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Abstract

TThe paper introduces the concepts of ϖ-strongly (resp., ϖ-closure, ϖ-weakly) form of continuous
functions on bitopological spaces, furthermore, we introduce theorems, characterizing on the class of
functions, show how it can be studied from a different point of view.
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1. Introduction and notations

Let X be anon empty set and T1, T2 are two topologies on X , then the triple (X , T1, T2) is
called bitopological spaces [1]. For other notions or notations not defined here we follow closely S.
Willard [2].

Definition 1.1. [3] A point x of a space X is called a condensation point of the sub set W ⊆ X
if every neighbourhood of x contains an uncountable subset of this set.

Definition 1.2. [3] A subset W of a space X is called ϖ-closed if all its condensation points are
contains it. Also the ϖ-closure of a set W is the intersection of all ϖ-closed sets that contains W ,
and denoted by ClϖW , then W is ϖ-closed if and only if W = ClϖW . The complete of a ϖ-closed is
called ϖ-open. Similarly, the ϖ-interior of a set W in a space X , denoted by Intϖ, consists points
x of W such that for some open set U containing x such that ClϖU ⊆ W , then W is ϖ-open if and
only if W = IntϖW , or we can write it as X – W is ϖ-closed. Form above, we have every closed
set is ϖ-closed and every open set is ϖ-open.
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Definition 1.3. [1] A bitopological space (X , T1, T2) is called pairwise Hausdorff space if for each
pair of difference points x1 and x2 in (X , T1, T2), then there is T1-open set A and T2-open set N
such that x1 ∈ A and x2 ∈ N ,where A and N are disjoint.

Definition 1.4. [1] A function f : (X ,T1,T2) → (Y ,F1,F2) is call pairwise continuous if f :
(X ,T1) → (Y ,F1) and f : (X ,T2) → (Y ,F2)) are continueus.

Let f : (X ,T1,T2) → (Y ,F1,F2) be a function, we will use the following symbol in this work
as follow:
T1Clϖ(A ) denoted the T1 −ϖ-closed of a set A ⊆ (X ,T1)
F1Clϖ(N ) denoted the F1 −ϖ-closed of a set N ⊆ (Y ,F1)
T1Int

ϖ(A ) denoted the T1 −ϖ-interior of a set A ⊆ (X ,T1)
F1Int

ϖ(N ) denoted the F1 −ϖ-interior of a set N ⊆ (Y ,F1)
same as for T2 and F2 with respect to (X ,T2) and (Y ,F2) respectively.
A set A is called T1 −ϖ-closed if and only if T1Clϖ(A ) = A ,
A set N is called F1 −ϖ-closed if and only if F1Clϖ(A ) = A ,
A set A is called T1 −ϖ-open if and only if T1Int

ϖ(A ) = A ,
A set N is called F1 −ϖ-open if and only if F1Int

ϖ(N ) = N ,
same as for T2 and F2 with respect to (X ,T2) and (Y ,F2) respectively.

2. Main Result

The author in [6, 7, 8, 9] define ϖ-strongly (resp., ϖ-closure, ϖ-weakly) continuous functions as
follows: A function f : X → Y is called ϖ-strongly (resp., ϖ-closure, ϖ-weakly) continuous, if for
each point x ∈ X and every open set N of f(x) in Y , there exists an open set A containing x in
X such that f(Clϖ(A ) ⊆ N (resp., f(Clϖ(A ) ⊆ Clϖ(N ), f(A ) ⊆ Clϖ(N ) ).

Now, we present the main definition in this work.

Definition 2.1. A function f : (X ,T1,T2) → (Y ,F1,F2) is call pairwise ϖ-strongly (resp., ϖ-
closure, ϖ-weakly) continuous, if either f : (X ,T1) → (Y ,F1) is ϖ-strongly (resp., ϖ-closure, ϖ-
weakly) continuous or f : (X ,T2) → (Y ,F2)) is ϖ-strongly (resp., ϖ-closure, ϖ-weakly) continuous
(i.e., for each point x ∈ (X ,T1) and every F1-opening set N1 of f(x) in Y , there exists an T1-
opening set A1 contain x in X such that f(T1Clϖ(A1) ⊆ N1 (resp., f(T1Clϖ(A1) ⊆ Clϖ(N1),
f(A1) ⊆ F1Clϖ(N1) or for each point x ∈ (X ,T2) and every F2-opening set N2 of f(x) in Y , there
exist an T2-opening set A2 contain x in X such that f(T2Clϖ(A2) ⊆ N2 (resp., f(T2Clϖ(A2) ⊆
Clϖ(N2), f(A2) ⊆ F2Clϖ(N2)

Definition 2.2. If (xα) is a net in a space X , then (xα) is called ϖ-convergence to x ∈ X denoted
by (xα

ϖ−→ x), if for each neighbourhood A of x, there is some α0 ∈ Λ such that α ≤ α0 implies
xα ∈ Clϖ(A ). Thus xα

ϖ−→ x if and only if each ϖ-closure nbd of x contains a tail of (xα), this is
sometime said; (xα) ϖ-converges to x if it is eventually in every ϖ-closure nbd of x.

Theorem 2.3. For any f : (X ,T1,T2) → (Y ,F1,F2)) the follow are equivalent:
(a) f is pairwise ϖ-strongly continuous,
(b) The inverses images of every F1-closed sets is T1-ϖ-closed and the inverses images of every
F2-closed sets is T2-ϖ-closed,
(c) The inverses images of every F1-opening set is T1-ϖ-opening and the inverses images of every
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F2-opening sets is T2-ϖ-opening,
(d) For each x ∈ (X ,T1,T2) and each net xα

ϖ−→ x, we have f(xα) → f(x).
Proof . (a) ⇒ (b) Let N1 be F1-closed sets in (Y ,F1) and N2 be F2-closed set in (Y ,F2).
Suppose that f−1(N1) is not F1-closed in (X ,T1) and f−1(N2) is not F2-closed in (X ,T2). Then
there is a point x /∈ f−1(N1) ∪ f−1(N2) such that for every T1-open set A1 and every T2-open
set A2 both containing x we have T1Clϖ(A1) ∩ f−1(N1) ̸= ∅ and T2Clϖ(A2) ∩ f−1(N2) ̸= ∅. Since
f(x) /∈ N1∪N2, Y \N1 is F1-open and Y \N2 is F2-open, both containing f(x), having the property
that no ϖ-closed neighbourhood of x will map into Y \N1 and Y \N2 under f . Consequently, f is
not pairwise ϖ-strongly continuous [10] at x. This contradiction implies that f−1(N1) is T1-ϖ-closed
in (X ,T1) and f−1(N2) is T2-ϖ-closed in (X ,T2).

(b) ⇒ (c) Let N1 be F1-opening sets in (Y ,F1) and N2 be F2-open set in (Y ,F2). Then
Y \ N1 is F1-closed and Y \ N2 is F2-closed. By (b) f−1(Y \ N1) is T1-ϖ-closed in (X ,T1) and
f−1(Y \ N2) is T2-ϖ-closed in (X ,T2). But X \ f−1(Y \ N1) = f−1(N1) is T1-ϖ-opening in
(X ,T1) and X \ f−1(Y \ N2) = f−1(N2) is T2-ϖ-open in (X ,T2).

(c) ⇒ (d) Let x ∈ (X ,T1,T2) and let a net xα
ϖ−→ x. Let N1 be F1-open set in (Y ,F1) and N2

be F2-open set in (Y ,F2).), both contain f(x). Thus by (c), f−1(N1) is T1-ϖ-open in (X ,T1) and
f−1(N2) is T2-ϖ-open in (X ,T2) both containing x. Thus there exists an T1-open A1 and T2-open
A2 such that x ∈ A1 ⊆ T1Clϖ(A1) ⊆ f−1(N1) and x ∈ A2 ⊆ T2Clϖ(A2) ⊆ f−1(N2). The T1-ϖ-
convergence and T2-ϖ–convergence of xα is eventually in T1Clϖ(A1) and T2Clϖ(A2) respectively.
So that f(xα) is eventually in N1 and N2. This shows thatf(xα) → f(x).

(d) ⇒ (a) Suppose that f is not pairwise ϖ-strongly continuous for some x ∈ (X ,T1,T2). Thus
there is an F1-open set N1 in (Y ,F1) and F2-opening set N2 in (Y ,F2), both contain f(x) such that
for every T1-open set A1 in (X ,T1) and T2-opening sets A2 in (X ,T2), both contain x, such that
T1Clϖ(A1) ̸⊂ N1 and T2Clϖ(A2) ̸⊂ N2. Now consider the directed sets D1 = { xα : T1Clϖ(A1) }
and D2 = { xα : T2Clϖ(A2) } using by reverse inclusion where A1ς and A2ς both contains x and
x ∈ T1Clϖ(A1ϖ) ∪ T2Clϖ(A2ϖ) such that f(xα) ̸⊂ N1 ∪ N2. Then the net g1 : D1 → (X ,T1)
and g2 : D2 → (X ,T2) defined by g1(xα,A1) = xα , T1-ϖ-converges to x and g2(xα,A2) = xα ,
T2-ϖ-converges to x, but the net fog does not converge to f(x) . The contradiction we obtained
implies that f is pairwise ϖ-strongly continuous function. □

Similarly, we proving the follow theorems:

Theorem 2.4. For any f : (X ,T1,T2) → (Y ,F1,F2)) the follow are equivalent:
(a) f is pairwise ϖ-closure continuous,
(b) The inverses images of every F1-ϖ-closed sets is T1-ϖ-closed and the inverses images of every
F2-ϖ-closed sets is T2-ϖ-closed,
(c) The inverses images of every F1-ϖ-opening sets is T1-ϖ-opening and the inverses images of
every F2-ϖ-opening sets is T2-ϖ-open,
(d) For each x ∈ (X ,T1,T2) and each net xα

ϖ−→ x, we have f(xα)
ϖ−→ f(x).

Theorem 2.5. For any f : (X ,T1,T2) → (Y ,F1,F2)) the follow are equivalent:
(a) f is pairwise ϖ-weakly continuous,
(b) The inverses images of every F1-ϖ-closed sets is T1-closed and the inverses images of every
F2-ϖ-closed set is T2-closed,
(c) The inverses images of every F1-ϖ-opening sets is T1-open and the inverses images of every
F2-ϖ-opening sets is T2-opening,
(d) For each x ∈ (X ,T1,T2) and each net xα → x, we have f(xα)

ϖ−→ f(x).



2222 Atewi, Naser, Ali, Harhoosh

Definition 2.6. A bitopological space (X ,T1,T2) is called pairwise ϖ-Urysohn if for each pairs of
different point x1 and x2 in (X ,T1,T2) then there is a T1-opening sets A and T2-opening sets N
such that x1 ∈ A and x2 ∈ N , T1Clϖ(A ) ∩ T2Clϖ(N ) = ϕ.

Theorem 2.7. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-strongly continuous invective
function and (Y ,F1,F2) be pairwise Hausdorff. Then (X ,T1,T2) is pairwise ϖ-Urysohn.
Proof . Let x1, x2 ∈ X such that x1 ̸= x2. Then f(x1), ̸= f(x2). By hypothesis (Y ,F1,F2) is pair-
wise Hausdorff, then there exist disjointing sets F1-opening N1 and F2-opening N2 contain f(x1) and
f(x2) respective. Since f is pairwise ϖ-strongly continuous, there exist T1-opening sets A and T2-
opening sets A2 containing x1 and x2 respectively, such that f(T1Clϖ(A1) ⊆ N1 and f(T2Clϖ(A2) ⊆
N2. It follows that f−1(f(T1Clϖ(A1)) ⊆ f−1(N1) and f−1(f(T2Clϖ(A2)) ⊆ f−1(N2), therefore
T1Clϖ(A1) ⊆ f−1(N1) and T2Clϖ(A2) ⊆ f−1(N2). Then T1Clϖ(A1) ∩ T2Clϖ(A2) = ϕ, So
(X ,T1,T2) is pairwise ϖ-Urysohn □

Similarly, we can proving the follow theorems:

Theorem 2.8. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-closure continuous invectively
function and let (Y ,F1,F2) be pairwise ϖ-Urysohn. Then (X ,T1,T2) is pairwise ϖ-Urysohn.

Theorem 2.9. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-closure continuous invectively
function and let (Y ,F1,F2) be pairwise ϖ-Urysohn. Then (X ,T1,T2) is pairwise Hausdorf.

Now, we are study the composition of difference form of pairwise ω-continuous functions.

Theorem 2.10. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-strongly continuous and g :
(Y ,F1,F2) → (P,K1,K2) be pairwise ϖ-strongly continuous. Then gof : (X ,T1,T2) → (P,K1,K2)
is pairwise ϖ-strongly continuous.
Proof . take x ∈ (X ,T1,T2). Let W1 be K1-open set in (P,K1) and W2 be K2-open set in
(P,K2) both containing (gof)(x) in K , since g is pairwise ϖ-strongly continuous, there is F1-
open set N1 in (Y ,F1) and F2-opening set N2 in (Y ,F2) both contain f(x) in Y such that
g(F1Clϖ(N1) ⊆ W1 and g(F2Clϖ(N2) ⊆ W1. Since � is pairwise ϖ-strongly continuous, there
is T1-opening sets A1 in (X ,T1) and T2-opening sets A2 in (X ,T2) both contain x in X such that
f(T1Clϖ(A1) ⊆ N1 and f(T2Clϖ(A2) ⊆ N2, since N1) ⊆ F1Clϖ(N1) and N2) ⊆ F1Clϖ(N2), then
f(T1Clϖ(A1) ⊆ T1Clϖ(N1) and f(TC l

ϖ(A2) ⊆ T2Clϖ(N2), so g(f(T1Clϖ(A1)) ⊆ g(T1Clϖ(N1))
and g(f(T2Clϖ(A2)) ⊆ g(T2Clϖ(N2)), also gof(T1Clϖ(A1) ⊆ g(T1Clϖ(N1)) and gof(TC l

ϖ(A2) ⊆
g(T2Clϖ(N2)). Therefore, found is T1-opening sets A1 in (X ,T1) and T2-opening sets A2 in
(X ,T2) both contain x in X such that (gof)(T1Clϖ(A1) ⊆ W1 and (gof)(T2Clϖ(A2) ⊆ W2 and
gof is pairwise ϖ-strongly continuous. □

Theorem 2.11. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-strongly continuous and g :
(Y ,F1,F2) → (P,K1,K2) be pairwise continuous. Then gof : (X ,T1,T2) → (P,K1,K2) is
pairwise ϖ-strongly continuous.
Proof . Let W1 be K1-open set in (P,K1) and W2 be K2-open set in (P,K2) Since g is pair-
wise continuous, we have g−1(W1 is F1-opening sets in (Y ,F1) and g−1(W2 is F2-opening set in
(Y ,F2). By Theorem 2.3 (c) we have f−1(g−1(W1) = (gof)−1(W1 is T1-ϖ-opening sets in (X ,T1)
and f−1(g−1(W2) = (gof)−1(W2 is T2-ϖ-open set in (X ,T2). Therefore, gof is pairwise ω-strongly
continuous. Both contain (gof)(x) in K , since g is pairwise ϖ-strongly continuous, there is F1-
opening sets N1 in (Y ,F1) and F2-opening sets N2 in (Y ,F2) both contain f(x) in Y such that
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g(F1Clϖ(N1) ⊆ W1 and g(F2Clϖ(N2) ⊆ W1. Since f is pairwise ϖ-strongly continuous, there is
T1-opening sets A1 in (X ,T1) and T2-opening sets A2 in (X ,T2) both contain x in X such that
f(T1Clϖ(A1) ⊆ N1 and f(T2Clϖ(A2) ⊆ N2, since N1) ⊆ F1Clϖ(N1) and N2) ⊆ F1Clϖ(N2), then
f(T1Clϖ(A1) ⊆ T1Clϖ(N1) and f(TC l

ϖ(A2) ⊆ T2Clϖ(N2), so g(f(T1Clϖ(A1)) ⊆ g(T1Clϖ(N1))
and g(f(T2Clϖ(A2)) ⊆ g(T2Clϖ(N2)), also gof(T1Clϖ(A1) ⊆ g(T1Clϖ(N1)) and gof(TC l

ϖ(A2) ⊆
g(T2Clϖ(N2)). Therefore, there is T1-opening sets A1 in (X ,T1) and T2-opening sets A2 in
(X ,T2) both contain x in X such that (gof)(T1Clϖ(A1) ⊆ W1 and (gof)(T2Clϖ(A2) ⊆ W2 and
gof is pairwise ϖ-strongly continuous. □

Similarly, we can proving the follow theorems:

Theorem 2.12. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-weakly continuous and g :
(Y ,F1,F2) → (P,K1,K2) be pairwise ϖ-strongly continuous. Then gof : (X ,T1,T2) → (P,K1,K2)
is pairwise continuous.

Theorem 2.13. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise continuous and g : (Y ,F1,F2) →
(P,K1,K2) be pairwise ϖ-weakly continuous. Then gof : (X ,T1,T2) → (P,K1,K2) is pairwise
ϖ-weakly continuous.

Theorem 2.14. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-closure continuous and g :
(Y ,F1,F2) → (P,K1,K2) be pairwise ϖ-closure continuous. Then gof : (X ,T1,T2) → (P,K1,K2)
is pairwise ϖ-closure continuous.

Theorem 2.15. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-weakly continuous and g :
(Y ,F1,F2) → (P,K1,K2) be pairwise ϖ-closure continuous. Then gof : (X ,T1,T2) → (P,K1,K2)
is pairwise ϖ-weakly continuous.

Lemma 2.16. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-strongly continuous if and only if
for each pairwise sub basis F1-open subset S and F2-open subset T of (Y ,F1,F2), then f−1(S )
and f−1(T ) are T1-ϖ-open in (X ,T1) and T2-ϖ-open in (X ,T2).
Proof . (⇒) Follows from Theorem 2.4.
(⇐) Let {Sα, Tα ;α ∈ Λ } be a pairwise sub basis for (Y ,F1,F2) and suppose that f−1(Sα) and
f−1(Tα) are T1-ϖ-opening sets in (X ,T1) and T2-ϖ-opening sets in (X ,T2) for each α ∈ Λ. Every
F1-open subset S and F2-open subset T of (Y ,F1,F2) can be written as
S = ∪{Sα1 ∩ Sα2 ∩ ....Sαn; {α1, α2, ...., αn ⊆ Λ } }
and T = ∪{Tα1 ∩ Tα2 ∩ ....Tαn; {α1, α2, ...., αn ⊆ Λ } }
then f−1(S ) = ∪{ f−1(Sα1) ∩ f−1(Sα2) ∩ ....f−1(Sαn) }
and f−1(T ) = ∪{ f−1(Tα1) ∩ f−1(Tα2) ∩ ....f−1(Tαn) }.
The finite intersect of T1-ϖ-opening sets is T1-ϖ-opening and the finite intersect of T2-ϖ-opening
sets is T2-ϖ-opening and the union of T1-ϖ-open sets is T1-ϖ-opening and the union of T2-ϖ-open
sets is T1-ϖ-opening. Therefore f−1(S ) is T1-ϖ-open and f−1(T ) is T2-ϖ-open and hence by
Theorem 2.3, f is pairwise ϖ-strongly continuous. □

Similarly, we can prove the following lemmas:

Lemma 2.17. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-closed contineous if and only if for
each pairwise sub basis F1-ϖ-open subset S and F2-ϖ-open subset T of (Y ,F1,F2), then f−1(S )
and f−1(T ) are T1-ϖ-open in (X ,T1) and T2-ϖ-open in (X ,T2).
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Lemma 2.18. If f : (X ,T1,T2) → (Y ,F1,F2) be a pairwise ϖ-weakly continuous if and only if
for each pairwise sub basis F1-ϖ-open subset S and F2-ϖ-opening subset T of (Y ,F1,F2), then
f−1(S ) and f−1(T ) are T1-open in (X ,T1) and T2-open in (X ,T2).

Theorem 2.19. the function f : (X ,T1,T2) → (
∏

Xα,F1,F2) is a pairwise ϖ-strongly contin-
uous if and only if the composting with each pairwise continuous project function

∏
α is pairwise

ϖ-strongly continuous.
Proof . (⇒) Follows from Theorem 2.11
(⇐) Let S1 and S2 be a pairwise sub basis F1-open set in (

∏
Xα,F1) and F2-open set in (

∏
Xα,F2)

for each α ∈ Λ. Then S1 =
∏−1

α (T1) for some F1-open set T1 in (Xα,F1) and S2 =
∏−1

α (T2)
for some F2-open set T2 in (Xα,F2). Thus f−1(S1) = f−1(

∏−1
α (T1)) = (

∏
α of)

−1(T1) is T1-ϖ-
open and f−1(S2) = f−1(

∏−1
α (T2)) = (

∏
α of)

−1(T2) is T2-ϖ-open. By Lemma 2.16, f is pairwise
ϖ-strongly continuous. □

Similarly, we can proving the follow theorems:

Theorem 2.20. the function f : (X ,T1,T2) → (
∏

Xα,F1,F2) is a pairwise ϖ-closure continuous
if and only if the compost with each pairwise continuous project function

∏
α is pairwise ϖ-closure

continuous.

Theorem 2.21. the function f : (X ,T1,T2) → (
∏

Xα,F1,F2) is a pairwise ϖ-weakly continuous
if and only if the compost with each pairwise continuous project function

∏
α is pairwise ϖ-weakly

continuous.

The following propositions is follow from Theorem 2.19, Theorem 2.20 and Theorem 2.21.

Proposition 2.22. If f : (X ,T1,T2) → (Y ,F1,F2) be a function and let g : (X ,T1,T2) →
(X × Y ,T1 × F1,T2 × F2) be the pairwise graphic function of f given by g(x) = (x, f(x)) for
every point x ∈ X . Then f is pairwise ϖ-strongly continuous if and only if g is pairwise ϖ-strongly
continuous.

Proposition 2.23. If f : (X ,T1,T2) → (Y ,F1,F2) be a function and let g : (X ,T1,T2) →
(X × Y ,T1 × F1,T2 × F2) be the pairwise graphic function of f given by g(x) = (x, f(x)) for
every point x ∈ X . Then f is pairwise ϖ-closure continuous if and only if g is pairwise ϖ-closure
continuous.

Proposition 2.24. If f : (X ,T1,T2) → (Y ,F1,F2) be a function and let g : (X ,T1,T2) →
(X × Y ,T1 × F1,T2 × F2) be the pairwise graphic function of f given by g(x) = (x, f(x)) for
every point x ∈ X . Then f is pairwise ϖ-weakly continuous if and only if g is pairwise ϖ-weakly
continuous.

Lemma 2.25. Let (Xαi,T1,T2) be a bitopological spaces and let Wαi and Aαi be subsets of (Xαi,T1)
and (Xαi,T2) respectively, for each i = 1, 2, ..., n. Then Wα1 × Wα2 × ....× Wαn ×

∏
α ̸=α0(Xα,T1) ⊆∏

α∈Λ(Xα,T1). and Aα1 × Aα2 × ....× Aαn ×
∏

α ̸=α0(Xα,T2) ⊆
∏

α∈Λ(Xα,T2) are T1-ϖ-open and
T2-ϖ-open respectively if and only if Wi is T1-ϖ-open in (Xαi,T1) and Ai is T2-ϖ-open in (Xαi,T1)
for each i = 1, 2, ..., n.
Proof . (⇐) Suppose that Wi is T1-ϖ-open in (Xαi,T1) and Ai is T2-ϖ-open in (Xαi,T2) for each
i = 1, 2, ..., n.
Then for each i and each xi ∈ Sαi ⊂ T1Clϖ(Sαi) ⊂ Wαi, xi ∈ Tαi ⊂ T1Clϖ(Eαi) ⊂ Aαi
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Thus, for each {xα} ∈ Wα1 × Wα2 × ....× Wαn ×
∏

α ̸=α0(Xα,T1) ⊆
∏

α∈Λ(Xα,T1),
{xα} ∈ Aα1 × Aα2 × ....× Aαn ×

∏
α ̸=α0(Xα,T2) ⊆

∏
α∈Λ(Xα,T2) ⊂ T1Clϖ(Sα1)× T1Clϖ(Sα2)×

.... × T1Clϖ(Sαn) ×
∏

α ̸=α0(Xα,T1) ⊂ Wα1 × Wα2 × .... × Wαn ×
∏

α ̸=α0(Xα,T1) ⊆
∏

α∈Λ(Xα,T1).
This show that Wα1 × Wα2 × ....× Wαn ×

∏
α ̸=α0(Xα,T1) ⊆

∏
α∈Λ(Xα,T1) is T1-ϖ-open.

By a similar way, we get Aα1×Aα2× ....×Aαn×
∏

α ̸=α0(Xα,T2) ⊆
∏

α∈Λ(Xα,T2) is T2-ϖ-open
(⇒) Straightforward. □

Theorem 2.26. The function
∏

α fα :
∏

α(Xα,T1,T2) →
∏

α(Yα,F1,F2) define by {Xα } →
{ fα(Xα) } is a pairwise ϖ-strongly continuous if and only if each fα : (Xα,T1,T2) → (Yα,F1,F2)
is pairwise ϖ-strongly continuous.
Proof . (⇒) Suppose that

∏
α fα is pairwise ϖ-strongly continuous. Let Wαi be F1-open in (Yαi,F1)

and Aαi be F2-open in (Yαi,F2). Then W = Wαi ×
∏

α ̸=α0(Yα,F1) and A = Aαi ×
∏

α ̸=α0(Yα,F2)
are pairwise sub basic F1-open in

∏
α(Yα,F1) and F2-open in

∏
α(Yα,F2), respectively. And

(
∏
α

fα)
−1(W ) = f−1

α0 (Wαi)×
∏
α ̸=α0

(Xα,T1)

is T1-ϖ-open and (
∏

α fα)
−1(A ) = f−1

α0 (Aαi)×
∏

α ̸=α0(Xα,T) is T2-ϖ-open. Thus f−1(Wαi is T1-ϖ-

open in (Xαi,T1) and f−1(Aαi is T2-ϖ-open in (Xαi,T2) by Theorem 2.3 implies that fαi is pairwise
ϖ-strongly continuous.

(⇐) W = Wα1 × Wα2 × ..... × Wαn ×
∏

α ̸=α0(Yα,F1) be a base F1-open in
∏

α(Yα,F1) and

A = Aα1×Aα2×.....×Aαn×
∏

α ̸=α0(Yα,F2) be a base F2-open in
∏

α(Yα,F2). Then f−1
α0 (Wαi) is T1-

ϖ-open in (Xαi,T1) and f−1
α0 (Aαi) is T2-ϖ-open in (Xαi,T2) for each αi, where i = 1, 2, ..., n. Then

by Lemma 2.25 we have (
∏

α fα)
−1(W ) = f−1

α0 (Wαi)×
∏

α̸=α0(Xα,T1) is T1-ϖ-open in
∏

α(Xα,T1)

and (
∏

α fα)
−1(A ) = f−1

α0 (Aαi) ×
∏

α ̸=α0(Xα,T1) is T2-ϖ-open in (
∏

α Xα,T2). This shows that∏
α fα is pairwise ϖ-strongly continuous. □

Similarly, we can prove the following theorems:

Theorem 2.27. The function
∏

α fα :
∏

α(Xα,T1,T2) →
∏

α(Yα,F1,F2) define by {Xα } →
{ fα(Xα) } is a pairwise ϖ-closure continuous if and only if each fα : (Xα,T1,T2) → (Yα,F1,F2)
is pairwise ϖ-closure continuous.

Theorem 2.28. The function
∏

α fα :
∏

α(Xα,T1,T2) →
∏

α(Yα,F1,F2) define by {Xα } →
{ fα(Xα) } is a pairwise ϖ-weakly continuous if and only if each fα : (Xα,T1,T2) → (Yα,F1,F2)
is pairwise ϖ-weakly continuous.
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