Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 2219-2225 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.5917

Forms of ϖ -continuous functions between bitopological spaces

Adwea Naji Atewi*, Bushra Swedan Naser, Safaa Jawad Ali, Muataz Adnan Harhoosh Institute of Medical Technology Al-Mansour, Middle Technical University, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

TThe paper introduces the concepts of ϖ -strongly (resp., ϖ -closure, ϖ -weakly) form of continuous functions on bitopological spaces, furthermore, we introduce theorems, characterizing on the class of functions, show how it can be studied from a different point of view.

Keywords: ϖ -strongly continuous, ϖ -closure continuous, ϖ -weakly continuous, bitopological spaces.

2010 MSC: 54C05, 54D10, 05C10

1. Introduction and notations

Let \mathscr{X} be anon empty set and \mathscr{T}_1 , \mathscr{T}_2 are two topologies on \mathscr{X} , then the triple $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ is called bitopological spaces [1]. For other notions or notations not defined here we follow closely S. Willard [2].

Definition 1.1. [3] A point x of a space \mathscr{X} is called a condensation point of the sub set $\mathscr{W} \subseteq \mathscr{X}$ if every neighbourhood of x contains an uncountable subset of this set.

Definition 1.2. [3] A subset \mathscr{W} of a space \mathscr{X} is called ϖ -closed if all its condensation points are contains it. Also the ϖ -closure of a set \mathscr{W} is the intersection of all ϖ -closed sets that contains \mathscr{W} , and denoted by $Cl^{\varpi}\mathscr{W}$, then \mathscr{W} is ϖ -closed if and only if $\mathscr{W} = Cl^{\varpi}\mathscr{W}$. The complete of a ϖ -closed is called ϖ -open. Similarly, the ϖ -interior of a set \mathscr{W} in a space \mathscr{X} , denoted by Int^{ϖ} , consists points x of \mathscr{W} such that for some open set \mathscr{U} containing x such that $Cl^{\varpi}\mathscr{U} \subseteq \mathscr{W}$, then \mathscr{W} is ϖ -open if and only if $\mathscr{W} = Int^{\varpi}\mathscr{W}$, or we can write it as $\mathscr{X} - \mathscr{W}$ is ϖ -closed. Form above, we have every closed set is ϖ -closed and every open set is ϖ -open.

^{*}Corresponding author

Email addresses: adwea-naji@mtu.edu.iq (Adwea Naji Atewi), bushrasewdan@gmail.com (Bushra Swedan Naser), safajawad1970@gmail.com (Safaa Jawad Ali), muataz_adnan@mtu.edu.iq (Muataz Adnan Harhoosh)

Definition 1.3. [1] A bitopological space $(\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2)$ is called pairwise Hausdorff space if for each pair of difference points x_1 and x_2 in $(\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2)$, then there is \mathcal{T}_1 -open set \mathscr{A} and \mathcal{T}_2 -open set \mathscr{N} such that $x_1 \in \mathscr{A}$ and $x_2 \in \mathcal{N}$, where \mathscr{A} and \mathscr{N} are disjoint.

Definition 1.4. [1] A function $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ is call pairwise continuous if $f : (\mathscr{X}, \mathscr{T}_1) \to (\mathscr{Y}, \mathscr{F}_1)$ and $f : (\mathscr{X}, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_2)$) are continuous.

Let $f: (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a function, we will use the following symbol in this work as follow:

$$\begin{split} &\mathcal{T}_1 Cl^{\varpi}(\mathscr{A}) \text{ denoted the } \mathcal{T}_1 - \varpi\text{-closed of a set } \mathscr{A} \subseteq (\mathscr{X}, \mathscr{T}_1) \\ &\mathcal{F}_1 Cl^{\varpi}(\mathscr{N}) \text{ denoted the } \mathscr{F}_1 - \varpi\text{-closed of a set } \mathscr{N} \subseteq (\mathscr{Y}, \mathscr{F}_1) \\ &\mathcal{T}_1 Int^{\varpi}(\mathscr{A}) \text{ denoted the } \mathscr{T}_1 - \varpi\text{-interior of a set } \mathscr{A} \subseteq (\mathscr{X}, \mathscr{T}_1) \\ &\mathcal{F}_1 Int^{\varpi}(\mathscr{N}) \text{ denoted the } \mathscr{F}_1 - \varpi\text{-interior of a set } \mathscr{N} \subseteq (\mathscr{Y}, \mathscr{F}_1) \\ &\text{same as for } \mathscr{T}_2 \text{ and } \mathscr{F}_2 \text{ with respect to } (\mathscr{X}, \mathscr{T}_2) \text{ and } (\mathscr{Y}, \mathscr{F}_2) \text{ respectively.} \\ &\text{A set } \mathscr{A} \text{ is called } \mathscr{T}_1 - \varpi\text{-closed if and only if } \mathscr{T}_1 Cl^{\varpi}(\mathscr{A}) = \mathscr{A}, \\ &\text{A set } \mathscr{N} \text{ is called } \mathscr{F}_1 - \varpi\text{-closed if and only if } \mathscr{F}_1 Cl^{\varpi}(\mathscr{A}) = \mathscr{A}, \\ &\text{A set } \mathscr{A} \text{ is called } \mathscr{F}_1 - \varpi\text{-open if and only if } \mathscr{T}_1 Int^{\varpi}(\mathscr{N}) = \mathscr{A}, \\ &\text{A set } \mathscr{N} \text{ is called } \mathscr{F}_1 - \varpi\text{-open if and only if } \mathscr{T}_1 Int^{\varpi}(\mathscr{N}) = \mathscr{N}, \\ &\text{a same as for } \mathscr{T}_2 \text{ and } \mathscr{F}_2 \text{ with respect to } (\mathscr{X}, \mathscr{T}_2) \text{ and } (\mathscr{Y}, \mathscr{F}_2) \text{ respectively.} \end{split}$$

2. Main Result

The author in [6, 7, 8, 9] define ϖ -strongly (resp., ϖ -closure, ϖ -weakly) continuous functions as follows: A function $f: \mathscr{X} \to \mathscr{Y}$ is called ϖ -strongly (resp., ϖ -closure, ϖ -weakly) continuous, if for each point $x \in \mathscr{X}$ and every open set \mathscr{N} of f(x) in \mathscr{Y} , there exists an open set \mathscr{A} containing x in \mathscr{X} such that $f(Cl^{\varpi}(\mathscr{A}) \subseteq \mathscr{N}$ (resp., $f(Cl^{\varpi}(\mathscr{A}) \subseteq Cl^{\varpi}(\mathscr{N}), f(\mathscr{A}) \subseteq Cl^{\varpi}(\mathscr{N})$).

Now, we present the main definition in this work.

Definition 2.1. A function $f: (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ is call pairwise ϖ -strongly (resp., ϖ closure, ϖ -weakly) continuous, if either $f: (\mathscr{X}, \mathscr{T}_1) \to (\mathscr{Y}, \mathscr{F}_1)$ is ϖ -strongly (resp., ϖ -closure, ϖ weakly) continuous or $f: (\mathscr{X}, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_2)$) is ϖ -strongly (resp., ϖ -closure, ϖ -weakly) continuous (i.e., for each point $x \in (\mathscr{X}, \mathscr{T}_1)$ and every \mathscr{F}_1 -opening set \mathscr{N}_1 of f(x) in \mathscr{Y} , there exists an \mathscr{T}_1 opening set \mathscr{A}_1 contain x in \mathscr{X} such that $f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{N}_1$ (resp., $f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq Cl^{\varpi}(\mathscr{N}_1)$), $f(\mathscr{A}_1) \subseteq \mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_1)$ or for each point $x \in (\mathscr{X}, \mathscr{T}_2)$ and every \mathscr{F}_2 -opening set \mathscr{N}_2 of f(x) in \mathscr{Y} , there exist an \mathscr{T}_2 -opening set \mathscr{A}_2 contain x in \mathscr{X} such that $f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq \mathscr{N}_2$ (resp., $f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq Cl^{\varpi}(\mathscr{N}_2)$)

Definition 2.2. If (x_{α}) is a net in a space \mathscr{X} , then (x_{α}) is called ϖ -convergence to $x \in \mathscr{X}$ denoted by $(x_{\alpha} \xrightarrow{\varpi} x)$, if for each neighbourhood \mathscr{A} of x, there is some $\alpha_0 \in \Lambda$ such that $\alpha \leq \alpha_0$ implies $x_{\alpha} \in Cl^{\varpi}(\mathscr{A})$. Thus $x_{\alpha} \xrightarrow{\varpi} x$ if and only if each ϖ -closure nbd of x contains a tail of (x_{α}) , this is sometime said; $(x_{\alpha}) \varpi$ -converges to x if it is eventually in every ϖ -closure nbd of x.

Theorem 2.3. For any $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2))$ the follow are equivalent:

(a) f is pairwise ϖ -strongly continuous,

(b) The inverses images of every \mathscr{F}_1 -closed sets is \mathscr{T}_1 - ϖ -closed and the inverses images of every \mathscr{F}_2 -closed sets is \mathscr{T}_2 - ϖ -closed,

(c) The inverses images of every \mathscr{F}_1 -opening set is \mathscr{T}_1 - ϖ -opening and the inverses images of every

\mathscr{F}_2 -opening sets is \mathscr{T}_2 - ϖ -opening,

(d) For each $x \in (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ and each net $x_\alpha \xrightarrow{\varpi} x$, we have $f(x_\alpha) \to f(x)$.

Proof. (a) \Rightarrow (b) Let \mathscr{N}_1 be \mathscr{F}_1 -closed sets in $(\mathscr{Y}, \mathscr{F}_1)$ and \mathscr{N}_2 be \mathscr{F}_2 -closed set in $(\mathscr{Y}, \mathscr{F}_2)$. Suppose that $f^{-1}(\mathscr{N}_1)$ is not \mathscr{F}_1 -closed in $(\mathscr{X}, \mathscr{T}_1)$ and $f^{-1}(\mathscr{N}_2)$ is not \mathscr{F}_2 -closed in $(\mathscr{X}, \mathscr{T}_2)$. Then there is a point $x \notin f^{-1}(\mathscr{N}_1) \cup f^{-1}(\mathscr{N}_2)$ such that for every \mathscr{T}_1 -open set \mathscr{A}_1 and every \mathscr{T}_2 -open set \mathscr{A}_2 both containing x we have $\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \cap f^{-1}(\mathscr{N}_1) \neq \emptyset$ and $\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \cap f^{-1}(\mathscr{N}_2) \neq \emptyset$. Since $f(x) \notin \mathscr{N}_1 \cup \mathscr{N}_2, \mathscr{Y} \setminus \mathscr{N}_1$ is \mathscr{F}_1 -open and $\mathscr{Y} \setminus \mathscr{N}_2$ is \mathscr{F}_2 -open, both containing f(x), having the property that no ϖ -closed neighbourhood of x will map into $\mathscr{Y} \setminus \mathscr{N}_1$ and $\mathscr{Y} \setminus \mathscr{N}_2$ under f. Consequently, f is not pairwise ϖ -strongly continuous [10] at x. This contradiction implies that $f^{-1}(\mathscr{N}_1)$ is \mathscr{T}_1 - ϖ -closed in $(\mathscr{X}, \mathscr{T}_1)$ and $f^{-1}(\mathscr{N}_2)$ is \mathscr{T}_2 - ϖ -closed in $(\mathscr{X}, \mathscr{T}_2)$.

 $\begin{array}{l} (b) \Rightarrow (c) \ Let \ \mathscr{N}_1 \ be \ \mathscr{F}_1 \text{-opening sets in} \ (\mathscr{Y}, \mathscr{F}_1) \ and \ \mathscr{N}_2 \ be \ \mathscr{F}_2 \text{-open set in} \ (\mathscr{Y}, \mathscr{F}_2). \end{array} \\ \mathcal{Y} \setminus \mathscr{N}_1 \ is \ \mathscr{F}_1 \text{-closed and} \ \mathscr{Y} \setminus \mathscr{N}_2 \ is \ \mathscr{F}_2 \text{-closed.} \ By \ (b) \ f^{-1}(\mathscr{Y} \setminus \mathscr{N}_1) \ is \ \mathscr{T}_1 \text{-}\varpi \text{-closed in} \ (\mathscr{X}, \mathscr{T}_1) \ and \\ f^{-1}(\mathscr{Y} \setminus \mathscr{N}_2) \ is \ \mathscr{T}_2 \text{-}\varpi \text{-closed in} \ (\mathscr{X}, \mathscr{T}_2). \\ But \ \mathscr{X} \setminus f^{-1}(\mathscr{Y} \setminus \mathscr{N}_1) = f^{-1}(\mathscr{N}_1) \ is \ \mathscr{T}_1 \text{-}\varpi \text{-opening in} \\ (\mathscr{X}, \mathscr{T}_1) \ and \ \mathscr{X} \setminus f^{-1}(\mathscr{Y} \setminus \mathscr{N}_2) = f^{-1}(\mathscr{N}_2) \ is \ \mathscr{T}_2 \text{-}\varpi \text{-open in} \ (\mathscr{X}, \mathscr{T}_2). \end{array}$

 $(c) \Rightarrow (d)$ Let $x \in (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ and let a net $x_{\alpha} \xrightarrow{\varpi} x$. Let \mathscr{N}_1 be \mathscr{F}_1 -open set in $(\mathscr{Y}, \mathscr{F}_1)$ and \mathscr{N}_2 be \mathscr{F}_2 -open set in $(\mathscr{Y}, \mathscr{F}_2)$.), both contain f(x). Thus by $(c), f^{-1}(\mathscr{N}_1)$ is \mathscr{T}_1 - ϖ -open in $(\mathscr{X}, \mathscr{T}_1)$ and $f^{-1}(\mathscr{N}_2)$ is \mathscr{T}_2 - ϖ -open in $(\mathscr{X}, \mathscr{T}_2)$ both containing x. Thus there exists an \mathscr{T}_1 -open \mathscr{A}_1 and \mathscr{T}_2 -open \mathscr{A}_2 such that $x \in \mathscr{A}_1 \subseteq \mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq f^{-1}(\mathscr{N}_1)$ and $x \in \mathscr{A}_2 \subseteq \mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq f^{-1}(\mathscr{N}_2)$. The \mathscr{T}_1 - ϖ convergence and \mathscr{T}_2 - ϖ -convergence of x_{α} is eventually in $\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1)$ and $\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2)$ respectively. So that $f(x_{\alpha})$ is eventually in \mathscr{N}_1 and \mathscr{N}_2 . This shows that $f(x_{\alpha}) \to f(x)$.

 $(d) \Rightarrow (a) \text{ Suppose that } f \text{ is not pairwise } \varpi \text{-strongly continuous for some } x \in (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2). \text{ Thus there is an } \mathscr{F}_1\text{-open set } \mathscr{N}_1 \text{ in } (\mathscr{Y}, \mathscr{F}_1) \text{ and } \mathscr{F}_2\text{-opening set } \mathscr{N}_2 \text{ in } (\mathscr{Y}, \mathscr{F}_2), \text{ both contain } f(x) \text{ such that for every } \mathscr{T}_1\text{-open set } \mathscr{A}_1 \text{ in } (\mathscr{X}, \mathscr{T}_1) \text{ and } \mathscr{T}_2\text{-opening sets } \mathscr{A}_2 \text{ in } (\mathscr{X}, \mathscr{T}_2), \text{ both contain } x, \text{ such that } \mathscr{T}_1 \text{Cl}^{\varpi}(\mathscr{A}_1) \not\subset \mathscr{N}_1 \text{ and } \mathscr{T}_2 \text{Cl}^{\varpi}(\mathscr{A}_2) \not\subset \mathscr{N}_2. \text{ Now consider the directed sets } \mathscr{D}_1 = \{ x_\alpha : \mathscr{T}_1 \text{Cl}^{\varpi}(\mathscr{A}_1) \} \text{ and } \mathscr{D}_2 = \{ x_\alpha : \mathscr{T}_2 \text{Cl}^{\varpi}(\mathscr{A}_2) \not\subset \mathscr{N}_2. \text{ Now consider the directed sets } \mathscr{D}_1 = \{ x_\alpha : \mathscr{T}_1 \text{Cl}^{\varpi}(\mathscr{A}_1) \} \text{ and } \mathscr{D}_2 = \{ x_\alpha : \mathscr{T}_2 \text{Cl}^{\varpi}(\mathscr{A}_2) \} \text{ using by reverse inclusion where } \mathscr{A}_{1\varsigma} \text{ and } \mathscr{A}_{2\varsigma} \text{ both contains } x \text{ and } x \in \mathscr{T}_1 \text{Cl}^{\varpi}(\mathscr{A}_{1\varpi}) \cup \mathscr{T}_2 \text{Cl}^{\varpi}(\mathscr{A}_{2\varpi}) \text{ such that } f(x_\alpha) \not\subset \mathscr{N}_1 \cup \mathscr{N}_2. \text{ Then the net } g_1 : \mathscr{D}_1 \to (\mathscr{X}, \mathscr{T}_1) \text{ and } g_2 : \mathscr{D}_2 \to (\mathscr{X}, \mathscr{T}_2) \text{ defined by } g_1(x_\alpha, \mathscr{A}_1) = x_\alpha , \mathscr{T}_1\text{-}\varpi\text{-converges to } x \text{ and } g_2(x_\alpha, \mathscr{A}_2) = x_\alpha , \mathcal{T}_2\text{-}\varpi\text{-converges to } x, \text{ but the net fog does not converge to } f(x) . \text{ The contradiction we obtained implies that } f \text{ is pairwise } \varpi\text{-strongly continuous function. } \Box$

Similarly, we proving the follow theorems:

Theorem 2.4. For any $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2))$ the follow are equivalent:

(a) f is pairwise ϖ -closure continuous,

(b) The inverses images of every \mathscr{F}_1 - ϖ -closed sets is \mathscr{T}_1 - ϖ -closed and the inverses images of every \mathscr{F}_2 - ϖ -closed sets is \mathscr{T}_2 - ϖ -closed,

(c) The inverses images of every \mathscr{F}_1 - ϖ -opening sets is \mathscr{T}_1 - ϖ -opening and the inverses images of every \mathscr{F}_2 - ϖ -opening sets is \mathscr{T}_2 - ϖ -open,

(d) For each $x \in (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ and each net $x_{\alpha} \xrightarrow{\varpi} x$, we have $f(x_{\alpha}) \xrightarrow{\varpi} f(x)$.

Theorem 2.5. For any $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2))$ the follow are equivalent:

(a) f is pairwise ϖ -weakly continuous,

(b) The inverses images of every \mathscr{F}_1 - ϖ -closed sets is \mathscr{T}_1 -closed and the inverses images of every \mathscr{F}_2 - ϖ -closed set is \mathscr{T}_2 -closed,

(c) The inverses images of every \mathscr{F}_1 - ϖ -opening sets is \mathscr{T}_1 -open and the inverses images of every \mathscr{F}_2 - ϖ -opening sets is \mathscr{T}_2 -opening,

(d) For each $x \in (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ and each net $x_{\alpha} \to x$, we have $f(x_{\alpha}) \xrightarrow{\varpi} f(x)$.

Definition 2.6. A bitopological space $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ is called pairwise ϖ -Urysohn if for each pairs of different point x_1 and x_2 in $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ then there is a \mathscr{T}_1 -opening sets \mathscr{A} and \mathscr{T}_2 -opening sets \mathscr{N} such that $x_1 \in \mathscr{A}$ and $x_2 \in \mathscr{N}, \ \mathscr{T}_1 Cl^{\varpi}(\mathscr{A}) \cap \mathscr{T}_2 Cl^{\varpi}(\mathscr{N}) = \phi$.

Theorem 2.7. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -strongly continuous invective function and $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be pairwise Hausdorff. Then $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ is pairwise ϖ -Urysohn. **Proof**. Let $x_1, x_2 \in \mathscr{X}$ such that $x_1 \neq x_2$. Then $f(x_1), \neq f(x_2)$. By hypothesis $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ is pairwise Hausdorff, then there exist disjointing sets \mathscr{F}_1 -opening \mathscr{N}_1 and \mathscr{F}_2 -opening \mathscr{N}_2 contain $f(x_1)$ and $f(x_2)$ respective. Since f is pairwise ϖ -strongly continuous, there exist \mathscr{T}_1 -opening sets \mathscr{A} and \mathscr{T}_2 opening sets \mathscr{A}_2 containing x_1 and x_2 respectively, such that $f(\mathscr{T}_1Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{N}_1$ and $f(\mathscr{T}_2Cl^{\varpi}(\mathscr{A}_2)) \subseteq$ \mathscr{N}_2 . It follows that $f^{-1}(f(\mathscr{T}_1Cl^{\varpi}(\mathscr{A}_1)) \subseteq f^{-1}(\mathscr{N}_1)$ and $f^{-1}(f(\mathscr{T}_2Cl^{\varpi}(\mathscr{A}_2)) \subseteq f^{-1}(\mathscr{N}_2)$, therefore $\mathscr{T}_1Cl^{\varpi}(\mathscr{A}_1) \subseteq f^{-1}(\mathscr{N}_1)$ and $\mathscr{T}_2Cl^{\varpi}(\mathscr{A}_2) \subseteq f^{-1}(\mathscr{N}_2)$. Then $\mathscr{T}_1Cl^{\varpi}(\mathscr{A}_1) \cap \mathscr{T}_2Cl^{\varpi}(\mathscr{A}_2) = \phi$, So $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ is pairwise ϖ -Urysohn \Box

Similarly, we can proving the follow theorems:

Theorem 2.8. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -closure continuous invectively function and let $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be pairwise ϖ -Urysohn. Then $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ is pairwise ϖ -Urysohn.

Theorem 2.9. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -closure continuous invectively function and let $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be pairwise ϖ -Urysohn. Then $(\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$ is pairwise Hausdorf.

Now, we are study the composition of difference form of pairwise ω -continuous functions.

Theorem 2.10. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -strongly continuous and $g : (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ be pairwise ϖ -strongly continuous. Then $gof : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ is pairwise ϖ -strongly continuous.

Proof. take $x \in (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2)$. Let \mathscr{W}_1 be \mathscr{K}_1 -open set in $(\mathscr{P}, \mathscr{K}_1)$ and \mathscr{W}_2 be \mathscr{K}_2 -open set in $(\mathscr{P}, \mathscr{K}_2)$ both containing (gof)(x) in \mathscr{K} , since g is pairwise ϖ -strongly continuous, there is \mathscr{F}_1 -open set \mathscr{N}_1 in $(\mathscr{Y}, \mathscr{F}_1)$ and \mathscr{F}_2 -opening set \mathscr{N}_2 in $(\mathscr{Y}, \mathscr{F}_2)$ both contain f(x) in \mathscr{Y} such that $g(\mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_1) \subseteq \mathscr{W}_1$ and $g(\mathscr{F}_2 Cl^{\varpi}(\mathscr{N}_2) \subseteq \mathscr{W}_1$. Since f is pairwise ϖ -strongly continuous, there is \mathscr{T}_1 -opening sets \mathscr{A}_1 in $(\mathscr{X}, \mathscr{T}_1)$ and \mathscr{T}_2 -opening sets \mathscr{A}_2 in $(\mathscr{X}, \mathscr{T}_2)$ both contain x in \mathscr{X} such that $f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{N}_1$ and $f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq \mathscr{N}_2$, since $\mathscr{N}_1) \subseteq \mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_1)$ and $\mathscr{N}_2) \subseteq \mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_2)$, then $f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{T}_1 Cl^{\varpi}(\mathscr{M}_1) \cong \mathfrak{I}_1 Cl^{\varpi}(\mathscr{M}_1)) \cong g(\mathscr{T}_1 Cl^{\varpi}(\mathscr{M}_1))$ and $g(f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{M}_2))) \subseteq g(\mathscr{T}_2 Cl^{\varpi}(\mathscr{M}_2))$, also $gof(\mathscr{T}_1 Cl^{\varpi}(\mathscr{M}_1)) \subseteq g(\mathscr{T}_1 Cl^{\varpi}(\mathscr{M}_1)) \cong g(\mathscr{T}_1 Cl^{\varpi}(\mathscr{M}_2)) \subseteq g(\mathscr{T}_2 Cl^{\varpi}(\mathscr{M}_2)))$. Therefore, found is \mathscr{T}_1 -opening sets \mathscr{A}_1 in $(\mathscr{X}, \mathscr{T}_1)$ and \mathscr{T}_2 -opening sets \mathscr{A}_2 in $(\mathscr{X}, \mathscr{T}_2)$ both contain x in \mathscr{X} such that $(gof)(\mathscr{T}_1 Cl^{\varpi}(\mathscr{M}_1) \subseteq \mathscr{M}_1$ and $(gof)(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq \mathscr{M}_2)$ and gof is pairwise ϖ -strongly continuous. □

Theorem 2.11. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -strongly continuous and $g : (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ be pairwise continuous. Then $gof : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ is pairwise ϖ -strongly continuous.

Proof. Let \mathscr{W}_1 be \mathscr{K}_1 -open set in $(\mathscr{P}, \mathscr{K}_1)$ and \mathscr{W}_2 be \mathscr{K}_2 -open set in $(\mathscr{P}, \mathscr{K}_2)$ Since g is pairwise continuous, we have $g^{-1}(\mathscr{W}_1$ is \mathscr{F}_1 -opening sets in $(\mathscr{Y}, \mathscr{F}_1)$ and $g^{-1}(\mathscr{W}_2$ is \mathscr{F}_2 -opening set in $(\mathscr{Y}, \mathscr{F}_2)$. By Theorem 2.3 (c) we have $f^{-1}(g^{-1}(\mathscr{W}_1) = (gof) - 1(\mathscr{W}_1 \text{ is } \mathscr{T}_1 - \varpi \text{ opening sets in } (\mathscr{X}, \mathscr{T}_1)$ and $f^{-1}(g^{-1}(\mathscr{W}_2) = (gof) - 1(\mathscr{W}_2 \text{ is } \mathscr{T}_2 - \varpi \text{ open set in } (\mathscr{X}, \mathscr{T}_2)$. Therefore, gof is pairwise ω -strongly continuous. Both contain (gof)(x) in \mathscr{K} , since g is pairwise ϖ -strongly continuous, there is \mathscr{F}_1 -opening sets \mathscr{N}_1 in $(\mathscr{Y}, \mathscr{F}_1)$ and \mathscr{F}_2 -opening sets \mathscr{N}_2 in $(\mathscr{Y}, \mathscr{F}_2)$ both contain f(x) in \mathscr{Y} such that

 $\begin{array}{l} g(\mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_1) \subseteq \mathscr{W}_1 \ and \ g(\mathscr{F}_2 Cl^{\varpi}(\mathscr{N}_2) \subseteq \mathscr{W}_1. \ Since \ f \ is \ pairwise \ \varpi-strongly \ continuous, \ there \ is \\ \mathscr{T}_1 \text{-opening sets } \mathscr{A}_1 \ in \ (\mathscr{X}, \mathscr{T}_1) \ and \ \mathscr{T}_2 \text{-opening sets } \mathscr{A}_2 \ in \ (\mathscr{X}, \mathscr{T}_2) \ both \ contain \ x \ in \ \mathscr{X} \ such \ that \\ f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{N}_1 \ and \ f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq \mathscr{N}_2, \ since \ \mathscr{N}_1) \subseteq \mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_1) \ and \ \mathscr{N}_2) \subseteq \mathscr{F}_1 Cl^{\varpi}(\mathscr{N}_2), \ then \\ f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{T}_1 Cl^{\varpi}(\mathscr{N}_1) \ and \ f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq \mathscr{T}_2 Cl^{\varpi}(\mathscr{N}_2), \ so \ g(f(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1))) \subseteq g(\mathscr{T}_1 Cl^{\varpi}(\mathscr{N}_1)) \\ and \ g(f(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2)) \subseteq g(\mathscr{T}_2 Cl^{\varpi}(\mathscr{N}_2)), \ also \ gof(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq g(\mathscr{T}_1 Cl^{\varpi}(\mathscr{N}_1)) \ and \ gof(\mathscr{T}_2 cl^{\varpi}(\mathscr{A}_2)) \subseteq \\ g(\mathscr{T}_2 Cl^{\varpi}(\mathscr{N}_2)). \ Therefore, \ there \ is \ \mathscr{T}_1 \text{-opening sets } \mathscr{A}_1 \ in \ (\mathscr{X}, \mathscr{T}_1) \ and \ \mathscr{T}_2 \text{-opening sets } \mathscr{A}_2 \ in \\ (\mathscr{X}, \mathscr{T}_2) \ both \ contain \ x \ in \ \mathscr{X} \ such \ that \ (gof)(\mathscr{T}_1 Cl^{\varpi}(\mathscr{A}_1) \subseteq \mathscr{W}_1 \ and \ (gof)(\mathscr{T}_2 Cl^{\varpi}(\mathscr{A}_2) \subseteq \mathscr{W}_2 \ and \\ gof \ is \ pairwise \ \varpi - strongly \ continuous. \ \Box \end{array}$

Similarly, we can proving the follow theorems:

Theorem 2.12. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -weakly continuous and $g : (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ be pairwise ϖ -strongly continuous. Then $gof : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ is pairwise continuous.

Theorem 2.13. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise continuous and $g : (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ be pairwise ϖ -weakly continuous. Then $gof : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ is pairwise ϖ -weakly continuous.

Theorem 2.14. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -closure continuous and $g : (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ be pairwise ϖ -closure continuous. Then $gof : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{P}, \mathscr{K}_1, \mathscr{K}_2)$ is pairwise ϖ -closure continuous.

Theorem 2.15. If $f : (\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2) \to (\mathcal{Y}, \mathcal{F}_1, \mathcal{F}_2)$ be a pairwise ϖ -weakly continuous and $g : (\mathcal{Y}, \mathcal{F}_1, \mathcal{F}_2) \to (\mathcal{P}, \mathcal{K}_1, \mathcal{K}_2)$ be pairwise ϖ -closure continuous. Then $gof : (\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2) \to (\mathcal{P}, \mathcal{K}_1, \mathcal{K}_2)$ is pairwise ϖ -weakly continuous.

Lemma 2.16. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -strongly continuous if and only if for each pairwise sub basis \mathscr{F}_1 -open subset \mathscr{S} and \mathscr{F}_2 -open subset \mathscr{T} of $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$, then $f^{-1}(\mathscr{S})$ and $f^{-1}(\mathscr{T})$ are \mathscr{T}_1 - ϖ -open in $(\mathscr{X}, \mathscr{T}_1)$ and \mathscr{T}_2 - ϖ -open in $(\mathscr{X}, \mathscr{T}_2)$. **Proof**. (\Rightarrow) Follows from Theorem 2.4.

(\Leftarrow) Let $\{\mathscr{I}_{\alpha}, \mathscr{T}_{\alpha}; \alpha \in \Lambda\}$ be a pairwise sub basis for $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ and suppose that $f^{-1}(\mathscr{I}_{\alpha})$ and $f^{-1}(\mathscr{T}_{\alpha})$ are \mathscr{T}_1 - ϖ -opening sets in $(\mathscr{X}, \mathscr{T}_1)$ and \mathscr{T}_2 - ϖ -opening sets in $(\mathscr{X}, \mathscr{T}_2)$ for each $\alpha \in \Lambda$. Every \mathscr{F}_1 -open subset \mathscr{S} and \mathscr{F}_2 -open subset \mathscr{T} of $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ can be written as

 $\begin{aligned} \mathscr{S} &= \cup \{ \mathscr{S}_{\alpha 1} \cap \mathscr{S}_{\alpha 2} \cap \dots \mathscr{S}_{\alpha n}; \{ \alpha 1, \alpha 2, \dots, \alpha n \subseteq \Lambda \} \} \\ and \ \mathscr{T} &= \cup \{ \mathscr{T}_{\alpha 1} \cap \mathscr{T}_{\alpha 2} \cap \dots \mathscr{T}_{\alpha n}; \{ \alpha 1, \alpha 2, \dots, \alpha n \subseteq \Lambda \} \} \\ then \ f^{-1}(\mathscr{S}) &= \cup \{ f^{-1}(\mathscr{S}_{\alpha 1}) \cap f^{-1}(\mathscr{S}_{\alpha 2}) \cap \dots f^{-1}(\mathscr{S}_{\alpha n}) \} \\ and \ f^{-1}(\mathscr{T}) &= \cup \{ f^{-1}(\mathscr{T}_{\alpha 1}) \cap f^{-1}(\mathscr{T}_{\alpha 2}) \cap \dots f^{-1}(\mathscr{T}_{\alpha n}) \}. \end{aligned}$

The finite intersect of \mathscr{T}_1 - ϖ -opening sets is \mathscr{T}_1 - ϖ -opening and the finite intersect of \mathscr{T}_2 - ϖ -opening sets is \mathscr{T}_2 - ϖ -opening and the union of \mathscr{T}_1 - ϖ -open sets is \mathscr{T}_1 - ϖ -opening and the union of \mathscr{T}_2 - ϖ -open sets is \mathscr{T}_1 - ϖ -opening. Therefore $f^{-1}(\mathscr{S})$ is \mathscr{T}_1 - ϖ -open and $f^{-1}(\mathscr{T})$ is \mathscr{T}_2 - ϖ -open and hence by Theorem 2.3, f is pairwise ϖ -strongly continuous. \Box

Similarly, we can prove the following lemmas:

Lemma 2.17. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -closed contineous if and only if for each pairwise sub basis \mathscr{F}_1 - ϖ -open subset \mathscr{S} and \mathscr{F}_2 - ϖ -open subset \mathscr{T} of $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$, then $f^{-1}(\mathscr{S})$ and $f^{-1}(\mathscr{T})$ are \mathscr{T}_1 - ϖ -open in $(\mathscr{X}, \mathscr{T}_1)$ and \mathscr{T}_2 - ϖ -open in $(\mathscr{X}, \mathscr{T}_2)$.

Lemma 2.18. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a pairwise ϖ -weakly continuous if and only if for each pairwise sub basis \mathscr{F}_1 - ϖ -open subset \mathscr{S} and \mathscr{F}_2 - ϖ -opening subset \mathscr{T} of $(\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$, then $f^{-1}(\mathscr{S})$ and $f^{-1}(\mathscr{T})$ are \mathscr{T}_1 -open in $(\mathscr{X}, \mathscr{T}_1)$ and \mathscr{T}_2 -open in $(\mathscr{X}, \mathscr{T}_2)$.

Theorem 2.19. the function $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\prod \mathscr{X}_{\alpha}, \mathscr{F}_1, \mathscr{F}_2)$ is a pairwise ϖ -strongly continuous if and only if the composting with each pairwise continuous project function \prod_{α} is pairwise ϖ -strongly continuous.

Proof . (\Rightarrow) Follows from Theorem 2.11

 $(\Leftarrow) \text{ Let } \mathscr{S}_1 \text{ and } \mathscr{S}_2 \text{ be a pairwise sub basis } \mathscr{F}_1 \text{-open set in } (\prod \mathscr{X}_{\alpha}, \mathscr{F}_1) \text{ and } \mathscr{F}_2 \text{-open set in } (\prod \mathscr{X}_{\alpha}, \mathscr{F}_2) \text{ for each } \alpha \in \Lambda. \text{ Then } \mathscr{S}_1 = \prod_{\alpha}^{-1}(\mathscr{T}_1) \text{ for some } \mathscr{F}_1 \text{-open set } \mathscr{T}_1 \text{ in } (\mathscr{X}_{\alpha}, \mathscr{F}_1) \text{ and } \mathscr{S}_2 = \prod_{\alpha}^{-1}(\mathscr{T}_2) \text{ for some } \mathscr{F}_2 \text{-open set } \mathscr{T}_2 \text{ in } (\mathscr{X}_{\alpha}, \mathscr{F}_2). \text{ Thus } f^{-1}(\mathscr{S}_1) = f^{-1}(\prod_{\alpha}^{-1}(\mathscr{T}_1)) = (\prod_{\alpha} of)^{-1}(\mathscr{T}_1) \text{ is } \mathscr{T}_1 \text{-} \varpi \text{-} \text{open and } f^{-1}(\mathscr{S}_2) = f^{-1}(\prod_{\alpha}^{-1}(\mathscr{T}_2)) = (\prod_{\alpha} of)^{-1}(\mathscr{T}_2) \text{ is } \mathscr{T}_2 \text{-} \varpi \text{-} \text{open. By Lemma 2.16, } f \text{ is pairwise } \varpi \text{-strongly continuous. } \Box$

Similarly, we can proving the follow theorems:

Theorem 2.20. the function $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\prod \mathscr{X}_{\alpha}, \mathscr{F}_1, \mathscr{F}_2)$ is a pairwise ϖ -closure continuous if and only if the compost with each pairwise continuous project function \prod_{α} is pairwise ϖ -closure continuous.

Theorem 2.21. the function $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\prod \mathscr{X}_\alpha, \mathscr{F}_1, \mathscr{F}_2)$ is a pairwise ϖ -weakly continuous if and only if the compost with each pairwise continuous project function \prod_{α} is pairwise ϖ -weakly continuous.

The following propositions is follow from Theorem 2.19, Theorem 2.20 and Theorem 2.21.

Proposition 2.22. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a function and let $g : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{X} \times \mathscr{Y}, \mathscr{T}_1 \times \mathscr{F}_1, \mathscr{T}_2 \times \mathscr{F}_2)$ be the pairwise graphic function of f given by g(x) = (x, f(x)) for every point $x \in \mathscr{X}$. Then f is pairwise ϖ -strongly continuous if and only if g is pairwise ϖ -strongly continuous.

Proposition 2.23. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a function and let $g : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{X} \times \mathscr{Y}, \mathscr{T}_1 \times \mathscr{F}_1, \mathscr{T}_2 \times \mathscr{F}_2)$ be the pairwise graphic function of f given by g(x) = (x, f(x)) for every point $x \in \mathscr{X}$. Then f is pairwise ϖ -closure continuous if and only if g is pairwise ϖ -closure continuous.

Proposition 2.24. If $f : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{Y}, \mathscr{F}_1, \mathscr{F}_2)$ be a function and let $g : (\mathscr{X}, \mathscr{T}_1, \mathscr{T}_2) \to (\mathscr{X} \times \mathscr{Y}, \mathscr{T}_1 \times \mathscr{F}_1, \mathscr{T}_2 \times \mathscr{F}_2)$ be the pairwise graphic function of f given by g(x) = (x, f(x)) for every point $x \in \mathscr{X}$. Then f is pairwise ϖ -weakly continuous if and only if g is pairwise ϖ -weakly continuous.

Lemma 2.25. Let $(\mathscr{X}_{\alpha i}, \mathscr{T}_1, \mathscr{T}_2)$ be a bitopological spaces and let $\mathscr{W}_{\alpha i}$ and $\mathscr{A}_{\alpha i}$ be subsets of $(\mathscr{X}_{\alpha i}, \mathscr{T}_1)$ and $(\mathscr{X}_{\alpha i}, \mathscr{T}_2)$ respectively, for each i = 1, 2, ..., n. Then $\mathscr{W}_{\alpha 1} \times \mathscr{W}_{\alpha 2} \times ... \times \mathscr{W}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_1) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_1)$. and $\mathscr{A}_{\alpha 1} \times \mathscr{A}_{\alpha 2} \times ... \times \mathscr{A}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_2) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_2)$ are \mathscr{T}_1 - ϖ -open and \mathscr{T}_2 - ϖ -open respectively if and only if \mathscr{W}_i is \mathscr{T}_1 - ϖ -open in $(\mathscr{X}_{\alpha i}, \mathscr{T}_1)$ and \mathscr{A}_i is \mathscr{T}_2 - ϖ -open in $(\mathscr{X}_{\alpha i}, \mathscr{T}_1)$

Proof. (\Leftarrow) Suppose that \mathscr{W}_i is \mathscr{T}_1 - ϖ -open in $(\mathscr{X}_{\alpha i}, \mathscr{T}_1)$ and \mathscr{A}_i is \mathscr{T}_2 - ϖ -open in $(\mathscr{X}_{\alpha i}, \mathscr{T}_2)$ for each i = 1, 2, ..., n.

Then for each *i* and each $x_i \in \mathscr{S}_{\alpha i} \subset \mathscr{T}_1 Cl^{\varpi}(\mathscr{S}_{\alpha i}) \subset \mathscr{W}_{\alpha i}, x_i \in \mathscr{T}_{\alpha i} \subset \mathscr{T}_1 Cl^{\varpi}(\mathscr{E}_{\alpha i}) \subset \mathscr{A}_{\alpha i}$

 $\begin{array}{l} Thus, \ for \ each \ \{x_{\alpha}\} \in \mathscr{W}_{\alpha 1} \times \mathscr{W}_{\alpha 2} \times \ldots \times \mathscr{W}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}), \\ \{x_{\alpha}\} \in \mathscr{A}_{\alpha 1} \times \mathscr{A}_{\alpha 2} \times \ldots \times \mathscr{A}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{2}) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_{2}) \subset \mathscr{T}_{1}Cl^{\varpi}(\mathscr{S}_{\alpha 1}) \times \mathscr{T}_{1}Cl^{\varpi}(\mathscr{S}_{\alpha 2}) \times \\ \ldots \times \mathscr{T}_{1}Cl^{\varpi}(\mathscr{S}_{\alpha n}) \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \subset \mathscr{W}_{\alpha 1} \times \mathscr{W}_{\alpha 2} \times \ldots \times \mathscr{W}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \subseteq \\ This \ show \ that \ \mathscr{W}_{\alpha 1} \times \mathscr{W}_{\alpha 2} \times \ldots \times \mathscr{W}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_{2}) \ is \ \mathscr{T}_{1} \text{-} \varpi \text{-} open. \\ By \ a \ similar \ way, \ we \ get \ \mathscr{A}_{\alpha 1} \times \mathscr{A}_{\alpha 2} \times \ldots \times \mathscr{A}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{2}) \subseteq \prod_{\alpha \in \Lambda} (\mathscr{X}_{\alpha}, \mathscr{T}_{2}) \ is \ \mathscr{T}_{2} \text{-} \varpi \text{-} open. \end{array}$

 (\Rightarrow) Straightforward. \Box

Theorem 2.26. The function $\prod_{\alpha} f_{\alpha} : \prod_{\alpha} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}, \mathscr{T}_{2}) \to \prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}, \mathscr{F}_{2})$ define by $\{\mathscr{X}_{\alpha}\} \to \{f_{\alpha}(\mathscr{X}_{\alpha})\}$ is a pairwise ϖ -strongly continuous if and only if each $f_{\alpha} : (\mathscr{X}_{\alpha}, \mathscr{T}_{1}, \mathscr{T}_{2}) \to (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}, \mathscr{F}_{2})$ is pairwise ϖ -strongly continuous.

Proof. (\Rightarrow) Suppose that $\prod_{\alpha} f_{\alpha}$ is pairwise ϖ -strongly continuous. Let $\mathscr{W}_{\alpha i}$ be \mathscr{F}_1 -open in $(\mathscr{Y}_{\alpha i}, \mathscr{F}_1)$ and $\mathscr{A}_{\alpha i}$ be \mathscr{F}_2 -open in $(\mathscr{Y}_{\alpha i}, \mathscr{F}_2)$. Then $\mathscr{W} = \mathscr{W}_{\alpha i} \times \prod_{\alpha \neq \alpha 0} (\mathscr{Y}_{\alpha}, \mathscr{F}_1)$ and $\mathscr{A} = \mathscr{A}_{\alpha i} \times \prod_{\alpha \neq \alpha 0} (\mathscr{Y}_{\alpha}, \mathscr{F}_2)$ are pairwise sub basic \mathscr{F}_1 -open in $\prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_1)$ and \mathscr{F}_2 -open in $\prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_2)$, respectively. And

$$(\prod_{\alpha} f_{\alpha})^{-1}(\mathscr{W}) = f_{\alpha 0}^{-1}(\mathscr{W}_{\alpha i}) \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1})$$

is \mathscr{T}_1 - ϖ -open and $(\prod_{\alpha} f_{\alpha})^{-1}(\mathscr{A}) = f_{\alpha 0}^{-1}(\mathscr{A}_{\alpha i}) \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T})$ is \mathscr{T}_2 - ϖ -open. Thus $f^{-1}(\mathscr{W}_{\alpha i} \text{ is } \mathscr{T}_1$ - ϖ -open in $(\mathscr{X}_{\alpha i}, \mathscr{T}_1)$ and $f^{-1}(\mathscr{A}_{\alpha i} \text{ is } \mathscr{T}_2$ - ϖ -open in $(\mathscr{X}_{\alpha i}, \mathscr{T}_2)$ by Theorem 2.3 implies that $f_{\alpha i}$ is pairwise ϖ -strongly continuous.

 $(\Leftarrow) \ \mathscr{W} = \mathscr{W}_{\alpha 1} \times \mathscr{W}_{\alpha 2} \times \ldots \times \mathscr{W}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}) \ be \ a \ base \ \mathscr{F}_{1} \text{-open in} \ \prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}) \ and \ \mathscr{A} = \mathscr{A}_{\alpha 1} \times \mathscr{A}_{\alpha 2} \times \ldots \times \mathscr{A}_{\alpha n} \times \prod_{\alpha \neq \alpha 0} (\mathscr{Y}_{\alpha}, \mathscr{F}_{2}) \ be \ a \ base \ \mathscr{F}_{2} \text{-open in} \ \prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_{2}). \ Then \ f_{\alpha 0}^{-1}(\mathscr{W}_{\alpha i}) \ is \ \mathscr{T}_{1} \text{-} \\ \varpi \text{-open in} \ (\mathscr{X}_{\alpha i}, \mathscr{T}_{1}) \ and \ f_{\alpha 0}^{-1}(\mathscr{A}_{\alpha i}) \ is \ \mathscr{T}_{2} \text{-} \\ \varpi \text{-open in} \ (\mathscr{X}_{\alpha i}, \mathscr{T}_{2}) \ for \ each \ \alpha i, \ where \ i = 1, 2, \ldots, n. \ Then \ by \ Lemma \ 2.25 \ we \ have \ (\prod_{\alpha} f_{\alpha})^{-1}(\mathscr{W}) = f_{\alpha 0}^{-1}(\mathscr{W}_{\alpha i}) \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \ is \ \mathscr{T}_{1} \text{-} \\ \varpi \text{-} open \ in \ (\prod_{\alpha} f_{\alpha})^{-1}(\mathscr{A}) = f_{\alpha 0}^{-1}(\mathscr{A}_{\alpha i}) \times \prod_{\alpha \neq \alpha 0} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}) \ is \ \mathscr{T}_{2} \text{-} \\ \varpi \text{-} open \ in \ (\prod_{\alpha} \mathscr{X}_{\alpha}, \mathscr{T}_{2}). \ This \ shows \ that \ \prod_{\alpha} f_{\alpha} \ is \ pairwise \ \varpi \text{-} strongly \ continuous.} \ \Box$

Similarly, we can prove the following theorems:

Theorem 2.27. The function $\prod_{\alpha} f_{\alpha} : \prod_{\alpha} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}, \mathscr{T}_{2}) \to \prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}, \mathscr{F}_{2})$ define by $\{\mathscr{X}_{\alpha}\} \to \{f_{\alpha}(\mathscr{X}_{\alpha})\}$ is a pairwise ϖ -closure continuous if and only if each $f_{\alpha} : (\mathscr{X}_{\alpha}, \mathscr{T}_{1}, \mathscr{T}_{2}) \to (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}, \mathscr{F}_{2})$ is pairwise ϖ -closure continuous.

Theorem 2.28. The function $\prod_{\alpha} f_{\alpha} : \prod_{\alpha} (\mathscr{X}_{\alpha}, \mathscr{T}_{1}, \mathscr{T}_{2}) \to \prod_{\alpha} (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}, \mathscr{F}_{2})$ define by $\{\mathscr{X}_{\alpha}\} \to \{f_{\alpha}(\mathscr{X}_{\alpha})\}$ is a pairwise ϖ -weakly continuous if and only if each $f_{\alpha} : (\mathscr{X}_{\alpha}, \mathscr{T}_{1}, \mathscr{T}_{2}) \to (\mathscr{Y}_{\alpha}, \mathscr{F}_{1}, \mathscr{F}_{2})$ is pairwise ϖ -weakly continuous.

References

- [1] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71--89.
- [2] S. Willard, *General topology*, Courier Corporation, 2012.
- [3] R. Englking, Outline of general topology, Amsterdam, 1989.
- [4] H. Z. Hdeib, ϖ -closed mappings, Rev. Colomb. Mate. 16(1–2) (1982) 65–78.
- [5] P.E. Long, Functional with closed graphs, Amer. Math. Month. 76(8) (1969) 930–932.
- Y.Y. Yousif, Some generalization of continuity functions, Seventeenth Scientific Conf. College of Educ. 2010, pp. 360--368.
- Y.Y. Yousif, Rough continuity and rough separation axioms in Gm-closure approximation spaces, Int. J. Nonlinear Anal. Appl. 12(2) (2021) 769–782.
- [8] Y.Y. Yousif, Fibrewise totally perfect mapping, Int. J. Nonlinear Anal. Appl. 12(2) (2021) 783–792.
- [9] G.S. Ashaea and Y.Y. Yousif, Weak and strong forms of ω -perfect mappings, Iraqi J. Sci. 2020 (2020) 45–55.
- [10] N.A. Adwea and J.A. Safaa, Approximation (M.S.E) of the shape parameter for Pareto distribution by using the standard bayes estimator, Int. J. Nonlinear Anal. Appl. 13(1) (2022) 871–880.