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Abstract

The concept of structural reliability analysis presented a methodology used to verify the efficiency
of an engineering structure in the design and experimentation stage to provide support for a more
balanced design between structural integrity and the requirements for it, because it combines prob-
abilistic and statistical techniques with science in the specialized field through the regular and har-
monic use of analytical tools, in addition to empirical data available. This is done by calculating the
probability of structural failure because it is a measure of how well the studied design works according
to the resistance factors (components) on which it depends and strength (operational conditions).
There are several techniques used to analyse reliability and compute the probability of structural
failure, and among those techniques is the third-moment technique based on the first-order reliability
method. In this paper, the researcher proposes the development of the third-moment technique using
the Downhill Simplex algorithm, the proposed technique was applied to a numerical example, and it
was highly efficient compared to the original third-moment technique.

Keywords: Structural reliability, probability of structural failure, third-moment, Downhill
Simplex.

1. Introduction

The probability of structural failure pf is the main objective of the structural reliability analysis,
because it gives an indication for evaluating the structural design to ensure its quality, therefore
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it has been used in many engineering fields. The pf is computed with the help of statistical and
probability methods that reflect the geometric reality [5, 15].

For the purpose of analysis, uncertain quantities such as loads, material properties, geometric
dimensions, environmental factors, etc., are represented by the k-dimensional vector of basic random
variables X = (X1, X2, . . . , Xk), then the random variables are formulated through a mathematical
model known as the performance function or the limit state function G(X) that shows the variables
included in the design as it plays a key role in the analysis process. The G(X) is can divide the
variables space into two domains: safe domain (G(X) > 0 ) and failure domain (G(X) ≤ 0).
Thus, the probability of structural failure pf is calculated as:

pf = p(G(X) ≤ 0) =

∫
. . .

∫
G(X)≤0

fX(x1,x2, . . . , xk) dx1, dx2, . . . , dxk (1.1)

Where, fX(x1, x2, . . . , xk) is the joint probability density function (PDF) of X.
But it’s difficult to perform the above integration because in most engineering practices there is

a multi-correlation between random variables, accordingly, presented many techniques, which are an
analytical approximation of integration that makes the calculations more flexible to help estimate the
probability of structural failure under of the problem of correlation such as the first-order reliability
method (FORM) [10,13], second-order reliability method (SORM) [16, 17, 18], simulation method
[6], neural networks [7, 14], etc.

The first-order reliability method (FORM), it is one of the essential methods of structural relia-
bility analysis widely used in its analysis of engineering problems when there are correlations between
the studied random variables, it has provided computational procedures to calculating the probability
of structural failure [9, 11].

The FORM in structural reliability analysis, in general require that the random variables are
independent and have a standard normal distribution, otherwise, the correlated original variables
X = (X1, X2, . . . , Xk) in (X-space) should be transformed into independent standard normal vari-
ables Y = (Y1, Y2, . . . , Yk) in (Y-space), thus the performance function G(X) of correlated original
vector X transform into g(Y) is performance function of independent standard normal vector Y.
The researchers have introduced several transformation techniques such as Rosenblatt transforma-
tion, Nataf transformation, etc. [5].

After that, the most probability point (MPP) for failure in the standard normal space (Y-space) is
searched in an iterative manner through one of the optimization algorithms such as HL-RF, iHL-RF
and etc. [9], and when the most probable point (MPP) of failure found, the reliability index that
symbolizes it has the Greek letter β is calculated at MPP by the following formula [8]

β = ∥Y∥
S.t g (Y) = 0

}
(1.2)

where Y= y1, y2, . . . , yk , is the vector of the most probable point (MPP) in the normal space, and
∥.∥ is the norm of vector:

∥Y∥ =
√
YTY =

√
y12 + y22 + . . .+ yk2 (1.3)

Thus, it can be calculate the probability of structural failure pf depending on the reliability index β
as [19]

Pf = Φ(−β) = 1− Φ (β) (1.4)
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whereΦ is the cumulative distribution function:

Φ (β) =

∫ β

−∞

1√
2π

e−( 1
2
)y2 dy (1.5)

There are several techniques based on the first - order reliability method (FORM), one of the tech-
niques is the third-moment technique presented by the researcher Lu et al. [12], which based on
the normal transformation technique with help Cholesky decomposition to transform the correlated
variables into independent standard normal, this requires knowledge of the first three moments and
the correlation matrix for the original variables. After that, the most probability point (MPP) of
failure is searched to calculate the reliability index β at MPP using the iterative algorithm HL-RF.
In this paper, the researcher suggested used the Downhill Simplex algorithm with third-moment
technique instead of the iterative algorithm HL-RF to search for MPP.

This paper is organized as follows: In Section (2) the techniques used in the structural reliability
analysis to calculate the probability of structural failure are clarified, in Section (3) the application
on a numerical example, while in Section (4) the most important conclusions that have been reached
are mentioned.

2. Techniques of structural reliability analysis

In this section, the techniques used in this paper are explained: The original third-moment
technique and the developed third-moment technique.

2.1. Third-Moment Technique

The structural reliability analysis according to the third- moment technique (Third-M) is based
on the idea of normal transformation method, with help: The first three moments (mean, standard
deviation and skewness), the correlation matrix of the original random variables (X1, X2, . . . , XK),
and with adopt the second- order polynomial, to transforming original correlated random variables
into correlated standard normal variables (X1S, X2S, . . . , XKS), then, they are transformed into
independent standard normal variables (Y1, Y 2, . . . , YK) using Cholesky decomposition. After the
transformation process, the analysis is performed by adopting the HL-RH algorithm in a standard
normal space according to the requirements of the FORM. This technique was organized as follows:
Explained the transformation technique in section (2.1.1). Clarification of the structural reliability
analysis in section (2.1.2).

2.1.1. Transformation technique

By adopting the third-moment transformation technique, the correlated variables are transformed
as follows [12].
At first, can be standardized original correlated random variable Xi as

Xis =
Xi −MXi

σXi

(2.1)

then, Xi = MXi
+ σXi

Xis (2.2)

where MXi
and σXi

are mane and standard deviation of Xi, respectively, i = (1, 2, . . . , k) , k is
random variable. And using the second-order polynomial normal transformation the standardized
random variable Xis can be approximated as follows:

Xis = Sz (Zi) = ai + biZi + ciZ
2
i (2.3)
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where Zi is the ith correlated standard normal random variable, Sz (Zi) is second-order polynomial
of Zi and ai, bi, and ci are polynomial coefficients.
The relationship between Xi and Zi, it is by substituting the Eq. (2.3) in Eq. (2.2) of Xis as

Xi = MXi
+ σXi

(ai + biZi + ciZ
2
i ) (2.4)

where ai, bi and ci can be obtained by taking the first three moments (mean, standard deviation
and skewness) of the left side in Eq. (2.3) for equal to those of the right side, and it is obtained [17]:

ci = −ai = sin (δ3Xi
)
√
2 cos

[
sin (δ3Xi

) θi − π

3

]
bi =

√
1− 2c2i

θi = arctan

−

√
8− δ23Xi

δ3Xi


(2.5)

δ3Xi
: Skewness of Xi. Then, the second step in the transformation process, the correlated stan-

dard random vector Z =(z1, z2, . . . , zk) is transformed into independent standard normal vector
Y =(y1, y2, . . . , yk), this requires finding the matrix of correlations Cz of standard normal variables
[12]

Cz =


1 ρz1z2 . . . ρz1zk
ρz2z1 1 . . . ρz2zk
...

ρzkz1

...
ρzkz2

. . .

. . .

...
1

 (2.6)

where ρzizj is correlation coefficient between Zi and Zj, ( i, j = 1, . . . ., k ).
In order to determine ρzizj , the standardized variables Xis and Xjs of two correlated variables Xi and
Xj respectively can be illustrated as

Xis = ai + biZi + ciZ
2
i = (ai, bi, ci) .(1, Zi, Z

2
i )

T
(2.7)

Xjs = aj + bjZj + cjZ
2
j =

(
1, Zj, Z

2
j

)
. (aj, bj, cj)

T (2.8)

where Zi and Zj are two correlated standard normal variables with correlation coefficient ρzizj , ( i, j = 1, . . . , k),
and according to definition of correlation coefficient can be determined ρzizj , by the correlation co-
efficient ρxixj

between original variables Xi and Xj as

ρxixj
=

E {[Xi − E(Xi)] . [Xj − E(Xj)]}√
ν(Xi).

√
ν(Xj)

(2.9)

whereE(Xi) and ν(Xi) are mean and variance of Xi respectively, and similarly to for Xj based on
Eq. (2.2):

Xi = MXi
+ σXi

Xis (2.10)

Xj = MXj
+ σXj

Xjs (2.11)

substituting Eqs. (2.10) and (2.11) in Eq. (2.9) gives

ρxixj
=

E {[Xis − E(Xis)] . [Xjs − E(Xjs)]}√
ν(Xis) .

√
ν(Xjs)
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whereE (Xis) = 0, v (Xis) = 1 and similarly to Xjs , thus

ρxixj
= E (Xis.Xjs) (2.12)

then, substituting Eqs. (2.7) and (2.8) in Eq. (2.12), the following is obtained

ρxixj
= E

[
(ai, bi, ci) .(1, Zi, Z

2
i )

T (
1, Zj, Z

2
j

)
. (aj, bj, cj)

T
]

= (ai, bi, ci)E
[
(1, Zi, Z

2
i )

T (
1, Zj, Z

2
j

)]
(aj, bj, cj)

T
(2.13)

Let

Q = E
[(
1, Zi, Z

2
i

)T (
1, Zj, Z

2
j

)]
= E

 1 Zi Z2
j

Zi ZiZj ZiZ
2
j

Z2
i Z2

i Zj Z2
i Z

2
j

 (2.14)

where Q is the expected matrix results of (1, Zi, Z
2
i )

T
and

(
1, Zj, Z

2
j

)
, it is obtain according to the

properties of standard normal variables as follows [3]

E
[
Zi

2r−1
]
= 0, r ≥ 1

E
[
Zi

2r
]
=

(2r)!

2rr!
, r ≥ 1

E
(
Z2m+1

i Z2n+1
j

)
=

(2m+ 1)!(2n+ 1)!

2m+n+1

min(m,n)∑
P=0

(
2ρzizj

)2P+1

(m− P )! (n− P )! (2P + 1)!

E
(
Z2m

i Z2n+1
j

)
= 0, m, n ≥ 0

E
(
Z2m+1

i Z2n
j

)
= 0, m, n ≥ 0

E
(
Z2m

i Z2n
j

)
=

(2m)!(2n)!

2m+n

min(m,n)∑
P=0

(2ρzizj)
2p

(m− P )!(n− P )!(2P )!



(2.15)

thus, by application Eq. (2.15) to the Q matrix, the following results are obtained:

Q =

1 0 1
0 ρzizj 0
1 0 2ρ2zizj + 1

 (2.16)

Substituting Eq. (2.16) in Eq. (2.13) gives

ρxixj
= (ai, bi, ci)

1 0 1
0 ρzizj 0
1 0 2ρ2zizj + 1

 (aj, bj, cj)
T

ρxixj
= aiaj + ajci + ρzizjbibj + cicj + aicj + cicj + 2cicjρ

2
zizj

(2.17)

By substitute the polynomial coefficients (ai, bi) and similar (aj, bj) according to Eq. (2.5) into Eq.
(2.17), the result as

ρxixj
= cicj − cicj + ρzizj

√
1− 2c2i

√
1− 2c2j − cicj + cicj + 2cicjρ

2
zizj

=
√

(1− 2c2i ) (1− 2c2j )ρzizj + 2cicjρ
2
zizj

(2.18)

where the right solution of ρzizj should be restricted by the following conditions to achieves the
definition of the correlation coefficient:
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i. −1 ≤ ρzizj ≤ 1

ii. ρzizj .ρxixj
≥ 0

thus, by solving Eq. (2.18) and the conditions of ρzizj shown above, the formula for ρzizj is
determined as follows

ρzizj =
−
√
(1− 2c2i )

(
1− 2c2j

)
+
√

(1− 2c2i )
(
1− 2c2j

)
+ 8cicj ρxixj

4cicj
(2.19)

After explaining how to obtain the correlation coefficient ρzizj between any two correlated standard
normal random variables by Eq.(24) for the matrix Cz, to the objective of application Cholesky
decomposition which help to transform the correlated standard normal random vector Z into inde-
pendent standard normal vector Y as following [2]
The correlation matrix Cz if positive-definite matrix, it can be rewritten by using Cholesky decom-
positions as

LLT= Cz (2.20)

where L is lower triangular matrix and LT is transpose matrix of L. The matrix L expressed as

L =


l11 0 . . . 0
l21 l22 . . . 0
...
ln1

...
ln2

. . .

. . .

...
lnn

 , lij = 0 for all j > i (2.21)

where obtained the values lij of matrix L through correlation matrix Cz as
l11 0 . . . 0
l21 l22 . . . 0
...
lk1

...
lk2

. . .

. . .

...
lkk



l11 l21 . . . lk1
0 l22 . . . lk2
...
0

...
0

. . .

. . .

...
lkk

 =


1 ρz1z2 . . . ρz1zk
ρz1z2 1 . . . ρz2zk
...

ρzkz1

...
ρzkz2

. . .

. . .

...
1

 (2.22)

The lower triangular matrix L used in the process of transformed the correlated standard normal
vector Z to the standard independent normal random vector Y as follows

Z = LY (2.23)

according to Eqs. (2.21) and (2.23), Zi is illustrated as

Zi =
i∑

P=1

lipYp, i = 1, 2, . . . , k (2.24)

where Zi is ith correlation standard normal random variable, where Yp is pth independent standard
normal random variable, lip is ith row and pth column element of matrix L.
Substituting Eq. (2.24) in Eq. (2.2) of Zi to transform the correlated normal variablesXi in inde-
pendent standard normal Yi as

Xi = MXi
+ σXi

ai + bi

i∑
p=1

liPYp + ci

(
i∑

p=1

liPYP

)2
 , i = 1, 2, . . . , K (2.25)
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2.1.2. Performing a structural reliability analysis

After performing the process of transforming the correlated and non-normal random variables
as in section (2.1.2), in this section the structural reliability analysis procedure is explained, where
the most probability point (MPP) with a number of s-iterations in the standard normal space is
searched by adopting the HL- RF algorithm [13] is a simple, highly efficient iterative method and
the most popular in structural reliability analysis when using FORM. And then the reliability index
β is calculated, and obtained the probability of structural failure pf [12]. The algorithm in section
(2.1.2.1) describes the steps of the analysis.

2.1.2.1 Structural reliability analysis algorithm

Structural reliability analysis algorithm

1. Definition of the performance function G (X).

2. Calculate the first three moments (mean, standard deviation and skewness) of original
random variable, and the original correlation matrix CX.

3. Transform the original correlated random vector X, into independent standard normal
vector Y, according to Eq. (2.25) for each Xi in G (X), thus, G(X)is transform into a
performance function g(Y) of independent standard normal vector Y.

4. Set s=0, where s is iteration.

5. Compute MPP of vectorY =(Y 1, Y2, . . . , Yk) in standard normal space, start by choosing
initial value of vector Ys = 0

6. Compute value of g (Y) at Ys.

7. Compute:

∇g (Y) =

{
∂g(Y)

∂Y1

,
∂g(Y)

∂Y2

, . . . ,
∂g(Y)

∂Yk

}
, at Ys (2.26)

where ∇g (Ys) is gradient vector of the performance function g (Y) at Ys.

8. Compute new Ys+1 MPP as:

Ys+1 =
1

(∇g (Ys ))
T∇g (Ys )

[
(∇g (Ys ))

TYs − g (Ys )
]
∇g (Ys ) (2.27)

9. Compute the reliability index β:
β= ∥Ys+1∥ (2.28)

10. Determine the initial reliability index β0 as β0 = 0

11. If |β − β0| ≤ ε , where ε is the permissible error (ε = 10−6), and then, probability of
structural failure obtained as:

Pf = Φ(−β) (2.29)

otherwise, s = s+ 1, replace Ys by Ys+1 , β0 by β, and return to step 5.

12. Stop.

2.2. Third-moment and Downhill Simplex technique

The third-moment and Downhill Simplex (Third-M-DS) technique to computed the probability
of structural failure organized as follows
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2.2.1. Downhill Simplex Algorithm

The Downhill Simplex (DS) algorithm was proposed by Roger Mead & John Nelder in 1965, also
called Nealder-Mead or Amoeba, which is a numerical iterative optimization algorithm that uses
geometric relations to obtain the lower bound of the objective function (the mathematical problem
under consideration that consists of several variables) in a multidimensional space, characterized by
not requiring derivatives, but only evaluation of a number of points for each variable in the function,
and it has been applied in many areas that require numerical optimization techniques.

This algorithm depends in its work on the concept of Simplex, which is a geometric shape in S
of dimensions and s + 1 of vertices points, exists in several geometric shapes straight, tetrahedron,
polygon and the triangle, and the most common and well-known is the triangle shape, as it generates
a new test position by extrapolating the behavior of the objective function measured when arranging
each test point, and the Simplex vertices are represented by D1, D2, . . . , Ds .
These vertices (points) represent the objective function that is arranged at each test position:

f(D1) < f(D2) < . . . < f(Ds) (2.30)

Where Ds is the worst point, and D1 is the best point.
These points are tested by continuous improvement process in an iterative manner by updating the
worst point through the operations of reflection (r), expansion (e), contraction (c), shrink (sh).
Thus, this algorithm performs the process of optimization, as after it finds the initial Simplex shape
that forms from the initial point [1].
The idea to use the DS algorithm in structural reliability analysis is searching for the MPP of the
vector Y = (Y1, Y2, . . . , Y K) in standard normal space to calculate reliability index β which is the
objective function.
Below are the basic operations and arithmetic formulas of the DS algorithm through its use in
searching for the MPP (of three variables), as well as the appropriate functions to achieve the goal:

Algorithm of Downhill Simplex in structural reliability analysis

1. Define the objective function:
The objective function in structural reliability analysis at standard normal space is:

β = ∥Y∥ =
√
y21 + y22 + y23

S.t. g (Y) = 0

 (2.31)

Where
β is objective function (reliability index).
g (Y) is performance function of independent standard normal vector Y.

2. Determine the parameters of the DS algorithm (ξ, γ, δ, ω), that the standard values of
these parameters are ζ = 1, γ = 0.5, δ = 2, ω = 0.5, also determination S of solutions.
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3. Generating the initial solution space, the matrix D with dimensions S × 3, as the rows i
represent the number of solutions and the columns j represent the variables to find values
for it, and that each row in D represents solution:

Dij =


y11

(1) y12
(2) y13

(3)

y21
(1)

...

y22
(2)

...

y23
(3)

...
yS1

(1) yS2
(2) yS3

(3)

 (2.32)

where i = 1, 2, . . . , s and j = 1, 2, 3.

4. Compute the objective function for each row in D

5. Arrange the solutions in D according to the value of the objective function and the
highest value is the one with the worst solution.

6. Compute the mean of the matrix, which is the centroid: M

M =
1

S

s∑
i=1

D (i) (2.33)

where D (i) = [ yi1 yi2 yi3]

7. Generate a new checkpoint represent the reflection (r):

r = M + ξ(M −D (S)) (2.34)

8. compute the values of the objective function β according to the point (r):

� If β (D (1)) < β (r) < β (S) make D(S) = r .

� If β(r) ≤ β(D (1)), go to step (9).

9. Generate a new checkpoint that represents expansion (e)

e = r + δ(r −m) (2.35)

10. Calculate the values of the objective function β according to (e):

� If β(e) < β(r) make D(S) = e

� If β(r) ≥ β(D(S)) go to step (11).

11. Generate a new test point representing the contraction (c) as follows:

c = m+ γ (D (S)−m) (2.36)

12. Calculate the values of the objective function β(c) according to (c):

� If β(c) < β(D(S)) make D(S) = c, otherwise, go to step (13).

13. Generate a new test point representing the shrinkage (Sh), where the contraction is done
towards the best candidate for the solution:

sh(i) = sh(1) + ω
(
sh(i) − sh(1)

)
(2.37)
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14. If the algorithm stop condition is met, the best solution that was found, that achieves
the lowest value of the objective function is printed, i.e. iterations stop when it reaches:∣∣∣∣max (β)−min(β)

max (β)

∣∣∣∣ < ε (2.38)

where ε is a very small number, then, go to step (15), otherwise, go back to step (7).

15. Print the best solutions, which are the values of the variables ( Y 1, Y2, Y 3) representing
the MPP, which fulfills the value of the objective function β.

16. Stop.

2.2.2. Algorithm of structural reliability analysis using third-moment and Downhill Simplex technique

The third-moment and Downhill Simplex technique will be demonstrated for analysis as following
steps:

1. Definition of the performance function G (X).

2. Transform the original correlated random vector X, into independent standard normal
vector Y, for each Xi in G (X), then, G(X) is transformed into a performance function
g(Y) of independent standard normal vector Y using Third-Moment technique in Section
(2.1.1).

3. Using DS algorithm as in Section (2.2.1) to compute value of vector Y (MPP) in stan-
dard normal space and then computation the reliability index β with subject to the
performance function g(Y) =0 .

4. Obtainment the probability of structural failure as

Pf = Φ(−β) (2.39)

5. Stop.

3. Numerical Example

The details of this example in the reference [4], consider the following performance function

G (X) =
3∑

i=1

Xi −
3∑

i=1

MXi
, i = 1, 2, 3 (3.1)

where MXi
is mean of Xi , and the random variables X1, X2 and X3 that all have a Weibull

distribution with shape parameter αand scale parameter β as shown in Table 1 which also shows the
information of the random variables.
In addition, the results of the analysis using the Pearson correlation coefficient showed that there are
positive correlation between the variables are ρ12 = 0.815, ρ13 = 0.919 and ρ23 = 0.829
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Table 1: Probability distribution and information of the random variables to experience dental filling

Variables Distribution Mean Standard
deviation

Skewness Kurtosis

X1 Weibull (152.5824, 11.6386) 11.5966 0.08905 -0.427 -0.263
X2 Weibull (21.5805, 91.6015) 89.3296 5.08127 -0.554 -0.289
X3 Weibull (11.9043, 2.4480) 2.350 0.21719 -0.060 -0.349

Then, to obtain the probability of a structural failure pf , the technique referred to in Section
(2) were used, Table (2) showed that there is a multidimensional correlation between the variables
involved in the design studied, where that technique work to remove the correlation statistically
and standardized the space of variables, then the analysis performed. The computational work was
carried out by using the MATLAB program. The analysis results shown in Table (2) were obtained,
and interpreted as follows

1. Third-M was applied according to the algorithm in section (2.1.2), the results of reliability index
is βThird−M = 0.1869 and the probability of structural failure is pf(Third−M) = 0.4259 .And when
applied Third-M-DS according to the algorithm in section (2.2.2), the results of reliability index
is βThird−M−DS = 0.6458 and the probability of structural failure is pf(Third−M−DS) = 0.2592

2. In order to compare the analysis techniques used in this paper, the relative error criterion was
used, and when applied to find out the error value for each technique, the result was: The
relative error for Third-M is( 0.6431) as for Third-M-DS, while the relative error for Third-M-
DS is (0.3914) as for Third-M, therefore the Third-M-DS is the best.

Table 2: The results of the analysis techniques

No. Techniques MPP β Pf

y1 y2 y3

1 Third-M-FORM 0.0034 0.1868 0.0049 0.1869 0.4259
2 Third- M –DS-FORM -0.4532 -0.4532 -0.0795 0.6458 0.2592

4. Conclusions

1. The results of the probability of structural failure pf using the two techniques are close to each
other.

2. Through the results of the comparison, it was found that the proposed developed technique
Third-M-DS is more efficient than the Third-M.

3. The Third-M technique in the original case, i.e, without using the DS algorithm with it, was
the least efficient, this means that it needed to improve its performance in the search for MPP,
where using the DS algorithm with it was Third-M-DS is the best because it has the lowest
relative error value.
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