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Abstract

In this paper, new improvements, refinements and extensions to show that an Fh-convex function
on time scales satisfies Hermite-Hadamard inequality is given in several directions. Examples and
applications are as well provided to further support the results obtained.
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1. Introduction and Preliminaries

Let I ⊆ R. A real-valued function f :I → R is said to be convex on the classical closed interval [a, b]
if ∀ x, y ∈ I and λ ∈ [0, 1], we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Hermite-Hadamard inequality has remarkable importance in mathematics, particularly in difference
and differential equations. The inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
, a, b ∈ R, a < b, (1.1)

holds for any convex function f defined on R. This classical inequality (1.1) estimates the mean value
of a convex function from both extremes [12]. Several authors have extended, developed, generalized
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and improved the fundamental inequality (1.1) for uni- and multi-variate convex functions, as well
as other classes of convex functions with extensions to time scales [2]-[7], [10, 11], [14]-[17], [19].

Recently, new developments of the theory of time scales were introduced [13], to unify and extend
the classical difference and differential calculus with accuracy, and also introduce the delta (∆) and
nabla (∇) time scales calculi (see [1], [8], [13]). Thus, the diamond-α (⋄α) dynamic calculus on time
scales, which is essentially a linear combination of the delta and nabla calculi, was developed [18].
The ⋄α dynamic derivative reduces to the standard ∆ derivative for α= 1 and to the standard ∇
derivative for α= 0. On the other hand, it represents a weighted dynamic derivative on any uniformly
discrete time scale when α ∈ (0, 1). From literature, inequality (1.1) has been further extended and
improved to time scales via the delta, nabla and diamond-α dynamics. For a detailed introduction
to the theory of the calculus on time scales, see [1, 4, 6, 7, 10, 19].

The following useful concepts on time scales have been introduced [3].

Definition 1.1. [1] A function f :T → R is called convex on IT, if

f (λt+ (1− λ) s) ≤ λf (t) + (1− λ) f (s) , (1.2)

for all t, s ∈ IT and λ ∈ [0, 1] such that λt+ (1− λ)s ∈ IT.

Definition 1.2. [3] A function f :T → R is called rd-continuous, if it is continuous at all right-
dense points in T and its left-sided limits are finite at all left-dense points in T. Crd denotes the set
of all rd-continuous functions.

A function f :T → R is called ld-continuous, if it is continuous at all left-dense points in T and
its right-sided limits are finite at all right-dense points in T. Cld denotes the set of all rd-continuous
functions.

The set of continuous functions on T contains both Crd and Cld.
It is worthy to note that every rd-continuous function is continuous and every ld-continuous

function is continuous but the converse need not be true.

Definition 1.3. [1] A function F : T → R is called a delta antiderivative of f : T → R if F∆(t) =
f(t) for all t ∈ Tk. In this case, the delta integral of f is defined as∫ t

s

f(τ)∆τ = F (t)− F (s) (1.3)

for all s, t ∈ T; A function G : T → R is called a nabla antiderivative of g : T → R if G∇(t) = g(t)
for all t ∈ Tk. In this case, the nabla integral of g is defined as∫ t

s

g(τ)∇τ = G(t)−G(s) (1.4)

for all s, t ∈ T.

The importance of rd -continuous and ld -continuous functions is revealed by the following result.

Theorem 1.4. [1] Every rd-continuous function has a delta antiderivative and every ld-continuous
function has a nabla antiderivative. Thus;

(i) If f ∈ Crd and t ∈ Tk, then
∫ σ

t
tf(s)∆s = µ(t)f(t).

(ii) If g ∈ Cld and t ∈ Tk, then
∫ t

ρ
tg(s)∇s = ν(t)g(t).
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Definition 1.1 and the diamond-α calculus [18] were employed, to establish a full variant of the
classical Hermite-Hadamard inequality (1.1) on time scales [4], by proving the following result.

Theorem 1.5. [4] Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be a continuous convex
function. Then

f (xα) ≤
1

b− a

∫ b

a

f (t) ⋄αt ≤
b− xα

b− a
f (a) +

xα − a

b− a
f (b) , (1.5)

where xα=
1

b−a

∫ b

a
t⋄αt.

The following corollary was obtained as a middle-point variant of the Hermite-Hadamard inequality
(1.5) on time scales.

Corollary 1.6. [4] Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be a continuous convex
function. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)⋄ 1
2
t ≤ f (a) + f (b)

2
. (1.6)

A refinement of (1.5) was therefore obtained [4] as follows.

Theorem 1.7. [4] Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be a continuous convex
function. Then

f

(
a+ b

2

)
≤ 1

2

(
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

))
≤ 1

b− a

∫ b

a

f (t) ⋄ 1
2
t

≤ 1

2

[
f

(
a+ b

2

)
+

f(a) + f(b)

2

]
≤ f(a) + f(b)

2
. (1.7)

Recently, some Hermite-Hadamard’s inequalities were established for (1.2) via the delta calculus,
with the concept of rd-continuity in definition 1.2 on time scales [1, 13, 19]. A result of [19] is stated
as follows.

Theorem 1.8. [19] Let f ∈ C([a, b],R) be convex. If h ∈ Crd([a, b],R) is symmetric with respect to

t=a+b
2

and
∫ b

a
|h(t)|∆t > 0, then,

f

(
a+ b

2

)∫ b

a

|h (t)|∆t ≤
∫ b

a

|h (t)| f (t)∆t ≤ f (a) + f (b)

2

∫ b

a

|h (t)|∆t. (1.8)

The following can be deduced from Theorem 1.8 above if we set h(t) = 1.

Corollary 1.9. Let T be a time scale and a, b ∈ T. Let f ∈ Crd([a, b],R) be rd-continuous and convex
on [a, b]. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t)∆t ≤ f (a) + f (b)

2
. (1.9)

Observe that Corollary 1.9 can also be obtained from Theorem 1.5 of [4] above if α= 1.
More recently, a more generalized class of convex functions called Fh-convex functions, among

others, was introduced on time scales [8] as follows:
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Definition 1.10. [8] Let h:JT ⊂ T → R be a nonzero non negative function with the property that
h(t) > 0 for all t = 0, where JT is a Fh-convex subset of the real T. A mapping f :IT → R is said to
be Fh-convex on time scales if

f (λx+ (1− λ) y) ≤
(

λ

h (λ)

)s

f (x) +

(
1− λ

h (1− λ)

)s

f (y) , (1.10)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and x, y ∈ IT.

Remark 1.11. We observe that:

(i) If s= 1 and h(λ) = 1, then f ∈ SX(IT), i.e, f satisfies (1.2) (see [3])

(ii) If s= 1, h(λ) = 1 and λ=1
2
, then f ∈ J(IT) is mid-point convex on time scales (see [8]).

(iii) When s= 0, f ∈ P (IT) is P -convex on time scales (see [8]).

(iv) Choosing h(λ) =λ
s

s+1 gives h-convexity on time scales, that is, f ∈ SX(h, IT) (see [8]).

(v) If s= 1 and h(λ) = 2
√
λ(1− λ), then f ∈ MT (IT) is MT -convex on time scales (see [8]).

(vi) If s= 1, h(λ) = 1 and T=R, then f is convex in the classical sense (see [8]).

Note that Fh-convex functions is continuous on T, that is, contains both Crd and Cld, see [8].

Definition 1.12. [8] Let h : JT ⊂ T → R be a non zero non negative function, with the property
that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T. The diamond-Fh integral of
a function f : T → R from a to b, where a, b ∈ T is given by;∫ b

a

f(t) ⋄Fh
t =

(
λ

h(λ)

)s ∫ b

a

f(t)∆t+

(
1− λ

h(1− λ)

)s ∫ b

a

f(t)∇t, s ∈ [0, 1], 0 ≤ λ ≤ 1, (1.11)

provided that f has a delta and nabla integral on [a, b]T or IT.

Obviously, each continuous function has a diamond-Fh integral. The combined derivative ⋄Fh
is not

a dynamic derivative, since we do not have a ⋄Fh
antiderivative.

A more general and combined dynamic calculus on time scales, referred to as the diamond-Fh

calculus, has been introduced and employed to establish Hermite-Hadamard integral inequality for
the class of Fh-convex functions (1.10), see [7, 8, 10].

Theorem 1.13. [10] Let h:JT ⊂ T → R be a non zero, non negative function with the property that
h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T and f :IT → R be a continuous
Fh-convex function, a, b, t ∈ IT, with a<b, s ∈ [0, 1]. Then

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) ⋄Fh
t ≤ f (a)

∫ 1

0

(
λ

h (λ)

)s

∆λ+ f (b)

∫ 1

0

(
1− λ

h (1− λ)

)s

∇λ.

(1.12)

Note that the inequality (1.12) can be rewritten as follows.

2s
(
h(

1

2
)

)s

f (tα) ≤
1

b− a

∫ b

a

f (t) ⋄Fh
t ≤

(
b−tα
b−a

h
(
b−tα
b−a

))s ∫ b

a

f (t)∆t+

(
tα−a
b−a

h
(
tα−a
b−a

))s ∫ b

a

f (t)∇t,

(1.13)

where tα =
∫ b

a
x ⋄α x.

The following corollary is obtained as a middle-point variant of the Hermite-Hadamard inequality
(1.13) for Fh-convex functions on time scales T when α=1

2
and Fh=

1
2
.
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Proposition 1.14. Let h:JT ⊂ T → R be a non zero, non negative function with the property that
h(1

2
) ̸= 0, where JT is a Fh-convex subset of the real T and f :IT → R be a continuous Fh-convex

function, a, b, t ∈ IT, with a<b, s ∈ [0, 1]. Then

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) ⋄ 1
2
t ≤

(
1
2

h
(
1
2

))s [∫ b

a

f (t)∆t+

∫ b

a

f (t)∇t

]
. (1.14)

For more details on the diamond-Fh time scales calculus, see [6]-[10].

The next section establishes various estimations of Hermite-Hadamard integral inequality, which
better improve inequalities (1.1), (1.5)-(1.14).

2. Main results

Our main result is presented as follows.

Theorem 2.1. Let h:JT ⊂ T → R be a non zero, non negative function with the property that
h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T and f :IT → R be a continuous
Fh-convex function, a, b, t ∈ IT, with a<b and s ∈ [0, 1]. Then for real numbers lf (λ) and Lf (λ); the
lower and upper bounds of f respectively, we have

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ lf (λ) ≤

(
λ

h(λ)

)s
(

λ
h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)⋄ 1
2
t

+

(
1−λ

h(1−λ)

)s
(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)⋄ 1
2
t

≤ Lf (λ) ≤

(
1
2

h
(
1
2

))s [∫ b

a

f (t)∆t+

∫ b

a

f (t)∇t

]
, (2.1)

where

lf (λ) = 2s
(
h(

1

2
)

)s
1

2

[(
λ

h(λ)

)s

f

((
λ

h(λ)

)s

b+

((
1− λ

h(1− λ)

)s

+ 1

)
a

)]

+ 2s
(
h(

1

2
)

)s
1

2

[(
1− λ

h(1− λ)

)s(((
λ

h(λ)

)s

+ 1

)
b+

(
1− λ

h(1− λ)

)s

a

)]
and

Lf (λ) =

(
λ

h(λ)

)s( 1
2

h(1
2
)

)s
[∫ ( λ

h(λ))
s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∆t+

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∇t

]

+

(
1− λ

h(1− λ)

)s( 1
2

h(1
2
)

)s
[∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∆t+

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∇t

]
.
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Proof . Since f is Fh-convex on IT, it is well-known that if f : IT → R is continuous on subinterval

T ∩
[
a,
(

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
]
, then

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) ⋄ 1
2
t ≤

(
1
2

h
(
1
2

))s [∫ b

a

f (t)∆t+

∫ b

a

f (t)∇t

]
,

with h(t) ̸= 0 for all t ≥ 0, we have

2s
(
h(

1

2
)

)s
1

2
f

[(
λ

h(λ)

)s

b+

((
1− λ

h(1− λ)

)s

+ 1

)
a

]

≤ 1(
λ

h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t) ⋄ 1
2
t

≤
( 1

2

h(1
2
)

)s
[∫ ( λ

h(λ))
s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∆t+

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∇t

]
. (2.2)

Multiply (2.2) by
(

λ
h(λ)

)s
to get(

λ

h(λ)

)s

2s
(
h(

1

2
)

)s
1

2
f

[(
λ

h(λ)

)s

b+

((
1− λ

h(1− λ)

)s

+ 1

)
a

]

≤

(
λ

h(λ)

)s
(

λ
h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t) ⋄ 1
2
t

≤
(

λ

h(λ)

)s( 1
2

h(1
2
)

)s
[∫ ( λ

h(λ))
s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∆t+

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∇t

]
. (2.3)

Also, using

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) ⋄ 1
2
t ≤

(
1
2

h
(
1
2

))s [∫ b

a

f (t)∆t+

∫ b

a

f (t)∇t

]
,

with h(t) ̸= 0 for all t ≥ 0 on subinterval T ∩
[(

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a, b
]
gives

2s
(
h(

1

2
)

)s
1

2
f

[((
λ

h(λ)

)s

+ 1

)
b+

(
1− λ

h(1− λ)

)s

a

]

≤ 1(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t) ⋄ 1
2
t

≤
( 1

2

h(1
2
)

)s
[∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∆t+

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∇t

]
. (2.4)
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Multiplying (2.4) by
(

1−λ
h(1−λ)

)s
, we get(

1− λ

h(1− λ)

)s

2s
(
h(

1

2
)

)s
1

2
f

[((
λ

h(λ)

)s

+ 1

)
b+

(
1− λ

h(1− λ)

)s

a

]

≤

(
1−λ

h(1−λ)

)s
(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t) ⋄ 1
2
t

≤
(

1− λ

h(1− λ)

)s( 1
2

h(1
2
)

)s
[∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∆t+

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∇t

]
. (2.5)

Adding up (2.3) and (2.5) side by side, we obtain

2s
(
h(

1

2
)

)s
1

2

[(
λ

h(λ)

)s

f

((
λ

h(λ)

)s

b+

((
1− λ

h(1− λ)

)s

+ 1

)
a

)]

+ 2s
(
h(

1

2
)

)s
1

2

[(
1− λ

h(1− λ)

)s(((
λ

h(λ)

)s

+ 1

)
b+

(
1− λ

h(1− λ)

)s

a

)]

≤

(
λ

h(λ)

)s
(

λ
h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t) ⋄ 1
2
t

+

(
1−λ

h(1−λ)

)s
(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t) ⋄ 1
2
t

≤
(

λ

h(λ)

)s( 1
2

h(1
2
)

)s
[∫ ( λ

h(λ))
s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∆t+

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∇t

]

+

(
1− λ

h(1− λ)

)s( 1
2

h(1
2
)

)s
[∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∆t+

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∇t

]
.

That is,

lf (λ) ≤

(
λ

h(λ)

)s
(

λ
h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t) ⋄ 1
2
t

+

(
1−λ

h(1−λ)

)s
(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t) ⋄ 1
2
t ≤ LF (λ). (2.6)

Since f is Fh-convex on IT, we have that

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
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= 2s
(
h(

1

2
)

)s

×

f


(

λ
h(λ)

)s ((
λ

h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
+ 1
)
a
)

2

+


(

1−λ
h(1−λ)

)s (((
λ

h(λ)

)s
+ 1
)
b+

(
1−λ

h(1−λ)

)s
a
)

2


≤ 2s

(
h(

1

2
)

)s

×( λ

h(λ)

)s

f


(

λ
h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
+ 1
)
a

2

+

(
1− λ

h(1− λ)

)s

f


((

λ
h(λ)

)s
+ 1
)
b+

(
1−λ

h(1−λ)

)s
a

2


≤ 2s

(
h(

1

2
)

)s

×( λ

h(λ)

)s

f

a+
((

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2

+

(
1− λ

h(1− λ)

)s

f

b+
((

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2


By definition 1.3, F is a ∆ antiderivative of f if F∆(t) = f(t) for all t ∈ Tk; G is a ∇ antiderivative
of g if G∇(t) = g(t) for all t ∈ Tk. Thus

2s
(
h(

1

2
)

)s

×

( λ

h(λ)

)s

f

a+
((

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2

+

(
1− λ

h(1− λ)

)s

f

b+
((

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2


= 2s

(
h(

1

2
)

)s

×( λ

h(λ)

)s

F∆

a+
((

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2

+

(
1− λ

h(1− λ)

)s

G∇

b+
((

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2

 ,

(2.7)
wish by equations (1.3) and (1.4) is

2s
(
h(

1

2
)

)s

×[(
λ

h(λ)

)s ∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(k)∆k +

(
1− λ

h(1− λ)

)s ∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(k)∇k

]

= 2s
(
h(

1

2
)

)s

×( λ

h(λ)

)s
F

((
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)
− F (a)

2
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+

(
1− λ

h(1− λ)

)s
G(b)−G

((
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
)

2


≤
(

λ

h(λ)

)s( 1
2

h(1
2
)

)s
[∫ ( λ

h(λ))
s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∆t+

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∇t

]

+

(
1− λ

h(1− λ)

)s( 1
2

h(1
2
)

)s
[∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∆t+

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∇t

]

=

( 1
2

h(1
2
)

)s
[(

λ

h(λ)

)s ∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∆t+

(
1− λ

h(1− λ)

)s ∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∆t

]

+

( 1
2

h(1
2
)

)s
[(

λ

h(λ)

)s ∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)∇t+

(
1− λ

h(1− λ)

)s ∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)∇t

]

≤
( 1

2

h(1
2
)

)s [∫ b

a

f(t)∆t+

∫ b

a

f(t)∇t

]
. (2.8)

Thus we obtain (2.1) by (2.6) and (2.8). □

Remark 2.2. Theorem 2.1. shows that there exists estimations better than (1.12) in the case where
f is Fh-convex on time scales. It equally refines and generalizes previous results in literature as
follows:

(i) The first three inequalities in (1.7) are obtained by applying (1.14) for λ=1
2
, s= 1,h(λ) = 1 and

h(1
2
) =1

2
in (2.1).

(ii) If T=R, then (2.1) is the same as inequality (1.6) [11].

The following is an immediate consequence of the above Theorem.

Corollary 2.3. Let h:JT ⊂ T → R be a non zero, non negative function with the property that
h(1

2
) ̸= 0, where JT is a Fh-convex subset of the real T and f :IT → R be a continuous Fh-convex

function, a, b, t ∈ IT, with a<b and s ∈ [0, 1]. Then we have the following inequalities for lower and
upper bounds lf (λ) and Lf (λ) of real numbers respectively.

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ sup

λ∈[0,1]
lf (λ) ≤

(
λ

h(λ)

)s
(

λ
h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ ( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

a

f(t)⋄ 1
2
t

+

(
1−λ

h(1−λ)

)s
(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b

( λ
h(λ))

s
b+( 1−λ

h(1−λ))
s
a

f(t)⋄ 1
2
t

≤ inf
λ∈[0,1]

Lf (λ) ≤

(
1
2

h
(
1
2

))s [∫ b

a

f (t)∆t+

∫ b

a

f (t)∇t

]
, (2.9)

where lf (λ) and Lf (λ) are as stated in Theorem 2.1.
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We then state the following corollaries, which are refinements of (1.6).

Corollary 2.4. Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be a continuous convex function
on IT. Then for all λ ∈ [0, 1], we have

f

(
a+ b

2

)
≤ λf

(
λb+ (2− λ)a

2

)
+ (1− λ)f

(
(1 + λ)b+ (1− λ)a

2

)

≤ 1

b− a

∫ b

a

f(t)⋄ 1
2
t ≤ 1

2
[f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)]

≤ f (a) + f (b)

2
. (2.10)

Corollary 2.5. Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be a continuous convex function
on IT. Then we have the following inequality

f

(
a+ b

2

)
≤ sup

λ∈[0,1]

[
λf

(
λb+ (2− λ)a

2

)
+ (1− λ)f

(
(1 + λ)b+ (1− λ)a

2

)]

≤ 1

b− a

∫ b

a

f(t)⋄ 1
2
t ≤ inf

λ∈[0,1]

[
1

2
[f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)]

]
≤ f (a) + f (b)

2
. (2.11)

Remark 2.6. Corollaries 2.4 and 2.5 are improvements of some results for a convex function on
the interval I of R. See [12, Theorem 1.1 and Corollary 1.1].

Thus, we can have the following corollaries as refinements and improvements to Theorem 1.8 and
Corollary 1.9.

Corollary 2.7. Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be convex and rd-continuous
on [a, b]. Then we have the following

f

(
a+ b

2

)
≤
[
λf

(
λb+ (2− λ)a

2

)
+ (1− λ)f

(
(1 + λ)b+ (1− λ)a

2

)]

≤ 1

b− a

∫ b

a

f(t)∆t ≤
[
1

2
[f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)]

]
≤ f(a) + f(b)

2
. (2.12)

Corollary 2.8. Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be convex and rd-continuous
on [a, b]. Then

f

(
a+ b

2

)
≤ sup

λ∈[0,1]

[
λf

(
λb+ (2− λ)a

2

)
+ (1− λ)f

(
(1 + λ)b+ (1− λ)a

2

)]

≤ 1

b− a

∫ b

a

f(t)∆t ≤ inf
λ∈[0,1]

[
1

2
[f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)]

]
≤ f(a) + f(b)

2
. (2.13)
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Example 2.9. Let T be a time scale and a, b ∈ T such that 0 ≤ a < b. Suppose

l(λ) =
[
λf
(

λb+(2−λ)a
2

)
+ (1− λ)f

(
(1+λ)b+(1−λ)a

2

)]
and

L(λ) =
[
1
2
[f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)]

]
are the lower and upper bounds in the inequali-

ties (2.10)-(2.13), then

(i) For λ= a
a+b

, we obtain

l

(
a

a+ b

)
=

a

a+ b
f

(
a2 + 3ab

2(a+ b)

)
+

a

a+ b
f

(
b2 + 3ab

2(a+ b)

)
and

L

(
a

a+ b

)
=
1

2

(
f

(
2ab

a+ b

)
+

af(a) + bf(b)

a+ b

)
.

(ii) For λ=
√
a√

a+
√
b
, we get

l

( √
a

√
a+

√
b

)
=

√
a

√
a+

√
b
f

(√
a(
√
a+

√
b)

2

)
+

√
a

√
a+

√
b
f

(√
b (

√
a+

√
b)

2

)
and

L

( √
a

√
a+

√
b

)
=
1

2

(
f(
√
ab) +

√
af(a) +

√
bf(b)

√
a+

√
b

)
.

Remark 2.10. Example 2.9 shows that there exist estimations better than (1.1) for functions f
convex on classical and time scales intervals. Also, there are various refinements and generalizations
of the following results in literature;

(i) Using inequality (1.6) for λ=1
2
gives (1.7) (see [4]).

(ii) A result of [2] is obtained from the right hand side of (2.11) for T=R and L
(
1
2

)
.

(iii) For T=R and L
( √

a√
a+

√
b

)
, the right hand side of (2.11) reduces to a previously obtained result

[17].

(iv) For T=R and L
(

a
a+b

)
, the right hand side of (2.11) is the same as that of [5] as previously

obtained.

(v) If T=R, then (2.11) is the same as inequality (1.6) [11].

The following corollary is a middle-point variant of Theorem 2.1. for λ ∈ [0, 1] and is a refinement
of Theorem 1.4 of [10].

Corollary 2.11. Let h:JT ⊂ T → R be a non zero, non negative function with the property that
h(1

2
) ̸= 0, where JT is a Fh-convex subset of the real T and f :IT → R be a continuous Fh-convex

function, a, b, t ∈ IT, with a<b and s ∈ [0, 1]. Then the following holds

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ 2s

(
h(

1

2
)

)s
1

2

[
f

(
a+ 3b

4

)
+ f

(
3a+ b

4

)]
≤ 1

b− a

∫ b

a

f (t) ⋄ 1
2
t

≤
( 1

2

h(1
2
)

)s
1

2

[∫ b

a

f(t)∆t+

∫ b

a

f(t)∇t

]
≤
( 1

2

h(1
2
)

)s [∫ b

a

f(t)∆t+

∫ b

a

f(t)∇t

]
.

(2.14)
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Proof . The proof follows easily from Theorem 2.1. □

Remark 2.12. Applying

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) ⋄ 1
2
t ≤

(
1
2

h
(
1
2

))s [∫ b

a

f (t)∆t+

∫ b

a

f (t)∇t

]
for λ=1

2
, s= 1 and h(λ) = 1 in (2.1) gives (2.14).

Thus, we can have the following corollary as a refinement of Theorem 1.8. above, see [19].

Corollary 2.13. Let T be a time scale and a, b ∈ T. Let f : [a, b] → R be rd-continuous and convex
on [a, b]. Then

f

(
a+ b

2

)
≤ 1

2

[
f

(
a+ 3b

4

)
+ f

(
3a+ b

4

)]
≤ 1

b− a

∫ b

a

f(t)∆t

≤ 1

2

[
f

(
a+ b

2

)
+

f(a) + f(b)

2

]
≤ f (a) + f (b)

2
. (2.15)

3. Applications to Economics and Optimization

A fundamental condition for the application of time scales calculus theory is description of dynamic
processes using discrete and continuous models. Hence, the field of Economics, with its many dy-
namic models, finds applications for time scales calculus. Most dynamic optimization problems in
Economics are set up in the following form: a representative consumer seeks to maximize his/her
lifetime utility U subject to certain budgetary constraints A. There is the (constant) discount factor
δ, which satisfies 0 ≤ δ ≤ 1, Cs is consumption during period s, u(Cs) is the utility the consumer
derives from consuming Cs units of consumption in periods s= 0, 1, 2, ...,T . Utility is assumed to be
concave: u(Cs) has u(Cs)

′>0 and u(Cs)
′′<0. The consumer receives some income Y in a time period

s and decides how much to consume and save during that same period. If the consumer consumes
more today, the utility or satisfaction he derives from consumption, is forgone tomorrow as the de-
terrence. Normally, the consumer is insatiable. However, each additional unit consumed during the
same period generates less utility than the previous unit consumed within the same period (Law of
diminishing marginal utility, LDMU).

The individual is constrained by the fact that the value function of his consumption, u(C) must
be equal to the value function of his income Ys, plus the assets/debts, As that he might accrue in a
period s. Hence, As+1 is the amount of assets held at the beginning of period s+1. Also, A could be
positive or negative; the consumer might save for the future or borrow against the future at interest
rate r in any given period s but the value of AT , which is the debt accrued with limit or the last
period asset holding, has to be nonnegative (the optimal level is naturally zero).

In order to state the necessary and sufficient condition for optimization in the formulation of
a dynamic optimization problem, it is important to present the simplest form of optimal control
problem in terms of the diamond-Fh integral as;

max J⋄Fh
[x, u] =

∫ b

a

L(t, x, u)⋄Fh
t =

(
λ

h (λ)

)s ∫ b

a

L (t, xσ, uσ)∆t+

(
1− λ

h (1− λ)

)s ∫ b

a

L (t, xρ, uσ)∇t,

(3.1)
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for all s ∈ [0, 1] and 0 ≤ λ ≤ 1, among all pairs (x, u) such that x∆=f(t, xσ, uσ) and x∆=f(t, xρ, uσ),
together with appropriate endpoint conditions u⋄Fh

′
(t) =L(t, u, p), x(0) =u0, u(T ) free for all

t ∈ [0,T ].
Thus, a simple utility maximization model of household consumption in Economics for a function

of single variable can be refined and solved in time scales settings in order to obtain better estimates
of the maximized utility function, using the same intuition as that of the dynamic optimization
problem presented earlier, by employing our developed concepts in section 2 as below. Thus, the
model assumes a perfect foresight.

Theorem 3.1. Let T be a time scale and h:JT ⊂ T → R be a nonzero non negative function with
the property that h(1

2
) ̸= 0, where JT is a Fh-convex subset of the real T. Then, the value function of

the lifetime utility U⋄ϕh to be maximized is;

Maximize U⋄Fh
= sup

λ∈[0,1]
lF (λ) ≤

∫ T

0

u (C (t)) e−δ (t, 0) ⋄Fh
t ≤ inf

λ∈[0,1]
LF (λ) , (3.2)

subject to the budget constraints

a∇ (t)= (rA+ Y − C) (ρ (t)) ,
r

1 + rµ (t)
aσ (t) +

1

1 + rµ (t)
yσ (t)− 1

1 + rµ (t)
cσ (t) , (3.3)

a∆(t) = a(0) =a0, a(T ) =aT ,

where u is Fh-concave (u
′
(C) > 0 and u

′′
(C) < 0), 0 ≤ λ ≤ 1, s ∈ [0, 1], lF (λ), LF (λ),

A∆, A∇, r, δ, A, Y and e are as defined above.

Proof . Let f(t) be a function satisfied by the consumption function path that would maximize
lifetime utility U(C(t))e−δ(t, 0) in (3.2), then the condition for a functional of the form∫ b

a

L(t, x, u)⋄Fh
t =

(
λ

h (λ)

)s ∫ b

a

L (t, xσ, uσ)∆t+

(
1− λ

h (1− λ)

)s ∫ b

a

L (t, xρ, uσ)∇t,

for all s ∈ [0, 1] and 0 ≤ λ ≤ 1, to have a local extremum for a function u(t) and the sufficient
condition for an absolute maximum(minimum) of the functional hold.

Since both local and absolute extreme hold, the functional satisfies the sufficient conditions for
optimization, which in turn satisfies Theorem 2.1.

Therefore, the model (3.2)-(3.3) can be analysed by writing (3.2) in terms of diamond-Fh integral
(1.11), stating the maximum principle and giving the Hamiltonian function for the model. □

4. Conclusion

In this article, new improvements and generalizations of Hermite-Hadamard integral inequalities for
the generalized class of Fh-convex functions on time scales are hereby established. Examples and
applications to Optimization and Economics are given to support our results. The new diamond-Fh

utility maximization model of household consumption in Economics constructed, provides better
estimates to the diamond-Fh time scale model.
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