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Abstract

The goal of any profit organization is to bolster its revenue by providing useful suggestions to its
customer base. In order to achieve this, vast research is being undertaken by companies such as Netflix
and Amazon on their Recommendation Systems and providing users with choices, they are most
likely to click on. The purpose of this paper is to provide a holistic view of types of Recommendation
Engines and how they are implemented, scaled and can provide a basis for revenue generation. The
focus would be to implement a Recommendation Engine on PySpark using the ALS (Alternate Least
Square) method. Besides, Neo-4j and Cypher query language for implementing recommendations on
a graph database and analyzing how heterogeneous information can be levied to tackle the infamous
cold start problem in recommender engines would be explored. The dataset used for analysis is
the Group-lens 100K Movie-lens dataset and the algorithm is implemented to best fit the dataset.
Further, an in-depth comparison of several techniques has been carried out on the basis of different
metrics, hyper-parameter selection and the number of epochs used. The claims have been justified
by evaluating the performance of the model depending on the different use cases, thus aiding in
predictive analytics of the movie, as per the interest of the customer using visualization tools.
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1. Introduction

Recommendation System (RecSys/RS) is an information filtering technique which provides users
with the information he may be interested in. The primary purpose of a recommender system is to
suggest items to users on the basis of his past experiences or choices. The world of RecSys (Rec-
ommendation System) has evolved exponentially since the advent of the age of Artificial Intelligence
and availability of memory and computation sources. Companies that employ RecSys and leverage
its benefits are YouTube, Facebook, Coursera, OTT (Over the top) streaming services such as Netflix
and Prime Video and e-commerce giants Flipkart and Amazon. These businesses use RecSys in a
variety of ways such as suggesting videos to watch (Netflix), products to buy (Amazon) or courses to
undertake (Coursera) based on your previous actions or historical data. In this paper, we are going
to analyze different types of recommendation systems, how they are created using frameworks like
Pytorch and how to evaluate a successful system based on regression metrics like RMSE (Root Mean
Square Error). We, will be using the famous IMDB dataset for our study and try to figure out which
technique is most suitable for movie recommendations. The main contributions of this paper are:

� To understand what a recommender system is, its advantages to the business organizations,
and how it works.

� To review the performance of three different techniques: PySpark, PyTorch (neural -based),
and Neo-4j (graph-based) approaches for a movie-lens dataset.

� To examine these on the basis of three parameters: RMSE (Root Mean Square Error), Hyper-
Parameter selection, and the number of epochs used and identify the best and average perfor-
mance of these in different scenarios.

This paper is organized as follows: Section 2 throws light on the types of recommendation systems
and further explores some related work. Section 3 presents an extensive review of the three techniques,
namely, PySpark, Neo-4j, and graph-based systems and illustrates with results. Section 4 concludes
the paper by identifying the future scope.

2. Background

Recommendation systems are categorized into four major types: Popularity-based, Content-
Based, Collaborative, and Hybrid which are further explored.

2.1. Types of Recommendation Systems

2.1.1. Popularity-based RS

The assumption is to recommend the most popular item to the user. This approach is easy to
implement and provides a good baseline for all other models. If there is a user on which we don’t
have any historical data, popularity-based approach can come up as a rational solution. It is logical
for the algorithm to propose a set of items or movies which are popular and have been rated the
greatest number of times. Popularity based method can sometimes be more efficient than complex
Collaborative Filtering techniques. There are many baseline algorithms available for this approach
which have been discussed in [6].
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2.1.2. Content-based RS

The Content-based filtering (CBF) also known as cognitive filtering uses a customer’s prior movie
choices as information and finds items similar to what user has shown interest for in order to generate
recommendations in the future. The items are grouped together based on the concept of descriptors.
CBF uses a variety of models to induce similarity between items in order to generate sufficient
recommendations. We can use Vector Space Model like TFIDF (Term Frequency Inverse Document
Frequency) [33] and probabilistic models like Neural Networks [5] or Naive-Bayes Classifiers. It is
more about the information of the products [2] such as Movie-Id, Movie Genre or the cast and
directors of the movie. CBF techniques are capable of tackling the cold-start problem and if the
preference of the user changes it has better scope to adjust in a less span of time. Also, it ensures
privacy and security to the customer [23].

2.1.3. Collaborative Filtering based RS

The Collaborative Filtering (CF) algorithms are based on the fact that if two clients have similar
content history then they will behave exactly in a similar manner in the future [3, 4, 30]. It clusters
user preferences based on the similarity in their choices. Collaborative Filtering techniques work by
building a database referred to as User-Item matrix or Utility Matrix for preferences for items by
users. It then proceeds to calculate similarity based on the matrix obtained. This approach does
not use metadata about the items or the customers. CF algorithms can be divided into 2 main
categories-Memory based [15] and Model Based [11].

2.1.4. Hybrid RS

Hybrid filtering technique combines output of other techniques and stacks them with one another
to provide more generalized outputs. Ensembling of different models such as CF or Content based
can be viewed as a hybrid recommendation engine.

2.2. Related Work

The first paper on Recommendation System was published in the year 1992 [26] and since then
it has been a source of extensive research and development. [27, 25] described recommender systems
as a software tool for proposing or coming up with suggestions. Recommendations depend on user
feedback which can be in the form of a review or a categorical rating from 1 to 5. Sentiment
Analysis techniques can be applied to models which feature natural language and convert it to
a numerical or binomial output to be fed into our machine learning architecture [12]. Weighted
techniques can be used to generalize the tokenizing process [8]. The 2 most popular adaptations of
Recommendation Systems are Content Based-Filtering and Collaborative Filtering. Content based
filtering [10] provides a method for automatically filtering, categorizing and producing outputs in the
form of recommendations to the user. This approach involves the comparison between items present
in the user’s basket and items which are rated in the past to provide recommendations.
In collaborative filtering [1], instead of computing user interactions with a given sample set, it is
compared with the other set of users and similar user groups are identified for a generalized prediction
approach are found. Researchers have proposed a hybrid recommender model to tackle the problem
of cold start, which explores latent item features, learned from a deep learning neural network and
extracts those engineered features to provide input to the SV D + + CF model [28]. Similarly, a
CF algorithm using ALS as its loss and optimizing metric which deals with high dimensional sparse
data by factorizing input into smaller dimensions using matrix decomposition techniques, has been
proposed by [34]. An efficient way to deal with high dimensional data especially textual is to explore
and come up with a technique to embed word embeddings in a 2-dimensional space and study
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their interactions. This model is known as the word2vec model in machine learning literature [19].
This technique is used to supply input to the Neural Network in the form of Neural Embeddings.
Machine Learning community has come up with several implementations of recommendation systems
with the most recent being the use of Knowledge Graphs where the aim is to combine external
information sources to provide wider extent and improve the efficiency of the collaborative filtering
algorithm by extracting usable insights and make the model more adaptive and able to train on
past data. Facebook developed a Deep Learning based model which was named as Deep Learning
Recommendation Model (DLRM) [16], which provided a different approach of dealing with Neural
Networks in its ability to handle categorical variables and open sourced its implementation on Pytorch
[21, 31]. Metrics used for measuring the performance of recommendation models are divided into
statistical and decision support accuracy metrics [32]. Common examples of statistical measures used
are RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) and some decision support
measures are computed from the confusion matrix such as Precision, F1-score and AuC-Roc curve
(Area under curve Receiver operating characteristic). Thus, coverage and accuracy metrics play an
important part for evaluating the performance of our system [9].
In the next section, we shall implement a Recommendation Engine on PySpark using the ALS
(Alternate Least Square) method. Neo-4j and Cypher query language would be used for implementing
recommendations on a graph database and it would be analyzed how heterogeneous information can
be levied to tackle the infamous cold start problem in recommender engines. An analysis of the
results would be conducted to understand the best technique for various parameters.

3. Methods and Results

The experimental analysis in this paper is organised as follows. We will begin by stating briefly
about the technology under consideration and its basic functionalities. How it deals with big data
and sparse data and why it has become a golden standard in the world of recommendation engines.
The experimental approach is similar to a machine learning pipeline where we will begin by importing
the data to the platform (Spark, Jupyter notebook or Neo-4j for graphs). The data will be cleaned
and transformed to be suitable for our recommendation project. After the data is ready for use case
experiment we will perform exploratory data analysis on it to find valuable insights and aggregate
level statistics which will summarize the data we are dealing with. The data sparsity problem will
be solved by doing necessary wrangling of the data. We will proceed by choosing a suitable machine
learning algorithm to tackle our predictions and choose the set of hyper parameters which give us
the optimum result (i.e. least error). The result will be recorded for all the 3 approaches from
where we will delve into their comparisons and aim to find the most suitable approach for making
recommendation engines. The Movie Lens [17] dataset would be used to benchmark performance of
each evaluation method. The criterion of judging the capabilities of the methods would be RMSE.
Two data frames represent the dataset we’re going to analyze.
Tab. 1 depicts the rating user gave to a particular movie represented by its movieid. The mapping
from movieid to movie can be achieved by taking a look at Tab. 2. Movieid 1 signifies Toy Story
which was released in the year 1995. Timestamps are time-coordinates representing the time when
the explicit feedback was provided by the user. It can be seen that not every user has watched all
the movies so the matrix which will be highly sparse and we will need to manipulate it accordingly
so that it does not yield to impractical or infeasible results. Tab. 2 describes the title and genre
of the movie. Genre of a movie can be argumentative so the dataset has used Imdb (International
Movie Database) genre feature and inculcated that in this relation. As we have only a few features,
we will include all during our model training and validation and feature engineering is minimal. Our



Recommendation engines-neural embedding to graph-based: Techniques and evaluations 2415

Table 1: Dataframe depicting rating given by a user for a movie at a particular timestamp

Index userId movieid Rating Timestamp
0 1 1 4.0 96234235
1 1 3 4.0 961246124
2 1 6 4.0 963561245
3 1 47 5.0 962146321
4 1 50 5.0 961254643

Table 2: Dataframe mapping the movied to its title and genre

Index movie-id Title Genres
0 1 Toy Story Adventure/Animation/Children/Comedy/Fantasy
1 2 Jumanji Adventure/Children/Fantasy
2 3 Grumpier Old Men Comedy/Romance
3 4 Waiting to Exhale Comedy/Drama/Romance
4 5 Father of the Bride Part 2 Comedy

aim is to segment similar users together and try to estimate the rating which a user belonging to
a particular segment would give to a particular movie or a set of similar movies. If a customer has
rated a movie n highly, it would naturally relate to a user being shown recommendations similar to
the movie n.

Fig. 1 depicts the number of customers in the Y-axis and the rating they gave to a particular
movie on the X-axis. We can see that 4 is the most common rating (Mode) given by the customers
and 1 the least. By doing some basic EDA (Exploratory Data Analysis) on the given data frame we
can find out that the most popular movie is Star Wars (1977). It has been rated a total of 583 times.

There is a total of 610 unique users who have rated 9724 unique movies. Basic exploratory
analysis data on ratings in shown in Fig.2 depicts that the total number of items in our data is
100,000 (Ratings). Mean, Standard Deviation and Quantile values are as represented. We have used
this data as the input for our model trained by Alternating Least Square method on Spark. It is
important to do data preprocessing in Machine Learning as it leads to better accuracy and robust
models. We will preprocess the data for supplying it as input to the Neural Network.

As neural networks require large amount of data in order to mine and find relationships between
variables we select the top movies and users and generate a data frame as represented in Fig. 3.

Figure 1: Depicts the number of customers and their rating for a movie.
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Figure 2: Descriptive Statistics of the Movie Lens dataset

Figure 3: Dense matrix representing top movies and users
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Table 3: Hyperparameters selection

Coldstart Strat Rank Maxiter RegParam Implicit Prefs Alpha Non-negative
Drop 10 10 .01 False 1.0 True

Table 4: Hyperparameters selection

Training Set CV set
Percent Split (Random) 75 25

No. of Items 75000 25000

This data frame will help us tackle the cold start, and data sparsity problems associated with
Recommender Systems. The third approach involves using heterogeneous information in the form of
graphs and depicting the relationships through nodes and edges. We will be using the Neo4j graph
framework for generating graphs and producing recommendations. In the next three sub-sections,
let us explore each of the three techniques: Apache Spark, PyTorch, and Neo-4j.

3.1. Apache Spark

Apache Spark [18] is an open sourced cluster computing framework which is general purpose
and provides an interface for building and manipulating Big Data. Spark is easy to access and use,
offering APIs in 4 programming languages: Python, Java, Scala, and R. Since, Sparks’ machine
learning library (MLLib) found widespread success with its ability to handle distributed computing
and Big Data in the form of its basic abstraction RDDs (Resilient Distributed Datasets). Hence,
we will implement a Recommender System on MLlib, Taking ALS (Alternate Least Squares), we fit
our model by keeping one factor fixed while adjusting the other factor. This process goes on until
convergence. We will implement a model-based CF technique to generate recommendations and use
MLlib ALS method for training our model.
PySpark allows users to set the coldStart Strategy parameter to “drop” which drops rows in the
DataFrame of predictions that contain Null or NaN values. The evaluation metric will then be com-
puted over the non-NaN normalized data and will be valid for inferences and hypothesis testing. We
will train the model on the hyper parameters stated in Tab. 3. The rank parameter is representative
of the number of latent factors in the model. Rank will represent the number of categories in the
data. The default value is 10 which we will continue to use for our model. As we are dealing with big
data, it is imperative to define a MaxIter parameter which makes sure we don’t run out of memory
and its default value is 10. It means that we will run a maximum of 10 iterations on the data sample.
RegParam is the regularization parameter. implicitPrefs is set to False which specifies that we
are using explicit data for our predictions. Parameter alpha is responsible for generating a baseline
model on which our predictions can be judged. Non-negative is set to True to signify we are using
nonnegative values for generating least squares.

The training-validation split used for our model is 75-25. As can be seen in Tab. 4, 75,000
rows are used for training the model and learn the patterns in data whereas we will be using our
cross-validation data which is unseen to our model for evaluation and error calculation.

Fig. 4 depicts the predictions by our model for individual items. RMSE of 0.62342 is observed
for the model.

3.2. Neural Embeddings and Pytorch

Pytorch is a framework that allows us to build various computational graphs and run them
on GPU (Graphical Processing Unit) for greater performance and less execution time. We will
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Figure 4: Prediction using ALS

Figure 5: X-batch and Y-batch for batch size=4

cluster similar users together using appropriate clustering algorithms and try to provide aggregated
recommendations. Embeddings can also be used as intermediates in ensemble algorithms which will
make it easier for our model to find correlated features. We will implement our model on Pytorch
and take advantage of its GPU-oriented techniques. We will convert our arrays to high dimensional
tensors for efficient utilization of GPU memory and faster computations. Review Iterator with a
batch size of 32 is taken for training the model. We will not use larger batch size due to computation
limits. A sample tensor is provided in Fig. 5.

Some important hyper-parameters which we should tune before acquiring results are batch size,
regularization technique (Dropout would be the most suitable), no. of layers in our deep neural
network, optimizers such as SGD (Stochastic Gradient Descent) plus momentum or Adam (Adaptive
Moments), no. of layers and neurons per layer and determining how deep our model will be i.e. no.
of hidden layers. The hyper parameters selected for our neural network are provided in Tab.5.
Learning rate is selected as 10−3 in order to make sure our Adam [14, 7] optimizer is not stuck at
local minima. Batch size of 200 is selected and patience parameter is used in case of early stopping
(finding optimum value in the middle of epochs). Tab. 6 depicts the training and validation losses
over 5 epochs. RMSE for this model is 0.62342.
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Table 5: Hyper-parameters Selection for neural net

Learning Rate Epoch Loss Optimization Batch Size Patience Best loss Best weights
10−3 5 MSE loss Adam 200 10 npi.inf None

Table 6: Training and validation Losses over 5 epochs

epoch train loss valid loss
1 0.923901 0.946068
2 0.865458 0.890646
3 0.787896 0.836753
4 0.638374 0.815428
5 0.561979 0.814652

3.3. Graph Based Recommendations using Neo-4j and Cypher Query Language

A graph database, models and stores data as nodes and edges of a graph structure [22]. Graph
databases allow methodical and rapid information retrieval of highly connected and complex hierar-
chical structures that would be extremely inefficient to model using traditional relational systems.
[29] put forwards a recommendation system based on similarity graphs. All the traditional algorithms
of collaborative filtering, popularity approach or content- based filtering can be levied upon graph-
based databases. Neo4j [24, 20] is a popular graph- based database offering multiple functionalities
for generating real time graphical models. It is equipped with handling basic ACID transactions
and basic data storage, organization and pre-processing. The language that is used to query graph
databases in Neo-4j, is termed as cypher query language. Neo-4j utilizes property graph model where
we can assign weights and labels to nodes and their relationship. Fig. 6 describes a typical graph
database with nodes acting as data points and edges depicting the relationship between connected
nodes. Labels are used for identifying nodes and we can have multiple labelled nodes in our database
specifying its type. Two nodes are connected by their relationship. Mapping of key to value pairs
can be preserved on nodes and edges.

Tab. 7 shows the predictions made by our graph database for the specific user (Movies similar to
“Inception”). The genres of Inception are (Crime, Drama, Mystery, Sci-Fi, Thriller, IMAX, Action).
Whereas, the attribute s1 denotes the genres of movies found similar to Inception based on Jaccard
Similarity.

Figure 6: Movie & Genre relationship
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Table 7: Recommended Movies (Similar to Inception)

Similar Movies s2 Jaccard
Strange Days [Crime, Action, Thriller, Sci-Fi, Mystery, Drama] 0.857143
Watchmen [Drama, Action, Sci-Fi, Mystery, IMAX, Thriller] 0.857143

Sherlock: The Abominable Bride [Thriller, Crime, Action, Mystery, Drama] 0.714286
Minority Report [Crime, Mystery, Action, Sci-Fi, Thriller] 0.714286
Source Code [Thriller, Sci-Fi, Mystery, Drama, Action] 0.714286
RoboCop [Thriller, Sci-Fi, Drama, Crime, Action] 0.714286
RoboCop 3 [Thriller, Crime, Action, Sci-Fi, Drama] 0.714286

X-Files: Fight the Future [Action, Crime, Mystery, Sci-Fi, Thriller] 0.714286
Man on Fire [Thriller, Drama, Mystery, Crime, Action] 0.714286

Table 8: Comparison of PySpark, Neural embeddings and Graph-based recommendation techniques

Parameters/ Approach PySpark Neural Embeddings Graph-Based
RMSE 0.62342 0.515234 0.551298(For userId=4)

Hyper-paramater Selection Manual Manual and resource
intensive

Node and relationship to be
specified

Number of epochs used 10 (MaxIter
paramater)

5 None

Thus, Tab. 7 clearly shows that graph-based approach produces effectiveness in building a rec-
ommendation engine.

3.4. Results

In the end, all the 3 approaches: PySpark, Neo-4j, and Neural embedding, give unique intuitions
about data. Tab. 8 illustrates the same using three parameters, RMSE, selection of Hyperparame-
ters, and number of epochs used on a single dataset and with same amount of computing resources
available for execution of tasks. In terms of accuracy achieved, Neural Networks based approaches
gave the most desirable results. Contrastingly, the graph based approach is highly interpretable and
can be used for analytical tasks and optimize business operations. Since, Graph based recommen-
dations require the node and relationship representation, so are interactive and provides a clarity in
identifying relationships between unrelated items. They prove to be an effective means of tracing
the pattern and behavior of individuals. Pyspark can help us work in the Big Data environment by
horizontally scaling our computing clusters, it provides us with a framework to do multiple tasks
such as data engineering and model deployment thereby reducing our dependency and workload.

Fig. 7 is illustrative of the performance of all the 3 approaches on the basis of RMSE. Neural
embedding approach gave us the RMSE of 0.515234, the least if compared to the other two. Its
performance is boosted by fine-tuning model parameters and minimizing our target metric. We can
achieve even better results by having better resources and compute instances. The RMSE from the
PySpark approach came out to be 0.62341, after running the algorithm through 10 epochs. We can
improve the results by running more iterations and selecting hyperparameters manually instead of
using out of the box parameters.

The RMSE [13] for Graph-Based approach was 0.551298. Thus, we can say that the usage of a
particular algorithm will depend highly on our use case. Usually if we want to make our findings more
interpretable we can use Neo-4j and its graph capabilities whereas if we want to focus on building
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Figure 7: Comparison of PySpark, Neo-4j, and Neural-embeddings on their RMSE scores

a whole pipeline we can use Pyspark as it provides us with end to end machine learning solutions.
Neural Embedding approach is still in its nascent state but the possibilities are limitless given the
speed of innovation in deep learning and artificial intelligence algorithms.

4. Conclusion

Recommendation Engines have been an area of research since the early 2000s and so far, re-
searchers have come up with several successful iterations of them. Big data technologies like Spark
& Hadoop have bolstered the capabilities of these systems by providing a distributed way to han-
dle large amounts of zeros (highly sparse) that are typically present in a utility matrix or dataset
which is to be used for recommendations. Originally, it was objected that neural network would
be inefficient for recommendations, but over time we found a way to input features in the form of
embeddings to a neural network and generate recommendations. Facebook open sourced its neural
network- based recommendation engine DLRM and is constantly working to improve its accuracy
and provide state of the art results. As, we have already discussed that recommendation engines
have a massive business impact and can drive the success of a product, it is mandated for a company
to invest in its recommendation system and provide best results on user queries. Using graph-based
recommendations have produced great results on live streaming queries by utilizing information not
evident from the database, inculcating heterogeneous information about the product have led to even
better results. Overall, with techniques mentioned in this paper, we will be able to develop a scalable
recommendation engine which can be used for increasing revenues of a business and providing accu-
rate predictions for user queries. However, we are very far from an ideal system because predicting
a user’s personality based on what he clicks or rates is a very complex task. Humans tend to be
unpredictable at moments and rarely operate with fixed patterns. Choices are based on many factors
outside of what a computer can predict such as historical, psychological or environmental. Creating
a cognitive system is what AI industry is currently working on and if we are able to completely
emulate the human mind, would result in unprecedented developments in the fields of deep learning
and counterfactual machine learning. With improved quality and quantity of data and ability to use
ensemble methods (3-4 models stacked together) to train our neural network so as to generalize the
human behavior is the ultimate task of a recommender system.
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