 (c22c44 − c12c21) + c12c21c31 (c23c32 − c11c22)− c31 (c22 + c44)

[c12c23c31 + c24c42c44] + c31c44 (c11 + c22) [c44 (c22 + c44) + 3c11c22]− c22
[
c21c22c32c44 − c11c31

(
c222 + c244

)]
−c22 (c12c21 + c23c32 + c24c42) [c31 (c22 + c44)− c21c32]− c11c31c44 (c12c21 + c23c32) + c222

(
c211c31 + c22c44

)
−c11c21c32 [c22 (c11 + c44)− c12c32]− c11c21c32

(
c222 + c244

)
− c21c32c44 (c22c44 − c12c21)

−c211c31 (c23c32 + c24c42) + c21c31 [c12c23c32 + c11c14c42]
}
,

r5 = c11 (c22 + c44)
[
−c11c44 (c14c21c42 − c11c23c32)− c211c24c42

]
− c23

[
c11c22c32c

2
44 + c12c14c21c31c42

]
+ (c11 + c22)

[
−c11c

2
44 (c12c21 + c23c32)− c211c23c32 (c22 + 2c44) + c11c42c44 (c14c21 − c22c24)+

c23c31
(
c14c42c44 − c12c

2
44

)]
+ [c12c21 (c11 + c44) + c12c23c31 + c22 (c23c32 − c11c44) + (c22 + c44)

(c24c42 − c22c44)− c11
(
c222 + c244

)]
[c42 (c11c24 − c14c21) + c44 (c23c32 + c12c21 − c11c44)] + c11c

2
22c44(

c211 + c22c44
)
+ c211c23c32 (c12c21 − c22c44) + c11c22c23c32 [−c22 (c11 + c22) + c23c32 + c12c21 + c24c42] +

c23c32 [c11c21c23c32] + c23c32 [c11c24c42c44 + c12c31 (c11c23 − c14c21c42)] + c14c21c42c44 (c22c44 − c24c42)+

c23c31
(
c211 + c222 + c244

)
(c14c42 − c12c44) + 2c11c22c23c31 (c14c42 − c12c44) ,

r6 = −{−c12c23c31 [c11c44 (c11 + c44) + (c11 + c22) (c11c22 − c12c21) + (c22 + c44) (c22c44 − c24c42)−
c23 (c22c32 + c12c31)− c11c22 (c42 + 2c44)]− c14c21c42 [c44 (c23c32 + c12c21 − c11c22) + c11c23c32+

c42 (c11c24 − c14c21)]− c11c23c32c44
[
c211 + c222 + c244 + 2c11c22 + 2c44 (c11 + c22)

]}
,

α1 = 2
M3

M1

{
M3

[
p

u4 + p
c31 −

u4h

(u4 + p)2
(c22 + c44)

]
−M2

[
p

(u4 + p)2
(c31 (c22 + c44)− c21c32)+

u4h

(u4 + p)2
(c23c32 + c24c42 − c22c44)

]
+ 2

(
M3

M1

)2
u4h

(u4 + p)2

}

α2 = −2

{
M3

[
u4h

(u4 + p)2
c23c32c44 −

p

u4 + p
(c44 (c21c32 − c22c31) + c24c31c42)

]}
−
(
M3

M1

)2

[
u4h

(u4 + p)2
M2 − 2

[
p

(u4 + p)2
(c31 (c22 + c44)− c21c32) +

u4h

(u4 + p)2
(c23c32 + c24c42 − c22c44)

]]
Such that cij ( i, j = 1, 2, 3, 4) it was mentioned in [9].
Then at the parameter (u2 = u2) , system (2.2) has a Hopf- bifurcation near E3.
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Proof . The characteristic equation of system (2.2) at E3 mentioned in local stability in [9].

λ4 +M1λ
3 +M2λ

2 +M3λ+M4 = 0 (4.7)

We requirement to find the parameter (u2 ) so to check the necessary and sufficient conditions for
Hopf bifurcation to happen which accept

Mi (u2) > 0, ∆1 (u2) = M1M2 −M3 > 0 , M3
1 (u2)− 4∆1 (u2) > 0

and ∆2 = (M1M2 −M3)M3 −M2
1M4 = 0

Now, Contingent on conditions (3.7b-3.7f) as in [9] with conditions (4.1) and (4.2), we get
Mi (u2) > 0, (i = 1, 3, 4) , ∆1 (u2) = M1M2 −M3 > 0 and M3

1 (u2)− 4∆1 (u2) > 0 ,
Notes that ∆2 = 0, gives:

Γ1p
2u2

2 + Γ2pu2 + Γ3 = 0, (4.8)

where, Γ1 = r1 − r2, Γ2 = r3 − r4, and Γ3 = r5 − r6. Where; ri , ( i = 1− 9) are above-mentioned
in the theorem. Γ1 < 0, Γ2 < 0 and Γ3 > 0, contingent on conditions (3.7b-3.7f) as in [9] with
conditions (4.3)-(4.5).
Via to using Descartes rule of sign, equation (4.8) has a unique positive root
Now, at(u2 = u2), the characteristic equation (4.7) can be rewritten as:

P4 (λ) =

(
λ2 +

M3

M1

)(
λ2 +M1λ+

∆1

M1

)
= 0,

Which; have four roots:

λh,v =

[
−M1 ∓

√
M2

1 − 4
∆1

M1

]
and λp,s = ±i

√
M3

M1

,

At (u2 = u2), there are two pure imaginary eigenvalues (λp,s) and two eigenvalue (λh,v), which is
real and negative.
Now, for all values of u2 in the neighborhood of u2, the roots in general of the following form:

λp,s = δ1 (u2)± iδ2 (u2) and λh,v =
[
−M1 ∓

√
M2

1 − 4∆1

M1

]
Thus, Re (λp,s (u2)) |u2=u2 = δ1 (u2) = 0, that implies the first condition of the necessary and sufficient
conditions for Hopf bifurcation is satisfied at (u2 = u2)
Now, to check the transversally condition we ought to prove that:

Ψ(u2)Θ (u2) + Γ (u2) Φ (u2) ̸= 0.

Note that for (u2 = u2) we have:

δ1 (u2) = 0 and δ2 (u2) =
√

M3

M1
, changing to the value of δ2 yield the following:

Ψ(u2) = −2M3; Φ (u2) = 2

√
M3

M1

[
M2 − 2

M3

M1

]
,

Θ(u2) =
u4h

(u4 + p)2
c23c32c44 −

p

u4 + p
[c44 (c21c32 − c22c31)− c24c31c42]−

M3

M1[
p

u4 + p
c31 −

u4h

(u4 + p)2
(c22 + c44)

]
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and

Γ (u2) = −
√

M3

M1

[
p

u4 + p
[c31 (c22 + c44)− c21c32] +

u4h

(u4 + p)2
(c23c32 + c24c42 − c22c44) +

u4h

(u4 + p)2
M3

M1

]
,

Thus, under authority of conditions (3.7c), (3.7d) and (3.7e) in [9] with condition (4.6), give us:

Ψ(u2)Θ (u2) + Γ (u2) Φ (u2) = α1 − α2 ̸= 0,

Therefore system (2.2) at E3 with the parameter u2 has a Hopf-bifurcation. □

Theorem 4.2. Suppose that the locally conditions (3.9a-3.9d) as in [9] and the following conditions
hold:

1 < 2¯̄p+
u3u5 ¯̄v

(u5 + ¯̄p)2
, (4.9)

¯̄d14
¯̄d21

¯̄d42 >
¯̄d44

(
¯̄d14

¯̄d41 +
¯̄d24

¯̄d42

)
+ ¯̄d12

¯̄d24
¯̄d41, (4.10)

j2 ¯̄d44 < j
(
¯̄d
2

44 − ¯̄d14
¯̄d41 − ¯̄d12

¯̄d21

)
+
(
− ¯̄d44

(
¯̄d14

¯̄d41 +
¯̄d24

¯̄d42

)
− ¯̄d12

¯̄d24d41 − ¯̄d14
¯̄d21

¯̄d42

)
(4.11)

¯̄α1 ̸= ¯̄α2, (4.12)

Where,

j = 1− 2¯̄p− u3u5 ¯̄v

(u5 + ¯̄p)2
,

¯̄α1 = 2N2

[
¯̄sN2 − ¯̄d24

¯̄d41 ¯̄p
]
+ 2N1N2

[
¯̄d21 ¯̄p− ¯̄d44 ¯̄s

]
¯̄α2 = −2N2

[
− ¯̄d24

¯̄d42 ¯̄s− ¯̄d21
¯̄d44 ¯̄p
]

Such that ¯̄dij and Ni, ( i, j = 1, 2, 3, 4) it was mentioned in [9]
Then at the parameter (¯̄u1 = u1) , system (2.2) has a Hopf- bifurcation near E4.
Proof . The characteristic equation of system (2.2) at E4 mentioned in local stability in [9].(

¯̄d33 − λ
) [

λ3 +N1λ
2 +N2λ+N3

]
= 0 (4.13)

The requirement to find the parameter (¯̄u1) for checking the necessary and sufficient conditions for
Hopf bifurcation to crop up that satisfy, Ni (¯̄u1) > 0, i = 1, 2 . and ∆1 (¯̄u1) = N1N2 −N3 = 0
Under authority of (3.9b-3.9d) in [9], Ni (¯̄u1) > 0, (i = 1, 2) , ∆(¯̄u1) = 0, gives:

R1 ¯̄u
2
1
¯̄s2 +R2 ¯̄u1 ¯̄s+R3 = 0, (4.14)

where, R1 =
¯̄d44, R2 =

(
¯̄d
2

44 − ¯̄d14
¯̄d41 − ¯̄d12

¯̄d21

)
−2j ¯̄d44, and R3 = j2 ¯̄d44−j

(
¯̄d
2

44 − ¯̄d14
¯̄d41 − ¯̄d12

¯̄d21

)
+(

¯̄d44

(
¯̄d14

¯̄d41 +
¯̄d24

¯̄d42

)
+ ¯̄d12

¯̄d24d41 +
¯̄d14

¯̄d21
¯̄d42

)
.

R1 < 0, under the authority of condition (3.9c) as in [9] and R3 > 0, under the authority of condition
(3.9c) as in [9] with conditions (4.9)-(4.12) are hold.
Via to using Descartes rule of sign, equation (4.14) has a unique positive root.
Now, at(u1 = ¯̄u1), the characteristic equation (4.13) can be rewritten as:

P4 (λ) =
(
¯̄d44 − λ4h

)
(λ41 +N1)

(
λ2
42 +N2

)
= 0, (4.15)
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Which; have four roots:
λ4h = ¯̄d44, λ41 = −N1, λ42 = i

√
N2, λ43 = −i

√
N2

At (u1 = ¯̄u1), there are two pure imaginary eigenvalues (λ42 and λ43) and two eigenvalue (λ4h and λ41),
which is real and negative according condition (3.9a-3.9d) as in [9].
Now for all values of u1 in the neighborhood of ¯̄u1, the roots in general of the following form:
λ2,3 = δ1 (u1)± iδ2 (u1) and λ4h = ¯̄d44, λ41 = −N1

Clearly, Re (λ2,3 (u1)) |u1=¯̄u1 = δ1 (¯̄u1) = 0, that means the necessary and sufficient conditions for
Hopf-bifurcation is satisfied at (¯̄u1 = u1).
Now, to chuck the transversally condition, we must prove that:

¯̄Ψ (¯̄u1)
¯̄Θ (¯̄u1) +

¯̄Γ (¯̄u1)
¯̄Φ (¯̄u1) ̸= 0

Note that for (¯̄u1 = u1) we have: δ1 (¯̄u1) = 0 and δ2 (¯̄u1) =
√
N2

substituting the value of δ2 gives the following simplifications:

¯̄Ψ (¯̄u1) = −2N2;
¯̄Φ (¯̄u1) = 2 N1

√
N2,

¯̄Θ (¯̄u1) = −¯̄s
[
¯̄d24

¯̄d42 −N2

]
− ¯̄p

(
¯̄d21

¯̄d44 − ¯̄d24
¯̄d41

)
,

and

¯̄Γ (¯̄u1) =
√

N2

[
¯̄d21 ¯̄p− ¯̄s ¯̄d44

]
,

Under the authority of conditions (3.9c) in [9] and condition (4.12), give us:

¯̄Ψ (¯̄u1)
¯̄Θ (¯̄u1) +

¯̄Γ (¯̄u1)
¯̄Φ (¯̄u1) = ¯̄α1 − ¯̄α2 ̸= 0,

Therefore system (2.2) at E4 with the parameter ¯̄u1 has a Hopf-bifurcation. □

Theorem 4.3. Suppose that the locally conditions (14a-14g) as in [9] and the following conditions
hold:

K1K2 > K3, (4.16)

0 < ∆1 (ũ9) <
K3

1 (ũ9)

4
, (4.17)

t1 < t2, (4.18)

t3 > t4, (4.19)

t5 > t6, (4.20)

t7 > r8, (4.21)

3 (t1 − t2) < − (t3 − t4) , (4.22)

(t7 − r8) > −3 (t1 − t2) l
2 − 2 (t3 − t4) l, (4.23)

(t1 − t2) l
3 + (t7 − r8) > − (t3 − t4) l

2 − (t4 − t5) l, (4.24)

α̃1 ̸= α̃2 (4.25)
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Where,

t1 = ẽ21 (ẽ11 + ẽ22) (ẽ21ẽ44 − ẽ31ẽ32),

t2 = −{ẽ13ẽ32 [ẽ13ẽ32 − ẽ21ẽ44]} ,
t3 = (ẽ13ẽ31ẽ32)

[
ẽ31 (ẽ22 + 2ẽ44) + ẽ11ẽ

2
44 − ẽ21ẽ32

]
+ ẽ31ẽ32 [ẽ32 (ẽ11ẽ23 − ẽ13ẽ21) + ẽ44 (ẽ23ẽ32 − ẽ11ẽ22)

+ẽ14ẽ22ẽ41 + ẽ11ẽ24ẽ42] + ẽ32
[
ẽ13ẽ

2
21ẽ44 + ẽ31 (ẽ14ẽ22ẽ41 + ẽ11ẽ24ẽ42)

]
,

t4 = −
{
− (ẽ11 + ẽ22)

[
ẽ13ẽ21ẽ31 (ẽ22 + ẽ44) + ẽ21ẽ44

(
ẽ23ẽ23 − ẽ222

)
+ ẽ21 (ẽ14ẽ22ẽ41 + ẽ11ẽ24ẽ42)

]}
,

t5 = (ẽ11 + ẽ22)
[
ẽ13ẽ31 (ẽ22 (ẽ11 + ẽ22)− 2ẽ24ẽ42) + ẽ23ẽ32

(
ẽ211 − 2ẽ14ẽ41

)
− ẽ11ẽ13ẽ21ẽ32

]
+ ẽ13ẽ31

[ẽ32 (2ẽ12ẽ31 − ẽ13ẽ21)− 2ẽ11ẽ22] + ẽ23ẽ32 [ẽ32 (ẽ12ẽ31 − ẽ13ẽ21)− ẽ11 (ẽ11ẽ22 − ẽ12ẽ31 − ẽ13ẽ21)] +

ẽ11 [ẽ24ẽ42 (ẽ14ẽ24ẽ42 − 2ẽ13ẽ31)− ẽ13ẽ21ẽ22ẽ32] + ẽ12ẽ21ẽ32 (ẽ12ẽ31 + ẽ13ẽ21)− ẽ14ẽ41,

t6 = −{−(ẽ11 + ẽ22) [ẽ13ẽ31 (ẽ22(ẽ11 + ẽ22) + ẽ12ẽ21 − ẽ11ẽ12) + ẽ11ẽ32(2ẽ12ẽ31 + ẽ13ẽ21 − ẽ14(ẽ22 + 2ẽ22))

−ẽ14ẽ22ẽ41(ẽ11 + ẽ22) + ẽ14(ẽ24ẽ41ẽ42)− ẽ11ẽ24ẽ42(ẽ11 − ẽ22)− ẽ12ẽ23ẽ31(ẽ11 + ẽ22)]

−ẽ13ẽ31 [ẽ22(2ẽ24ẽ42 + ẽ23ẽ32 + ẽ41ẽ41)− ẽ11(ẽ21ẽ12 + ẽ13ẽ31 + ẽ14ẽ41 + ẽ24ẽ42)]

−ẽ11
[
ẽ14ẽ

2
24ẽ

2
42 − ẽ11ẽ22 (ẽ13ẽ31 + ẽ14ẽ41

+2ẽ12ẽ21 − ẽ222
)
+ ẽ222 (ẽ22 + ẽ12ẽ21 + ẽ24ẽ42) + 2ẽ13ẽ24ẽ32ẽ41 + 2ẽ14ẽ23ẽ31ẽ42

]
−ẽ22 [ẽ23 (ẽ11ẽ32 + 2ẽ14ẽ31ẽ42) + ẽ13ẽ32 (2ẽ24ẽ41 − ẽ21)]} ,

t7 = ẽ11 (ẽ11 + ẽ22) [−ẽ22 (ẽ14ẽ41 + ẽ13ẽ31) + ẽ23ẽ32 (ẽ12ẽ21 − ẽ11ẽ22) + ẽ42 (ẽ14ẽ23ẽ31 − e22e24)] +

ẽ13ẽ22ẽ31 [ẽ22 (ẽ24ẽ42 + ẽ12ẽ21) + ẽ11 (ẽ12ẽ21 + ẽ13ẽ31 + ẽ14ẽ41 + ẽ22ẽ23e31)] + ẽ12ẽ31
[
ẽ222 (ẽ13ẽ21+

ẽ11ẽ32) + ẽ32 [ẽ11 (ẽ11ẽ22 − ẽ13ẽ31 − ẽ12ẽ21 − ẽ14ẽ41)− ẽ22 (ẽ12ẽ21 + ẽ23ẽ32 + ẽ24ẽ42)]] + ẽ13ẽ21ẽ32[
ẽ11
(
ẽ11ẽ22 − ẽ13ẽ31 − ẽ14ẽ41 − ẽ12ẽ21 + ẽ222

)
− ẽ22 (ẽ12ẽ21 + ẽ23ẽ32 + ẽ24ẽ42)

]
+ ẽ11ẽ23ẽ32 [ẽ11 (ẽ13ẽ31 + ẽ14ẽ41) + ẽ22 (ẽ23ẽ32 + ẽ24ẽ42)] + ẽ14ẽ22ẽ41 [ẽ11 (ẽ12ẽ21 + ẽ13ẽ31 + ẽ14ẽ41)+

3ẽ22 (ẽ12ẽ21 + ẽ23ẽ32 + ẽ24ẽ42)] + ẽ211 (ẽ12ẽ21 + ẽ13ẽ31 + ẽ14ẽ41) + ẽ24ẽ42 [ẽ22 [ẽ11 (ẽ12ẽ21 + ẽ23ẽ32 + ẽ24ẽ42)

−ẽ13ẽ31]] + ẽ222 (ẽ12ẽ21 + ẽ23ẽ32 + ẽ24ẽ42) + ẽ14ẽ22ẽ23 [ẽ22ẽ42 − ẽ32ẽ41 + ẽ11ẽ31ẽ42] ,

t8 = −
{
−e31e32 [ẽ13ẽ22 (ẽ12 + ẽ13ẽ21)− ẽ21ẽ32 (ẽ12ẽ31 + ẽ12ẽ13)− ẽ12ẽ13ẽ21]− ẽ13ẽ21ẽ

2
32 [ẽ11ẽ23 − ẽ13ẽ21]−

ẽ14ẽ41 [ẽ22ẽ24ẽ42 + ẽ22ẽ32 (ẽ12ẽ31 + ẽ13ẽ21)− ẽ11ẽ23ẽ32 (ẽ11 + 2ẽ22)]− ẽ11ẽ24ẽ42 [ẽ32 (ẽ12ẽ31 + ẽ13ẽ21)−
ẽ11ẽ13ẽ31] + ẽ22 [ẽ13ẽ22ẽ24 (ẽ32ẽ41 − ẽ31ẽ42) + 2ẽ11ẽ24ẽ32ẽ41]} ,

α̃1 = 2

{
s̃

[(
k3
k1

)2

(k2 − 2 (ẽ13ẽ31 + ẽ23ẽ32))− k3 (ẽ13ẽ32 (ẽ21 + ẽ41)− ẽ11ẽ23ẽ32)

]
+

ṽ

[
k3

(
ẽ14ẽ23ẽ31 − ẽ11

k3
k1

)
− k2

k3
k1

(ẽ13ẽ31 + ẽ14ẽ41)− 2

(
k3
k1

)3
]}

,

α̃2 = −2

{
s̃

[
k3

(
ẽ12ẽ23ẽ31 − ẽ11

k3
k1

)
− k2

k3
k1

(ẽ13ẽ31 + ẽ23ẽ32) + 2

(
k3
k1

)3
]
+

(
k3
k1

)2

ṽ [k2 − 2 (ẽ13ẽ31 + ẽ14ẽ44)]

}
,

Such that ẽij ( i, j = 1, 2, 3, 4) it was mentioned in [9]
Then at the parameter (ũ9 = u9) , system (2.2) has a Hopf- bifurcation near E5.
Proof . The characteristic equation of system (2.2) at E5 mentioned in local stability in [9].

λ4 +K1λ
3 +K2λ

2 +K3λ+M4 = 0 (4.26)
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The requirement to find the parameter (ũ9) for checking the necessary and sufficient conditions for
Hopf bifurcation to crop up that satisfy; Ki (ũ9) > 0, (i = 1, 3, 4) , ∆1 (ũ9) = K1K2 −K3 > 0,
K3

1 (ũ9)− 4∆1 (ũ9) > 0, and ∆2 (ũ9) = 0 .
Under the authority of conditions (3.11a-3.11e) as in [9] with condition (4.16) and (4.17), implies
that Ki (ũ9) > 0, (i = 1, 3, 4) , ∆1 (ũ9) > 0, K3

1 (ũ9)− 4∆1 (ũ9) > 0
Notes that, ∆2 = 0 gives:

Λ1s
3ũ3

9 + Λ2s
2ũ2

9 + Λ3s̃ũ9 + Λ4 = 0 (4.27)

where, Λ1 = t1 − t2, Λ2 = 3 (t1 − t2) + (t3 − t4), Λ3 = 3 (t1 − t2) l
2 + 2 (t3 − t4) l + (t5 − t6), Λ4 =

(t1 − t2) l
3 + (t3 − t4) l

2 + (t5 − t6) l + (t7 − t8), and
l = u15p̃

u5+p̃
− u14 < 0 , under authority of condition (3.11c) in [9].

Note that Λ1 < 0 , Λ2 < 0 , Λ3 > 0 and Λ4 > 0 under authority of conditions (3.11a), (3.11b)
and (3.11d) in [9] with conditions (4.18)-(4.24). Where ti , ( i = 1− 8) are mentioned in the state
theorem. Via to using Descartes rule of sign, equation (4.27) has a unique positive root.
At (ũ9 = u9), the characteristic equation (4.26) can be rewritten as:

P4 (λ) =
(
λ2 + k3

k1

)(
λ2 + k1λ+ ∆1

k1

)
= 0,

Which; have four roots:

λh,v =
[
−k1 ∓

√
k2
1 − 4∆1

k1

]
and λp,s = ±i

√
k3
k1
,

Observe that at(ũ9 = u9), there are two pure imaginary eigenvalues (λp,s) and two eigenvalue (λh,v),
which is real and negative.
Now, for all values of u9 in the neighborhood of ũ9, the roots in general of the following form:

λp,s = δ1 (u9)± iδ2 (u9) and λh,v =

[
−k1 ∓

√
k2
1 − 4

∆1

k1

]

Clearly, Re (λp,s (u6)) |u9=ũ9 = δ1 (ũ9) = 0, implies that the first condition of the necessary and
sufficient conditions for Hopf bifurcation is satisfied at (ũ9 = u9)
Now, to check the transversally condition, we must prove that:
Ψ̃ (ũ9) Θ̃ (ũ9) + Γ̃ (ũ9) Φ̃ (ũ9) ̸= 0.
Note that for (ũ9 = u9) we have:

δ1 (ũ9) = 0 and δ2 (ũ9) =
√

k3
k1
, substituting the value of δ2 gives the following simplifications:

Ψ̃ (ũ9) = −2k3; Φ̃ (ũ9) = 2

√
k3
k1

[
k2 (ũ9)− 2

k3
k1

]
,

Θ̃ (ũ9) =

{
s̃

[
ẽ12ẽ23ẽ31 + ẽ13ẽ32 (ẽ21 + ẽ41)− ẽ11

(
ẽ23ẽ32 +

k3
k1

)]
− ṽ

(
ẽ11

k3
k1

+ ẽ14ẽ23ẽ31

)}
and

Γ̃ (ũ9) =

√
k3
k1

[
s̃

(
ẽ13ẽ31 + ẽ23ẽ32 +

k3
k1

)
− ṽ

(
ẽ13ẽ31 + ẽ14ẽ44 +

k3
k1

)]
,

Thus, under the authority of conditions (14a), (14b), (14d) and (14e) in [9] with condition (4.25),
give us:

Ψ̃ (ũ9) Θ̃ (ũ9) + Γ̃ (ũ9) Φ̃ (ũ9) = α̃1 − α̃2 ̸= 0,

Therefore system (2.2) at E5 with the parameter ũ9 has a Hopf-bifurcation. □
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5. The Numerical Results

In this section, the benefit of this numerical simulations, which give us a clear explanation about
the influence of alter the parameters values of system (2.2), as well as to assert analytical results.
Now according to following parameters below

u1 = 0.2, u2 = 0.4, u3 = 0.3, u4 = 0.3, u5 = 0.1, u6 = 0.001,

u7 = 0.095, u8 = 0.95, u9 = 0.001, u10 = 0.0001, u11 = 0.00001,

u12 = 0.0001, u13 = 0.0001, u14 = 0.001, u15 = 0.0008

(5.1)

From Eq. (5.1) which represent the set of data starting from various initial values, it is ob-
served the solution of system (2.2) approaches asymptotically to a positive equilibrium point E5 =
(0.732, 0.1, 0.401, 0.381), which illustrated in Figure 1(a-d):

Figure 1: The time series of system (2.2) beginning with different initial points (3.5, 0.2, 0.3, 0.388),(2.5, 0.3, 0.2,
0.388) , (0.75, 0.3, 0.2, 0.388) and (0.4, 0.1, 0.4, 0.388), for the data given in Eq. (5.1). The solution approaches
asymptotically to the positive equilibrium point E5 = (0.732, 0.1, 0.401, 0.388), (a) trajectory of (p) as a function
of time, (b) trajectory of (s) as a function of time, (c) trajectory of (h) as a function of time, (d) trajectory of (v) as
a function of time.

Varying the parameter 0.2 ≤ u1 ≤ 2 , the solution still approaches to a positive equilibrium point
E5, as shown in Fig.2 for typical value (u1 = 0.3)



The bifurcation analysis of an epidemiological model involving two diseases in predator 2215

Figure 2: Time series of the solution of system (2.2) for the data given in Eq. (5.1) which approach to E5 =
(0.787, 0.1, 0.405, 0.099).

Varying (u7) in the range , 0.01 ≤ u7 < 0.495 keeping the rest parameters fixed in Eq. (5.1),
it is observed that the solution of system (2.2) still approach to the positive equilibrium point E5,
as shown in Fig.(3a), for typical value u7 = 0.3, while 0.495 ≤ u7 < 1 the solution of system (2.2)
approach to E4, as shown in Fig.(3b), for typical value u7 = 0.9, thus (u7 = 0.495) is bifurcation
point.

Figure 3: (a) Time series of the solution of system (2.2) for the data given in eq. (53) with u7 = 0.3 which approach
to E5 = (0.831, 0.316, 0.202, 0.103). (b) Time series of the solution of system (2.2) for the data given in Eq. (62)
with u7 = 0.9 which approach to E4 = (0.859, 0.533, 0, 0.107).

In system (2.2) as stated above, the same performance for the rest of parameters. Thus finally
the following table make results summarized.
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Table 2: shows the values that consist of BB box of the faces whose parts are to be revealed.

Parameters varied in system(2) Numerical behavior of
system (2.2)

bifurcation
point

0.2 ≤ u1 ≤ 2 Approach to E5

0.4 ≤ u2 < 0.93 Approach to E5

0.3 ≤ u3 < 1.79 Approach to E5

0.00001 ≤ u4 ≤ 2 Approach to E5

0.00001 ≤ u5 ≤ 2 Approach to E5

0.00001 ≤ u6 < 0.094 Approach to E5

0.01 ≤ u7 < 0.495 Approach to E5 u7 = 0.495

0.495 ≤ u7 < 1 Approach to E4

0.00001 ≤ u8 < 0.137 Approach to E4 u8 = 0.137

0.137 ≤ u8 ≤ 2 Approach to E5

0.00001 ≤ u9 < 0.28 Approach to E5

0.00001 ≤ u10 < 0.076 Approach to E5

0.000001 ≤ u11 < 0.0737 Approach to E5 u11 = 0.0737

0.0737 ≤ u11 < 0.0999 Approach to E4

0.000001 ≤ u12 < 0.0385 Approach to E5 u12 = 0.0.0385

0.0385 ≤ u12 ≤ 1 Approach to E4

0.000001 ≤ u13 < 0.0158 Approach to E5

0.00001 ≤ u14 < 0.025 Approach to E5 u14 = 0.025

0.025 ≤ u14 ≤ 1 Approach to E3

0.00001 ≤ u15 < 0.0259 Approach to E5

6. Conclusion and Discussion

In this work, the occurrence of local bifurcation and Hopf-bifurcation are discussed with a suitable
conditions of an eco-epidemiological of prey population and two different diseases (SIS and SI) in the
predator population only, the transcritical bifurcation take place near E1, E2, E3 and E4, a saddle-
node bifurcation take place near E5, at E2, E3 and E4 pitchfork bifurcation take place near all of
these equilibrium points. Moreover fulfillment for the Hopf-bifurcation near E3, E4 and E5 was
done. Finally, numerical simulations are used to clarification the manifestation of local bifurcation
of this system. And the following impressions are listed below:

1. According to data given in Eq. (5.1) used in system (2.2), the solution remain accession to
positive stable point E5 whatever changing the parameters ui, i = 1, 2, 3, 4, 5, 6, 9, 10, 13, 15,
therefore these parameters don’t have any influence on the dynamical behavior.

2. Varying the parameters ui, i = 7, 8, 11, 12, 14, keeping other parameters in system (2.2) with
set of date in Eq. (5.1), these parameters played substantial role in dynamics behavior in terms
of the local bifurcation and Hopf-bifurcation.
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