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Abstract

This paper deals with an epidemiological system with stage-structured, harvesting and refuge for
only prey, the disease of type (SIS) is just in the immature of the prey. The sufficient conditions
guaranteeing the occurrence of local bifurcation and the Hopf bifurcation for the system are obtained.
Further, the validity of our main results was demonstrated by numerical analysis.
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1. Introduction

The bifurcation means existence a change in the stabilization of an equilibrium point (EP) of the
system at the value of a parameter. Most differential equations depend of parameters. The specific
behavior of systems solution can be completely different because of the dependencies on the value
of these parameters. Bifurcation theory studies the periodic orbits, the appearance and vanishing
of equilibrium points (EPs), or more complicated features such as strange attractors. The methods
and results of bifurcation theory are essential to understand the nonlinear dynamical systems.

The bifurcation is divided into two principal classes: local and global bifurcations. Local bifur-
cations (LB), which can be analyzed entirely through changes in the local stability properties of
(EP), periodic orbit or other invariant sets as parameters cross through critical edges such as sad-
dle node(SNB), transcritical (TB), pitchfork (PFB), period-doubling (flip), Hopf (HB) and Neimark
(secondary Hopf) bifurcation. Global bifurcations occur when larger invariant sets, such as periodic
orbits, crash with (EP) [5].
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In recent years, the bifurcation has been studied for its importance by many researchers such as
Majeed and Alabacy [5] established the conditions of occurrence of (LB) for all the (EPs) and (HB)
for the positive (EP) of a food chain prey-predator model with prey refuge and harvesting. Rihan et
al. [16] studied the Allee effect on two prey and one predator system with time delays, also considered
the bistability existence and (HB) for the interior (EP). Alidoust [2] studied the effects of scavengers,
harvesting and fractional derivative on a prey-predator model and it’s noticed the appearance of
(HB) near the interior (EP).. Li et al. [4] established the conditions of occurrence of (LB) for all
the (EPs) and (HB) for the positive (EP) of an SIS disease model with nonlinear contact rate, and
from the results obtained is that the behavior of susceptible individuals may affect the spread of the
disease. Zhang and Wan [20] calculated the occurrence of (HB) in a three-species ecological system
with time delay and harvesting. Sen et al. [18] studied the Allee effect in prey-predator model
with generalist whose reproduction follows a Beverton-Holt like function in the absence of prey and
established the conditions of occurrence of (LB) and (HB) for all the (EPs). Mukherjee and Maji
[15] established the conditions of occurrence of (LB) for all the (EPs) and (HB) for the positive (EP)
of a prey-predator model with prey refuge. Ghosh et al. [3] established the conditions of occurrence
of (LB) for all the (EPs) and (HB) for the positive (EP) of a prey-predator model and studied the
extent of memory effect on the dynamic evolution. Saikh and Gazi [17] calculated the occurrence of
(LB) for all the (EPs) and (HB) for the positive (EP) of an SIS epidemic model with with immigrants
and treatment. Melese and Feyissa [14] established the conditions of occurrence of (LB) for all the
(EPs) and (HB) for the positive (EP) of an eco-epidemiological model of a prey predator system
where prey population is infected with a disease. And many other researchers have studied the (LB)
like [6, 7, 8, 9, 19, 10, 11, 12, 13].

Finally, in this work, a set of basic outcomes and methods in the theory of (LB) around all (EPs)
and a theory of (HB) around the positive (EP) for an epidemiological system [1] which consists on
a single parameter. The system includes harvest and refuge for only prey, the disease of type (SIS)
is just in the immature of the prey and the disease is spread by contact and by external source has
been studied.

2. Model Formulation [1]

In this section, an epidemiological mathematical model has been suggested. The model includes
of a stage-structured in ”prey whose population density at time T is represented by” U(T ) and a
predator is represented by V (T ). The following assumptions are assumed for this model:

1. The population density of the prey consists of stage structured, the immature represented by
U1(T ) and the mature which represented by U2(T ), where U(T ) = U1(T ) + U2(T ) .

2. An epidemic of type SIS disease in the immature prey’s population which divides the population
into two classes, namely S(T) that represents the susceptible immature prey’s at time T and
I(T) that represents the infected immature prey’s at time T , where U1(T ) = S(T ) + I(T ).

3. This disease is transmitted through contact between S and I and through an external source,
it does not spread to the mature prey and predator. The proposed disease can be treated and
does not give immunity to the immature.

4. The immature prey depends on the mature prey on their feeding.

The predator predate the immature (susceptible and infected) and the mature of prey by Lotka
Voltera of functional response. Also, this model involving refuge and harvesting, and the parameters
are described in Table 1.
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Table 1: The model’s parameters [1]

Parameters Symbolizing from a biological point of view

r > 0 The growth rate of immature’s prey.

K > 0 The carrying capacity of the susceptible prey.

βi, i=1,2,3. The maximum predation rate (MPR) of the predator over the sus-
ceptible, infected and the mature of prey respectively which are
outside refuge.

γj,j=1,2. The infection rate.

mi, i = 1, 2, 3 The refuge rate of the susceptible, infected and the mature of prey
respectively.

γ3 The recovering rate.

α > 0 The grown up rate of the immature into mature (in prey popula-
tion).

ηi, i = 1, 2, 3 The conversion rate of food from susceptible, infected and the ma-
ture of prey respectively.

d The natural death rate of the predator.

θi, i = 1, 2, 3 The harvesting rate of the susceptible, infected and the mature of
prey respectively.

According to these assumptions, we propose the model by ”first order non-linear differential
equations”.

dS

dT
= rU2

(
1− U2

K

)
− αS − θ1S − β1 (1−m1)SV − γ1SI − γ2S + γ3I

dI

dT
= γ1SI + γ2S − γ3I − β2 (1−m2) IV − θ2I

dU2

dT
= αS − β3 (1−m3)U2V − θ3U2

dV

dT
= η1 (1−m1)SV + η2 (1−m2) IV + η3 (1−m3)U2V − dV


(2.1)

Note that, the model has eighteen ”parameters which make the analysis difficult, so to simplify
it, we reduced the number of them by using dimensionless variables and parameters” as follows:
t = rT, h1 =

S
K
, h2 =

I
K
, h3 =

U2

K
, h4 =

V
K
, p1 =

α
r
, p2 =

γ2
r
, p3 =

θ1
r
, p4 =

γ1K
r
,

p5 = γ3
r
, p6 = β1(1−m1)K

r
, p7 = β2(1−m2)K

r
, p8 = θ2

r
, p9 = β3(1−m3)K

r
, p10 = θ3

r
, p11 =

η1(1−m1)K
r

, p12 =
η2(1−m2)K

r
, p13 =

η3(1−m3)K
r

, p14 =
d
r
.

So the dimensional system (2.1) can be formulated as:

dh1
dt

= h3 (1− h3)− (p1 + p2 + p3)h1 − p4h1h2 + p5h2 − p6h1h4 = f̂1 (h1, h2, h3, h4)

dh2
dt

= p2h1 + p4h1h2 − p5h2 − p7h2h4 − p8h2 = f̂2 (h1, h2, h3, h4)

dh3
dt

= p1h1 − p9h3h4 − p10h3 = f̂3 (h1, h2, h3, h4)

dh4
dt

= p11h1h4 + p12h2h4 + p13h3h4 − p14h4 = f̂4 (h1, h2, h3, h4)


(2.2)

With h1 (0) ≥ 0 , h2 (0) ≥ 0 , h3 (0) ≥ 0 and h4 (0) ≥ 0. It is noticed that the parameters’
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number have been reduced from eighteen in system (2.1) to fourteen in system (2.2). Clearly, the
”interaction functions of system (2.2) are continuous and have continuous partial derivatives on the
following positive four dimensional space”.

3. The Local Bifurcation (LB)

In this section a study for dynamical behavior of system (2.2) under the impact of changing one
parameter every time is achieved. The appearance of (LB) in the neighborhood of the (EPs) of
system (2.2) is investigated. Recall that for occurring bifurcation, the existence of non- hyperbolic
(EP) of system (2.2) is necessary condition but not sufficient. Therefore, Sotomayor’s theory [5] has
been applied in the following theorems.
Now, since the Jacobian matrix (JM) of system (2.2) which is given in [1]

Ji =
[
f̂ij

]
4×4

, (2.3)

where i, j = 1, 2, 3, 4 and f̂11 = − (p1 + p2 + p3 + p4h2 + p6h4) , f̂12 = p5 − p4h1 , f̂13 = 1− 2h3 ,

f̂14 = −p6h1 , f̂21 = p2+p4h2 , f̂22 = p4h1−p7h4−(p5 + p8) , f̂23 = 0 , f̂24 = −p7h2 , f̂31 = p1 , f̂32 = 0,

f̂33 = − (p9h4 + p10) , f̂34 = −p9h3 , f̂41 = p11h4 , f̂42 = p12h4 , f̂43 = p13h4, f̂44 = p11h1 + p12h2 +
p13h3 − p14

Clearly for any nonzero vector Ĝ =
(
Ĝ1, Ĝ2, Ĝ3, Ĝ4

)T
to prove that we have:

D2F
(
X̃, µ

)(
Ĝ, Ĝ

)
= [ĝij]4×1 , (2.4)

where:

ĝ11 = −2
[
p4Ĝ2 + p6Ĝ4

]
Ĝ1 − 2Ĝ2

3 , ĝ21 = 2
[
p4Ĝ1 − p7Ĝ4

]
Ĝ2 , ĝ31 = −2p9Ĝ3Ĝ4 ,

ĝ41 = 2
[
p11Ĝ1 + p12Ĝ2 + p13Ĝ3

]
Ĝ4.

and
D3F

(
X̃, µ

)(
Ĝ, Ĝ, Ĝ

)
= [0]4×1 , (2.5)

Where X̃ = (h1, h2, h3, h4) and µ be any bifurcation parameter. Therefore system (2.2) has no pitch
fork bifurcation (PFB) for all the (EPs).

In the next theorems the (LB) conditions near (EP) are determined.

Theorem 2.1. System (2.2) at the (EP) A0 (0, 0, 0, 0) with the value of parameter p010 = p10 =
p1(p5+p8)

p2p8+(p1+p3)(p5+p8)
has ”transcritical bifurcation (TB) but, saddle–node bifurcation (SNB) can’t occur

at A0.
Proof . The (JM) given in [1] of system (2.2) at the (EP) A0 has an eigenvalue equal to zero (say
λ0h3 = 0) at p10 = p010, and the (JM) of system (2.2) with p10 = p010 becomes:

J0
0 = J

(
A0, p

0
10

)
=


− (p1 + p2 + p3)

p2

p5
− (p5 + p8)

p1
0

0
0

1
0

0
0

−p010
0

0
−p14

 .
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Now, let Ĝ[0] =
(
Ĝ

[0]
1 , Ĝ

[0]
2 , Ĝ

[0]
3 , Ĝ

[0]
4

)T
be the eigenvector (EV) of J0

0 for λ0h3 = 0.

Thus (J0
0 − λ0h3I) Ĝ

[0] = 0, that gives: Ĝ[0] =
(
α1Ĝ

[0]
2 , Ĝ

[0]
2 , α2Ĝ

[0]
2 , 0

)T
where Ĝ

[0]
2 ̸= 0 any real number

and α1 =
p5+p8
p2

, α2 =
p1(p5+p8)

p2p010
.

Let ψ̆[0] =
(
ψ̆

[0]
1 , ψ̆

[0]
2 , ψ̆

[0]
3 , ψ̆

[0]
4

)T
be the (EV) of (J0

0 )
T
for λ0h3 = 0.

We get
(
(J0

0 )
T − λ0h3I

)
ψ̆[0] = 0. Now we can solve the previous equation for ψ̆[0] we obtain,

ψ̆[0] =
(
α3ψ̆

[0]
2 , ψ̆

[0]
2 , α4ψ̆

[0]

2 , 0
)T

, ψ̆
[0]
2 ̸= 0 any real number and α3 = 1 + p8

p5
> 1 , α4 =

p5+p8
p5p010

.

Now, consider:
∂f
∂p10

= fp10

(
X̃, p10

)
=
(

∂f̂1
∂p10

, ∂f̂2
∂p10

, ∂f̂3
∂p10

, ∂f̂4
∂p10

)T
= (0, 0,−h3, 0)T .

So, fp10 (A0, p
0
10) = (0, 0, 0, 0)T and hence

(
ψ̆[0]
)T

fp10 (A0, p
0
10) = 0.

Therefore, by using Sotomayor’s theorem the (SNB) condition can not satisfy at A0. But the first
condition of (TB) is verified, as below,

since Dfp10

(
X̃, p10

)
=


0
0

0
0

0
0

0
0

0
0

0
0

−1
0

0
0

 where Dfp10

(
X̃, p10

)
noticed the derivative of fp10

(
X̃, p10

)
for X̃ = (h1, h2, h3, h4)

T .
Additional, it is observed that

Dfp10 (A0, p
0
10) Ĝ

[0] =


0
0

0
0

0
0

0
0

0
0

0
0

−1
0

0
0



α1Ĝ

[0]
2

Ĝ
[0]
2

α2Ĝ
[0]
2

0

=


0
0

−α2Ĝ
[0]
2

0

, hence
(
ψ̆[0]
)T [

Dfp10 (A0, p
0
10) Ĝ

[0]
]
=
(
α3ψ̆

[0]
2 , ψ̆

[0]
2 , α4ψ̆

[0]

2 , 0
)(

0, 0,−α2Ĝ
[0]
2 , 0

)T
=− α2α4Ĝ

[0]
2 ψ̆

[0]
2 ̸=0.

Moreover, by substituting Ĝ[0] in equation (2.4) we get:

D2f (A0, p
0
10)
(
Ĝ[0], Ĝ[0]

)
=


−2
(
Ĝ

[0]
2

)2
(p4α1 + α2

2)

2p4α1

(
Ĝ

[0]
2

)2
0
0

,
Thus

(
ψ̆[0]
)T [

D2f (A0, p
0
10)
(
Ĝ[0], Ĝ[0]

)]
= 2

(
Ĝ

[0]
2

)2
ψ̆

[0]
2 [p4α1(1− α3)− α3α

2
2] ̸=0.

Hence, by using Sotomayor’s theorem system (2.2) has (TB) at A0 with the parameter p010 = p10. □

Theorem 2.2. Assume that the conditions (4.9), (4.10) given in [1] and

a14a33 > a13a34, (2.6)

a11a33a14 > a31 (a13a34 − a14a33) , (2.7)

a34

(
p4h̃1 −

(p5 + p8) (p1 + p3) + p2p8
(p1 + p3)

)
> −a11a22a14, (2.8)

are hold. Then system (2.2) at the (EP) A1 =
(
h̃1, 0, h̃3, 0

)
with the parameter p̃14 = p14 =

p11h̃1 + p13h̃3, has (TB) but, (SNB) can’t occur at A1 .
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Proof . According to the (JM) given in [1] for the system (2.2) at the (EP) A1 has an eigenvalue

equal to zero (say λ1h4 = 0) at p̃14 = p14 = p11h̃1 + p13h̃3 ,obviously that p̃14 > 0, the (JM) of system
(2.2) with p̃14 = p14 becomes:

J̃1 = J (A1, p̃14) = [ãij]4×4 ,

where ãij = aij, i, j = 1, 2, 3, 4 as given in [1] accept a44 = 0.

Now, let Ĝ[1] =
(
Ĝ

[1]
1 , Ĝ

[1]
2 , Ĝ

[1]
3 , Ĝ

[1]
4

)T
be the (EV) of J̃1 for λ1h4 = 0.

Thus
(
J̃1 − λ1h4I

)
Ĝ[1] = 0, that gives: Ĝ[1] =

(
θ1Ĝ

[1]
2 , Ĝ

[1]
2 , θ2Ĝ

[1]
2 , θ3Ĝ

[1]
2

)T
where Ĝ

[1]
2 ̸= 0 any real

number and θ1 =
−a22
a21

, θ2 =
a34

(
p4h̃1− (p5+p8)(p1+p3)+p2p8

(p1+p3)

)
+a11a22a14

a21(a14a33−a13a34)
,

θ3 =
a22[a31(a14a33−a13a34)+a11a33a14]+a33a34[

(p5+p8)(p1+p3)+p2p8
(p1+p3)

−p4h̃1]

a21a34(a14a33−a13a34)
.

Let ψ̆[1] =
(
ψ̆

[1]
1 , ψ̆

[1]
2 , ψ̆

[1]
3 , ψ̆

[1]
4

)T
be the (EV) of

(
J̃1

)T
for λ1h4 = 0.

We get

((
J̃1

)T
− λ1h4I

)
ψ̆[1] = 0. Now we can solve the previous equation for ψ̆[1] we obtain,

ψ̆[1] =
(
0, 0, 0, ψ̆

[1]
4

)T
, ψ̆

[1]
4 ̸= 0 any real number.

Now, consider:
∂f
∂p14

= fp14

(
X̃, p14

)
=
(

∂f̂1
∂p14

, ∂f̂2
∂p14

, ∂f̂3
∂p14

, ∂f̂4
∂p14

)T
= (0, 0, 0,−h4)T .

So, fp14 (A1, p̃14) = (0, 0, 0, 0)T and hence
(
ψ̆[1]
)T

fp14 (A1, p̃14) = 0.

Therefore, by using Sotomayor’s theorem the (SNB) condition can not satisfy at A1. But the first
condition of (TB) is verified, as below,

since Dfp14

(
X̃, p14

)
=


0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−1

 where Dfp14

(
X̃, p14

)
noticed the derivative of fp14

(
X̃, p14

)
for X̃ = (h1, h2, h3, h4)

T .
Additional, it is observed that

Dfp14 (A1, p̃14) Ĝ
[1] =


0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−1



θ1Ĝ

[1]
2

Ĝ
[1]
2

θ2Ĝ
[1]
2

θ3Ĝ
[1]
2

=


0
0
0

−θ3Ĝ[1]
2

, hence
(
ψ̆[1]
)T [

Dfp14 (A1, p̃14) Ĝ
[1]
]
=
(
0, 0, 0, ψ̆

[1]
4

)(
0, 0, 0,−θ3Ĝ[1]

2

)T
= −θ3Ĝ[1]

2 ψ̆
[1]
4 ̸= 0 if the conditions

(4.9), (4.10) given in [1] and (2.6), (2.7) hold.

Moreover, by substituting Ĝ[1] in equation (2.4) we get:

D2f (A1, p̃14)
(
Ĝ[1], Ĝ[1]

)
=



−2
(
Ĝ

[1]
2

)2
[θ1(p4 + p6θ3)− θ22]

2
(
Ĝ

[1]
2

)2
[p4θ1 − p7θ3]

−2p9θ2θ3

(
Ĝ

[1]
2

)2
2θ3

(
Ĝ

[1]
2

)2
[p11θ1 + p12 + p13θ2]


,

Thus
(
ψ̆[1]
)T [

D2f (A1, p̃14)
(
Ĝ[1], Ĝ[1]

)]
= 2θ3

(
Ĝ

[1]
2

)2
ψ̆

[1]
4 [p11θ1 + p12 + p13θ2] ̸=0 under conditions
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(4.9), (4.10) given in [1] and (2.6), (2.8).
Hence, by using Sotomayor’s theorem system (2.2) has (TB) at A1 with the parameter p̃14 = p14. □

Theorem 2.3. Assume that the conditions (4.16), (4.17) given in [1] and

n34n21 > n24n31, (2.9)

n13n31n22 > n33

(
(p5 + p8) (p1 + p3) + p8

(
p2 + p4h2

)
(p1 + p3)

− p4h1

)
, (2.10)

n13 (n24n31 − n21n34) > n33 (n24n11 − n14n21) , (2.11)

n13n22n34 > n33 (n14n22−n12n24) (2.12)

n12 (n21n34 − n24n31) > n22 (n34n11−n31n14) , (2.13)

σ4 > 1, (2.14)

σ2σ4 > p9σ5, (2.15)

p11σ1 + p12 < −p13σ2, (2.16)

are hold. Then system (2.2) at the (EPs) A2

(
h1, h2, h3, 0

)
and A3

(
h′1, h′2, h′3, 0

)
with the parameter

p14 = p14 = p11h1 + p12h2 + p13h3, has (TB) but, (SNB) can’t occur at A2 and A3.
Proof . According to the (JM) given in [1] for the system (2.2) at the (EP) A2 that is the same for
A3 has an eigenvalue equal to zero (say λ2h4 = 0) at p14 = p14 = p11h1 + p12h2 + p13h3 , the (JM) at
A2 is the same for A3 with p14 = p14 becomes:

J2 = J (A2, p14) = [nij]4×4 ,

where nij = nij, i, j = 1, 2, 3, 4 as it given in [20] accept n44 = 0 .

Now, let Ĝ[2] =
(
Ĝ

[2]
1 , Ĝ

[2]
2 , Ĝ

[2]
3 , Ĝ

[2]
4

)T
be the (EV) of J2 for λ2h4 = 0.

Thus
(
J2 − λ2h4I

)
Ĝ[2] = 0, that gives: Ĝ[2] =

(
σ1Ĝ

[2]
2 , Ĝ

[2]
2 , σ2Ĝ

[2]
2 , σ3Ĝ

[2]
2

)T
where Ĝ

[2]
2 ̸= 0 any real

number and σ1 =
n33(n12n24−n14n22)+n13n22n34

n33(n14n21−n24n11)+n13(n24n31−n34n21)
, σ2 =

n22(n31n14−n34n11)−n12(n24n31−n21n34)
n33(n14n21−n24n11)+n13(n24n31−n21n34)

,

σ3 =
n33

(
p4h1− (p5+p8)(p1+p3)+p8(p2+p4h2)

(p1+p3)

)
−n13n31n22

n33(n14n21−n24n11)+n13(n24n31−n21n34)
.

Let ψ̆[2] =
(
ψ̆

[2]
1 , ψ̆

[2]
2 , ψ̆

[2]
3 , ψ̆

[2]
4

)T
be the (EV) of

(
J2

)T
for λ2h4 = 0.

We get
((
J2

)T − λ2h4I
)
ψ̆[2] = 0. Now we can solve the previous equation for ψ̆[2] we obtain,

ψ̆[2] =
(
σ4ψ̆

[2]
2 , ψ̆

[2]
2 , σ5ψ̆

[2]
2 , ψ̆

[2]
4

)T
, ψ̆

[2]
2 ̸= 0, ψ̆

[2]
4 ̸= 0 any real number and σ4 =

−n22

n12
, σ5 =

n13n22

n12n33
.

Now, consider:
∂f
∂p14

= fp14

(
X̃, p14

)
=
(

∂f̂1
∂p14

, ∂f̂2
∂p14

, ∂f̂3
∂p14

, ∂f̂4
∂p14

)T
= (0, 0, 0,−h4)T .

So, fp14 (A2, p14) = (0, 0, 0, 0)T and hence
(
ψ̆[2]
)T

fp14 (A2, p14) = 0.

Therefore, by using Sotomayor’s theorem the (SNB) condition can not satisfy at A2. But the first
condition of (TB) is verified, as below,

since Dfp14

(
X̃, p14

)
=


0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−1

 where Dfp14

(
X̃, p14

)
noticed the derivative of fp14

(
X̃, p14

)
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for X̃ = (h1, h2, h3, h4)
T .

Additional, it is observed that

Dfp14 (A2, p14) Ĝ
[2] =


0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−1



σ1Ĝ

[2]
2

Ĝ
[2]
2

σ2Ĝ
[2]
2

σ3Ĝ
[2]
2

=


0
0
0

−σ3Ĝ
[2]
2

, hence
(
ψ̆[2]
)T [

Dfp14 (A2, p14) Ĝ
[2]
]
=
(
σ4ψ̆

[2]
2 , ψ̆

[2]
2 , σ5ψ̆

[2]
2 , ψ̆

[2]
4

)(
0, 0, 0,−σ3Ĝ

[2]
2

)T
= −σ3Ĝ

[2]
2 ψ̆

[2]
4 ̸= 0

under conditions (4.16) and (4.17) given in [1] with the conditions (2.9)-(2.11).

Moreover, by substituting Ĝ[2] in equation (2.4) we get:

D2f (A2, p14)
(
Ĝ[2], Ĝ[2]

)
=



−2
(
Ĝ

[2]
2

)2
[σ1(p4 + p6σ3)− σ2

2]

2
(
Ĝ

[2]
2

)2
[p4σ1 − p7σ3]

−2p9σ2σ3

(
Ĝ

[2]
2

)2
2σ3

(
Ĝ

[2]
2

)2
[p11σ1 + p12 + p13σ2]


,

thus
(
ψ̆[2]
)T [

D2f (A2, p14)
(
Ĝ[2], Ĝ[2]

)]
= 2

(
Ĝ

[2]
2

)2
(ψ̆

[2]
2 [σ1 (p4(1− σ4)− p6σ3σ4)

+σ3 (σ2 [p9σ5 − σ2σ4]− p7)] + σ3ψ̆
[2]
4 [p11σ1 + p12 + p13σ2]) ̸= 0 under conditions (4.16) and (4.17)

given in [1] with the conditions (2.9)-(2.16).
Hence, by using Sotomayor’s theorem system (2.2) has (TB) at A2 with the parameter p14 = p14. □

Theorem 2.4. Assume that the condition (4.24) given in [1] and the following conditions hold

p4ĥ1 > p5 − p8 − p7ĥ4, (2.17)

m14 (m41m33 −m31m43) > m34m13m41, (2.18)

m14m33 > m34m13, (2.19)

β5 ̸= β4, (2.20)

β5 < β4, (2.21)

m41m22 > m42m̂21, (2.22)

p12 + p13β2 < −p11β1, (2.23)

β6 (p11β1 + p12 + p13β2)− p6β1β4 − p9β2 > p7β5 (2.24)

β3 [β6 (p11β1 + p12 + p13β2)− p6β1β4 − p7β5 − p9β2]− β2
2β4 > p4β1 (β4 − β5) , (2.25)

are hold. Then system (2.2) at the (EP) A4 = (ĥ1, 0, ĥ3, ĥ4) with the parameter p̂2 = p2 =
L̂1

L̂2
, where

L̂1 = m22([m14 (m41m33 −m31m43)−m34m13m41]− [p1 + p3 + p6ĥ4]m34m43),

L̂2 = m42 (m14m33 −m13m34)−m34m43[p8 + p7ĥ4],

has (SNB) but, (TB) can’t occur at A4.
Proof . According to the (JM) given in [1] for the system (2.2) at the (EP) A4 has an eigenvalue

equal to zero if and only if L4 = 0 (say λ4h3 = 0) at p̂2 = p2 = L̂1

L̂2
, obviously that p̂2 > 0 under

conditions (2.17)-(2.19) with (4.24) given in [1], the (JM) of system (2.2) with p̂2 = p2 becomes:

Ĵ4 = J (A4, p̂2) = [m̂ij]4×4 ,
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where m̂ij = mij, i, j = 1, 2, 3, 4 as it given in [20] accept m̂11 = −
(
p1 + p̂2 + p3 + p6ĥ4

)
, m̂21 = p̂2.

Now, let Ĝ[4] =
(
Ĝ

[4]
1 , Ĝ

[4]
2 , Ĝ

[4]
3 , Ĝ

[4]
4

)T
be the (EV) of Ĵ4 for λ4h3 = 0.

Thus
(
Ĵ4 − λ4h3I

)
Ĝ[4] = 0, that gives: Ĝ[4] =

(
β1Ĝ

[4]
2 , Ĝ

[4]
2 , β2Ĝ

[4]
2 , β3Ĝ

[4]
2

)T
where Ĝ

[4]
2 ̸= 0 any real

number and β1 =
−m22

m̂21
, β2 =

m41m22−m42m̂21

m̂21m43
, β3 =

m31m22m43−m33(m41m22−m42m̂21)
m̂21m34m43

.

Let ψ̆[4] =
(
ψ̆

[4]
1 , ψ̆

[4]
2 , ψ̆

[4]
3 , ψ̆

[4]
4

)T
be the (EV) of

(
Ĵ4

)T
for λ4h3 = 0.

We get

((
Ĵ4

)T
− λ4h3I

)
ψ̆[4] = 0. Now we can solve the previous equation for ψ̆[4] we obtain,

ψ̆[4] =
(
β4ψ̆

[4]
3 , β5ψ̆

[4]
3 , ψ̆

[4]
3 , β6ψ̆

[4]
3

)T
, ψ̆

[4]
3 ̸= 0 any real number and

β4 =
−m34

m14
, β5 =

m12m34m43+m42(m14m33−m13m34)
m14m43m22

, β6 =
m13m34−m33m14

m14m43
.

Now, consider:
∂f
∂p2

= fp2

(
X̃, p2

)
=
(

∂f̂1
∂p2
, ∂f̂2
∂p2
, ∂f̂3
∂p2
, ∂f̂4
∂p2

)T
= (−h1, h1, 0, 0)T .

So, fp2 (A4, p̂2) =
(
−ĥ1, ĥ1, 0, 0

)T
and hence

(
ψ̆[4]
)T

fp2 (A4, p̂2) = ĥ1ψ̆
[4]
3 (β5 − β4) ̸= 0 if the condi-

tions (4.24) given in [1], with (4.15),(4.18) and (2.15)-(2.18) hold.

Now substitute Ĝ[4] in equation (2.4) we get

D2f (A4, p̂2)
(
Ĝ[4], Ĝ[4]

)
=



−2
(
Ĝ

[4]
2

)2
[β1 (p4 + p6β3) + β2

2 ]

2
(
Ĝ

[4]
2

)2
[p4β1 − p7β3]

−2p9β2β3

(
Ĝ

[4]
2

)2
2β3

(
Ĝ

[4]
2

)2
[p11β1 + p12 + p13β2]


,

thus
(
ψ̆[4]
)T [

D2f (A4, p̂2)
(
Ĝ[4], Ĝ[4]

)]
=

2
(
Ĝ

[4]
2

)2
ψ̆

[4]
3 (p4β1 (β5 − β4)− β2

2β4 + β3 [β6 (p11β1 + p12 + p13β2)− p6β1β4 − p7β5 − p9β2] ) ̸=0 under

conditions (4.24) given in [1], with (2.17)-(2.25).
Therefore, by using Sotomayor’s theorem the (SNB) conditions can satisfy at A4. But if the condi-
tions (2.20) holds then there is no (SNB), to verify the conditions of (TB) is, as below,

since Dfp2

(
X̃, p2

)
=


−1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

 where Dfp2

(
X̃, p2

)
noticed the derivative of fp2

(
X̃, p2

)
for X̃ = (h1, h2, h3, h4)

T .
Additional, it is observed that

Dfp2 (A4, p̂2) Ĝ
[4] =


−1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0



β1Ĝ

[4]
2

Ĝ
[4]
2

β2Ĝ
[4]
2

β3Ĝ
[4]
2

=


−β1Ĝ[4]

2

β1Ĝ
[4]
2

0
0

, hence
(
ψ̆[4]
)T [

Dfp2 (A4, p̂2) Ĝ
[4]
]
= β1Ĝ

[4]
2 ψ̆

[4]
3 (β5 − β4) = 0 if the condition (2.20) hold.

Hence, by using Sotomayor’s theorem system (2.2) can’t has (TB) at A4 with the parameter p̂2 = p2.
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□

Theorem 2.5. Assume that the conditions

r34 [(p2 + p4h
∗
2) (p8 + p7h

∗
4)− (p1 + p3 + p6h

∗
4 ) (p4h

∗
1 − p5 − p8 − p7h

∗
4)] + r33 (r14r21 − r11r24)

< r31 (r12r24 − r14r22) , (2.26)

p∗11γ1 + p13 < −p12γ2, (2.27)

γ6 (p
∗
11γ1 + p12γ2 + p13)− p9γ5 > p7γ2, (2.28)

1 > p6γ1γ3, (2.29)

are hold. Then system (2.2) at the (EP) A5 = (h∗1, h
∗
2, h

∗
3, h

∗
4) with the parameter p∗11 = p11 = R1

R2
,

where

R1 = r13r34r21r42 − r43[r34[(p2 + p4h
∗
2) (p8 + p7h

∗
4)− (p1 + p3 + p6h

∗
4 ) (p4h

∗
1 − p5 − p8 − p7h

∗
4)]

+ r33 (r14r21 − r11r24)− r13 (r12r24 − r14r22)],

R2 = h∗4[r13 (r34r22 + r24r42) + r33 (r12r24 − r14r22)]

has (SNB) but, (TB) can’t occur at A5 .
Proof . According to the (JM) given in [1] for the system (2.2) at the (EP) A5 has an eigenvalue
equal to zero if and only if E4 = 0 (say λ5h2 = 0) at p∗11 = p11 = R1

R2
, obviously that p∗11 > 0 under

conditions (4.32)-(4.34) given in [1] with (2.26), the (JM) of system (2.2) with p∗11 = p11 becomes:

J∗
5 = J (A5, p

∗
11) =

[
r∗ij
]
4×4

,

where r∗ij = rij, i, j = 1, 2, 3, 4 as it given in [1] accept r∗41 = p∗11h
∗
4.

Now, let Ĝ[5] =
(
Ĝ

[5]
1 , Ĝ

[5]
2 , Ĝ

[5]
3 , Ĝ

[5]
4

)T
be the (EV) of J∗

5 for λ5h2 = 0.

Thus (J∗
5 − λ5h2I) Ĝ

[5] = 0, that gives: Ĝ[5] =
(
γ1Ĝ

[5]
3 , γ2Ĝ

[5]

3 , Ĝ
[5]
3 , γ3Ĝ

[5]
3

)T
where Ĝ

[5]
3 ̸= 0 any real

number and γ1 =
−r33
r31

, γ2 =
r∗41r33−r43r31

r31r42
, γ3 =

r21r33r42−r22(r∗41r33−r43r31)

r31r24r42
.

Let ψ̆[5] =
(
ψ̆

[5]
1 , ψ̆

[5]
2 , ψ̆

[5]
3 , ψ̆

[5]
4

)T
be the (EV) of (J∗

5 )
T for λ5h2 = 0.

We get
(
(J∗

5 )
T − λ5h2I

)
ψ̆[5] = 0. Now we can solve the previous equation for ψ̆[5] we obtain,

ψ̆[5] =
(
γ4ψ̆

[5]
2 , ψ̆

[5]
2 , γ5ψ̆

[5]
2 , γ6ψ̆

[5]

2

)T
, ψ̆

[5]
2 ̸= 0 any real number and γ4 =

−r24
r14

,

γ5 =
r24r42r13−r43(r12r24−r14r22)

r14r42r33
, γ6 =

r12r24−r14r22
r14r42

.

Now, consider: p∗11 = p11,
∂f
∂p11

= fp11

(
X̃, p11

)
=
(

∂f̂1
∂p11

, ∂f̂2
∂p11

, ∂f̂3
∂p11

, ∂f̂4
∂p11

)T
= (0, 0, 0, h1h4)

T .

So, fp11 (A5, p
∗
11) = (0, 0, 0, h∗1h

∗
4)

T and hence
(
ψ̆[5]
)T

fp11 (A5, p
∗
11) = h∗1h

∗
4γ6ψ̆

[5]
2 ̸= 0 under condition

(4.32) given in [1].

Now substitute Ĝ[5] in equation (2.4) we get

D2f (A5, p
∗
11)
(
Ĝ[5], Ĝ[5]

)
=



−2
(
Ĝ

[5]
3

)2
[γ1(p4γ2 + p6γ3)− 1]

2γ2

(
Ĝ

[5]
3

)2
[p4γ1 − p7γ3]

−2p9γ3

(
Ĝ

[5]
3

)2
2γ3

(
Ĝ

[5]
3

)2
[p∗11γ1 + p12γ2 + p13]


,
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thus
(
ψ̆[5]
)T [

D2f (A5, p
∗
11)
(
Ĝ[5], Ĝ[5]

)]
= 2

(
Ĝ

[5]
3

)2
ψ̆

[5]
2 [γ3 [γ6 (p

∗
11γ1 + p12γ2 + p13)− p7γ2 − p9γ5)] +

p4γ1γ2 (1− γ4)+γ4(1−p6γ1γ3) ̸=0 under conditions (4.32) and (4.33) given in [1] with (2.27)-(2.29).
Therefore, by using Sotomayor’s theorem system (2.2) has (SNB) at A5 but, (TB) can’t occurs A5

with the parameter p∗11 = p11. □

3. Hopf Bifurcation Analysis (HB)

In this section, the occurrence of (HB) near the positive (EP) of system (2.2) has been investigated
according to the Haque and Venturino methods [10] for n = 4 is stated in terms of the properties of
eigenvalues as shown below:

P4 (λ) = λ4 +W1λ
3 +W2λ

2 +W3λ+W4 = 0,

where W1 = −tr (J (x∗)) , W2 =M1 (J (x∗)) , W3 = − M2 (J (x∗)) and W4 = det (J (x∗)) with
M1 (J (x∗)) and M2 (J (x∗)) represent the sum of the principal minors of order two and of J (x∗)
respectively. Clearly, the first condition of (HB) satisfies if and only if
Wi > 0 ; i = 1 , 3, 4, ∆1 = W1W2 −W3 > 0, W 3

1 − 4 ∆1 > 0, and ∆2 = W3 (W1W2 −W3) −
W 2

1W4 = 0.

Consequently, W4 =
W3(W1W2−W3)

W 2
1

.

So, the characteristic equation becomes:

P4 (λ) =

(
λ2 +

W3

W1

)(
λ2 + W1λ+

∆1

W1

)
= 0. (3.1)

Clearly, the roots of eq. (4.1) are λ1,2 = ±i
√

W3

W1
and λ3,4 =

1
2

(
−W1 ±

√
W 2

1 − 4 ∆1

W1

)
.

Now, in order to verify the transversality condition of (HB), we substitute λ(µ) = ρ1(µ) ∓ iρ2(µ)
into eq. (3.1), and then calculating its derivative with respect to the bifurcation parameter µ,
P

′
4 (λ (µ)) = 0, comparing the two sides of this equation and then equating their real and imaginary

parts, we have:

φ̆ (µ) ρ
′

1 (µ)− Φ̆ (µ) ρ
′

2 + θ̆ (µ) = 0,

Φ̆ (µ) ρ
′

1 (µ) + φ̆ (µ) ρ
′

2 (µ) + Γ̆ (µ) = 0.

}
(3.2)

where:

φ̆ (µ) = 4(ρ1(µ))
3 + 3W1(µ)(ρ1(µ))

2 +W3(µ) + 2W2(µ)ρ1(µ)− 12ρ1(µ)(ρ2(µ))
2

− 3W1 (µ) (ρ2(µ))
2,

θ̆ (µ) = 12(ρ1(µ))
2ρ2 (µ) + 6W1 (µ) ρ1 (µ) ρ2 (µ) + 2W2 (µ) ρ2 (µ)− 4(ρ2(µ))

3,

Φ̆ (µ) = (ρ1(µ))
3 W

′

1 (µ) +W
′

3 (µ) ρ1 (µ) +W
′

2 (µ) (ρ1(µ))
2 +W

′

4 (µ)

− 3W
′

1 (µ) ρ1 (µ) (ρ2(µ))
2 −W

′

2 (µ) (ρ2(µ))
2,

Γ̆ (µ) = 3W
′

1 (µ) (ρ1(µ))
2ρ2 (µ) +W

′

3 (µ) ρ2 (µ) + 2W
′

2 (µ) ρ1 (µ) ρ2 (µ)−W
′

1 (µ) (ρ2(µ))
3


(3.3)

Solving the linear system (3.2) by using Cramer’s rule for the unknowns ρ
′
1 (µ) and ρ

′
2 (µ), gives that

ρ
′

1 (µ) = − θ̆ (µ) φ̆ (µ) + Γ̆ (µ) Φ̆ (µ)

(φ̆ (µ))2 + (Φ̆ (µ))
2 and ρ

′

2 (µ) =
−Γ̆ (µ) φ̆ (µ) + θ̆ (µ) Φ̆ (µ)

(φ̆ (µ))2 + (Φ̆ (µ))
2 .
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Hence, the second condition of the (HB) which is necessary and sufficient condition (transversality
condition) d

dµ
Re (λ) |µ=µ = ρ

′
1 (µ) |µ=µ not being zero if and only if:

θ̆ (µ) φ̆ (µ) + Γ̆ (µ) Φ̆ (µ) ̸= 0. (3.4)

Theorem 3.1. Suppose that the following conditions hold:

r34E1 > b1, (3.5)

r12r21 > r11 (r22 + r33) + r22r33 − r13r31 − r14r41 − r24r42, (3.6)

r∗43 [b1 − r34E1]− E1 [r11 (r22 + r33) + r22r33 − r12r21 − r13r31 − r14r41 − r24r42] > b2, (3.7)

p11 < p12, (3.8)

E3 < ∆1 <
E3

1

4
, (3.9)

r34E3 > b1E1, (3.10)

Where

∆1 = E1E2 − E3 = r∗43 [b1 − r34E1]− E1 [r11 (r22 + r33) + r22r33 − r12r21 − r13r31 − r14r41 − r24r42]− b2,

b1 = r34 [(p1 + p3 + p6h
∗
4 ) (p4h

∗
1 − p5 − p8 − p7h

∗
4)− (p2 + p4h

∗
2) (p8 + p7h

∗
4)] + r31(r12r24 − r14r22),

b2 = r33 [r42(r14r21 − r11r24) + r41(r12r24 − r14r22)] + r13[r34r22h
∗
4 (p11 − p12) + r24r42r41].

Then for the parameter value p13 = p∗13 , system (2.2) has a (HB) at A5 .
Proof . The characteristic equation of system (2.2) at A5 mentioned in [1].

λ4 + E1λ
3 + E2λ

2 + E3λ+ E4 = 0, (3.11)

”we need to find the parameter” (p∗13) ”to verify the necessary and sufficient conditions for (HB)” to
occurs at the positive (EP) that satisfy; Ei (p

∗
13) > 0, i = 1, 3, 4 , ∆1 (p

∗
13) = E1E2 − E3 > 0,

E3
1 − 4∆1 > 0 and ∆2 (p

∗
13) = (E1E2 − E3)E3 − E2

1E4 = 0.
E1 (p

∗
13) > 0, provided condition of locally (4.32) given in [1], E3 (p

∗
13) > 0, provided conditions of

locally (4.32)-(4.35) given in [1], E4 (p
∗
13) > 0, provided conditions of locally (4.32)-(4.34) and (4.36)

given in [1], ∆1 (p
∗
13) > 0 , provided conditions of locally (4.32) and (4.34) given in [1] with (3.5)-

(3.9), E3
1 − 4∆1 > 0 provided conditions of locally (4.32) and (4.35) given in [1], with (3.5)-(3.9)

hold. On the other hand, It is observed that ∆2 = 0, gives:

B1p
∗2
13 +B2p

∗
13 +B3 = 0, (3.12)

where B1 = h∗24 b1 [b1 + r34E1] , B2 = −h∗4b1 [E1 − b2],
B3 = −b2(b2 − E1 [r11 (r22 + r33) + r22r33 − r12r21 − r13r31 − r14r41 − r24r42]).
Now, B1 > 0 provided conditions of locally (4.32) and (4.34) given in [1] hold and B3 < 0 if the
conditions of locally (4.32) and (4.33) given in [1] with (3.6) and (3.8) are hold.
By using ”Descartes rule of sign”, equation (3.12) has a unique positive root
p∗13 =

−1
2B1

(B2 +
√
B2

2 − 4B1B3 ).
Now, at (p13 = p∗13), the characteristic equation (3.11) can be rewritten as:

P (λ) =

(
λ25 +

E3

E1

)(
λ25 + E1λ5 +

∆1

E1

)
, (3.13)
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which have four roots: λ5 h1,h2 = +i
√

E3

E1
and λ5 h3,h4 = 1

2
(−E1+

√
E2

1 − 4∆1

E1
).

Observe that at (p13 = p∗13), there are two pure imaginary eigenvalues (λ5 h1 and λ5 h2 ) and two
eigenvalues are real and negative (λ5 h3 and λ5 h4) .
Now for all values of p13 in the neighborhood of p∗13, roots are generally as follows

λ5 h1,h2 = τ1 ± iτ2 , λ5 h3,h4 = 1
2
(−E1+

√
E2

1 − 4∆1

E1
).

Clearly, Re (λ5 h1,h2 (p13)) |p13=p∗13
= τ1 (p

∗
13) = 0 that means the first condition of the necessary and

sufficient condition for (HB) is satisfied at (p13 = p∗13). Now, to verify the transversally condition we
must prove that:
θ̆ (p∗13) φ̆ (p∗13) + Γ̆ (p∗13) Φ̆ (p∗13) ̸= 0,
Where θ̆, φ̆, Γ̆ and Φ̆ are given in (3.3). Note that for p13 = p∗13 we have:

τ1 = 0 and τ2 =
√

E3

E1
, substituting the value of τ2 gives the following simplifications:

θ̆ (p∗13) =
h∗4

E1 (p∗13)
[r34E3 (p

∗
13)− b1E1 (p

∗
13)] , φ̆ (p∗13) = −2E3 (p

∗
13) ,

Γ̆ (p∗13) = h∗4

√
E3 (p∗13)

E1 (p∗13)
[r34 (r11 + r22)− r14r31)] and Φ̆ (p∗13) = 2

√
E3 (p∗13)

E1 (p∗13)

(
∆1 (p

∗
13)− E3 (p

∗
13)

E1 (p∗13)

)
,

Where

E
′

1 (p
∗
13) =

∂E1

∂p13

∣∣∣∣
p13=p∗13

= 0, E
′

2 (p
∗
13) =

∂E2

∂p13

∣∣∣∣
p13=p∗13

= −h∗4r34,

E
′

3 (p
∗
13) =

∂E3

∂p13

∣∣∣∣
p13=p∗13

= h∗4 [r34 (r11 + r22)− r14r31)] , E
′

4 (p
∗
13) =

∂E4

∂p13

∣∣∣∣
p13=p∗13

= −b1h∗4.

provided condition of locally (4.32)-(4.34) given in [1] with conditions (3.9) and (3.10) are hold.
Therefore system (2.2) at A5 with the parameter p∗13 has a (HB). □

4. Numerical Simulation of System (2.2)

In this section, ”our obtained results in the previous sections are confirmed numerically by using
the method of Runge Kutta beside the method of predictor corrector. Note that, in programming
we used turbo C++ and for plotting Matlab, and then our obtained results have been discussed.
System (2.2) is solved numerically for a set of parameters and sets of initial points”. The purpose of
studying numerical simulations is first to see the effectiveness of parameters and second confirm our
obtained analytical results. It is noticed that, for the following set of hypothetical parameters that
is assumed bellow which satisfies the stability conditions for the positive (EP), system (2.2) has a
(GAS) positive (EP) .

p1 = 0.4, p2 = 0.3, p3 = 0.01, p4 = 0.5, p5 = 0.9, p6 = 0.2, p7 = 0.3,

p8 = 0.5, p9 = 0.2, p10 = 0.06, p11 = 0.15, p12 = 0.2, p13 = 0.1, p14 = 0.11.

}
(4.1)

The solution of system (2.2) ”converges asymptotically to” A5 (0.324, 0.063, 0.489, 1.025) beginning
from different four initial points (0.7, 0.1, 0.9, 0.5) , (0.2, 0.2, 0.7, 0.6) , (0.8, 0.4, 1, 0.7) and (0.4, 0.3, 0.6, 0.4)
and this confirms our analytical result that was obtained.
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Table 2: Numerical behavior for bifurcation of system (2.2) as varying some parameters and keeping
the rest fixed as in eq. (4.1).

The range of the parameters Converge to Bifurcation point

0.01 ≤ p1 < 0.8 A5 p1 = 0.8

0.8 ≤ p1 < 1 A2

0.0001 ≤ p2 < 0.001 A4 p2 = 0.001

0.001 ≤ p2 ≤ 2 A5

0.001 ≤ p3 < 0.53 A5

0.53 ≤ p3 < 1 A2 p3 = 0.53

0.01 ≤ p4 ≤ 1 A5

0.1 ≤ p5 < 1 A5

0.15 ≤ p6 ≤ 2 A5

0.3 ≤ p7 ≤ 1 A5

0.01 ≤ p8 < 1 A5

0.1 ≤ p9 ≤ 1.5 A5

0.01 ≤ p10 < 0.52 A5

0.52 ≤ p10 < 0.89 A2 p10 = 0.52

0.89 ≤ p10 < 1 A0 p10 = 0.89

0.1 ≤ p11 < 0.19 A5

0.1 ≤ p12 ≤ 0.3 A5

0.1 ≤ p13 ≤ 0.2 A5

0.01 ≤ p14 < 0.14 A5

0.14 ≤ p14 < 1 A2 p14 = 0.14

To discuss the effectiveness of parameters on the behaviour of a dynamic system. By varying one pa-
rameter at each time for the data in (4.1) the system has been solved numerically and the observations
are summarized in Table (2).

The parameter p10. It is noticed that the solution converges to A5 in the range 0.01 ≤ p10 < 0.52
as seen in Figure 1(a), for typical value p10 = 0.3 , but if we increasing p10 in the range 0.52 ≤ p10 <
0.89 the solution converges to A2 see Figure 1 (b), for typical value p10 = 0.7 , but in the range
0.89 ≤ p10 < 1 the solution converges to A0 ,see Figure 1 (c), for typical value p10 = 0.99

Figure 1: (a) Time series (TS) of the solution converges to A5 = (0.333, 0.066, 0.469, 0.920), for typical value
p10 = 0.1, (b) (TS) of the solution converges to A2 = (0.148, 0.033, 0.085, 0) , for typical value p10 = 0.7, (c) (TS)
of the solution converges to A0 = (0, 0, 0, 0), for typical value p10 = 0.99.
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Now, changing only the parameters p2, p8, p11 and p13 at the same time with the set of parameter
given in eq. (4.1) it is noticed that for 0.0001 ≤ p2 < 0.002, 0.6 ≤ p8 < 0.99, 0.001 ≤ p11 <
0.04 and 0.01 ≤ p13 < 0.105 the solution converges to A1 as seen in Figure 2, for typical value
p2 = 0.01 , p8 = 0.7, p11 = 0.01 and p13 = 0.1.

Figure 2: (TS) of the solution converges to A1 = (0.141, 0, 0.938 , 0) for typical value p2 = 0.001, p8 = 0.7, p11 =
0.01 and p13 = 0.1 .

5. Conclusion and Discussion

In this paper, the conditions of occurring the (LB) are established, it’s noticed that near the
trivial, axial and free predator (EPs) there is (TB), while at free disease and the positive (EPs) there
is (SNB). On the other hand near all of these (EPs) there is no (PB). Further investigations for
the (HB) near the positive (EP) are carried out. Finally, to illustrate the occurrence of (LB) of the
system have been used the numerical simulations. Further, system (2.2) ”has been solved numerically
for different sets of initial points and one set of parameters starting with the hypothetical set of data
given by eq. (4.1) and we obtained that:

1. For the set of parameters given that we have proposed in eq.(4.1) the system (2.2) has no
periodic solution.

2. For the set of parameters given in eq. (4.1), the most effectiveness parameters on the stability
of system (2.2) are p1, p2, p3, p10 , p11, p13and p14.

3. Varying only the parameters p2, p8, p11 and p13 at the same time with the rest of parameters as
in eq. (4.1) it’s noticed that for 0.0001 ≤ p2 < 0.002, 0.6 ≤ p8 < 0.99, 0.001 ≤ p11 < 0.04 and

0.01 ≤ p13 < 0.105 ”the solution converges to” A1 .
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