Int. J. Nonlinear Anal. Appl. Volume 12, Special Issue, Winter and Spring 2021, 1905-1911 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.5942

Fuzzy Aboodh transform for higher-order derivatives

Samer Thaaban Abaas Alshibley^{a,}, Ameera Nema Alkiffai^b, Athraa Neamah Albukhuttar^b

^aDepartment of Mathematics, Faculty of Education, University of Kufa, Najaf, Iraq ^bDepartment of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

The strongly generalized differentiability notion is used to study the fuzzy Aboodh transform formula on the fuzzy n^{th} -order differential in this paper. It is also employed in an analytic technique for fuzzy fifth-order differential equations, and the related theorems and properties are demonstrated in detail. Solving a few instances demonstrates the process.

Keywords: Fuzzy fifth-order differential equation, Fuzzy n^{th} -order differential equation, Fuzzy number, Fuzzy Aboodh transform, Strongly generalized differentiable

1. Introduction

In recent years, the field of fuzzy differential equations (FDEs) has exploded in popularity. Chang and Zadeh [10] were the first for introducing the fuzzy derivative concepts, which was followed by Dubios and Prade [11], who applied this extension principle but in their method. Puri and Ralescu [20], Goetschel and Voxman [13] have addressed several ways. The concept of FDEs was used for the analysis of fuzzy dynamical issues by Kandel [15] with Kandel and Byatt [16]. Kaleva [14], Seikkala [21], Ouyang and Wu [19], Kloeden [17], and Menda [18], as well as other researchers, thoroughly investigated the FDE while the starting of value problem concept (Cauchy problem), see Bede et al. 2006 [8]. Abbasbandy and Allahviranloo [1], 2004 [2]), Allahviranloo [5], and Ghanbari [12] presented numerical methods for solving fuzzy differential equations. Bede and Gal [9] developed the term strongly generalized differentiable. Salahshour [22] investigated the existence and the uniqueness theorem of solutions to n^{th} -order fuzzy differential equations under n^{th} -order generalized differentiability. The H-derivative is defined for a smaller class of fuzzy valued functions than the

Email addresses: samir.alshebly@uokufa.edu.iq (Samer Thaaban Abaas Alshibley),

ameeran.alkiffai@uokufa.edu.iq (Ameera Nema Alkiffai), athraan.kadhim@uokufa.edu.iq (Athraa Neamah Albukhuttar)

strongly generalized derivative, thus fuzzy differential equations can have solutions with a diminishing length of support. As a result, we apply the concept of differentiability in this study. In Allahviranloo and Barkhordari [4], Laplace transform method on fuzzy n^{th} -order derivative solved fuzzy 2^{th} -order differential equations (FTDEs), equivalent fuzzy n^{th} -order, boundary value issues and partial differential equations as well.

2. Basic concepts

This section introduces several terminology keys and basic ideas.

Definition 2.1. [24] The mapping $\mathcal{H} : \mathcal{R} \to [0,1]$ is fuzzy number if satisfies

- i. \mathcal{H} is upper semi-continuous.
- ii. \mathcal{H} is fuzzy convex, i.e., $\mathcal{H}(\varsigma \mathfrak{t} + (1 \varsigma)\mathfrak{t}) \geq \min\{\mathcal{H}(\mathfrak{t}), \mathcal{H}(\mathfrak{t})\}, \text{ for all } \mathfrak{t}, \mathfrak{t} \in \mathcal{R} \text{ and } \varsigma \in [0, 1]$
- iii. \mathcal{H} is normal i.e., $\exists x_0 \in \mathcal{R}$ for which $\mathcal{H}(x) = 1$.
- iv. Supp $\mathcal{H} = \{x \in \mathcal{R}; \mathcal{H}(x) > 0\}$, and $cl(Supp(\mathcal{H}))$ is compact.

Definition 2.2. Let η and ζ are fuzzy numbers so the distance between fuzzy numbers is determined by the Hausdorff, $\Gamma : \mathcal{R}_f \times \mathcal{R}_f \to [0, +\infty]$, where \mathcal{R}_f be all the fuzzy numbers set on \mathcal{R} :

 $\Gamma(\eta,\zeta) = \sup_{\varsigma \in [0,1]} \max\left\{ |\underline{\eta}(\varsigma) - \underline{\zeta}(\varsigma)|, |\overline{\eta}(\varsigma) - \overline{\zeta}(\varsigma)| \right\}, \text{ where } \eta = (\underline{\eta}(\varsigma) - \overline{\eta}(\varsigma)), \zeta = (\underline{\zeta}(\varsigma), \overline{\zeta}(\varsigma)) \text{ and } (\mathcal{R}_f, \Gamma) \text{ is a complete metric space and the following characteristics are well known:}$

- $\Gamma(\eta \oplus \vartheta, \zeta \oplus \vartheta) = \Gamma(\eta, \zeta), \forall \eta, \zeta, \vartheta \in \mathcal{R}_f.$
- $\Gamma(\varsigma \odot \eta, \kappa \odot \zeta) = |\varsigma| \Gamma(\eta, \zeta), \forall \eta, \zeta \in \mathcal{R}_f, \varsigma \in \mathcal{R}.$
- $\Gamma(\eta \oplus \vartheta, \zeta \oplus \nu) \leq \Gamma(\eta, \zeta) + \Gamma(\vartheta, \nu), \forall \eta, \zeta, \vartheta, \nu \in \mathcal{R}_f.$

Definition 2.3. [8] Assume that $\psi, \phi \in \mathcal{R}_f$. Where there is $\gamma \in \mathcal{R}_f$ such that $\psi = \phi + \gamma$ then ψ is known the H-differential of ψ and ϕ and it is represented by $\psi \ominus \phi$.

Note that in this work, the sign \bigcirc always meant the \mathcal{H} -difference as well as $\psi \bigcirc \phi \neq \psi + (-1)\phi$.

Definition 2.4. [22] Let $\mathcal{H}(x)$ be a fuzzy valued function on [e, r]. Suppose that $\underline{\mathcal{H}}(x, \varsigma)$ and $\overline{\mathcal{H}}(x, \varsigma)$ are improper Riemman-integrable on [e, r], then $\mathcal{H}(x)$ is an improper on [e, r], and $\overline{(\int_e^r \mathcal{H}(y, \varsigma)dy)} = (\int_e^r \mathcal{H}(y, \varsigma)dy), \ \overline{(\int_e^r \mathcal{H}(y, \varsigma)dy)} = (\int_e^r \overline{\mathcal{H}(y, \varsigma)}dy)$

3. Generalization of fuzzy aboodh transform

Theorem 3.1. [25] Let $\mathcal{H}(x)$ be a fuzzy valued function on $[e, \infty)$ embodied by $\underline{\mathcal{H}}(x,\varsigma)\overline{\mathcal{H}}(x,\varsigma)$. For any fixed $\varsigma \in [0,1]$, let $\underline{\mathcal{H}}(x,\varsigma)\overline{\mathcal{H}}(x,\varsigma)$ are Riemann-integrals on [e,r]. For every $r \ge e$, if two positive functions exist $\underline{\theta}(\varsigma)$ and $\overline{\theta}(\varsigma)$ such that $\int_0^r |\underline{\mathcal{H}}(x,\varsigma)| dx \le \underline{\theta}(\varsigma)$ and $\int_0^r |\overline{\mathcal{H}}(x,\varsigma)| dx \le \overline{\theta}(\varsigma)$, for every $r \ge e$, then $\mathcal{H}(x)$ is said to be improper fuzzy Riemann-Liouville integrals function on $[e,\infty)$, i.e. $\int_0^\infty \mathcal{H}(x) dx = [\int_0^\infty \underline{\mathcal{H}}(x,\varsigma), \int_0^\infty \overline{\mathcal{H}}(x,\varsigma) dx]$

Definition 3.2. [23] A function $\mathcal{H} : (e, r) \to \mathcal{R}_F$ and $x_0 \in (e, r)$. We say that a mapping \mathcal{H} is strongly generalized differentiable of the nth order at x_0 . If $\mathcal{H}, \mathcal{H}', \mathcal{H}^{(2)}, \ldots, \mathcal{H}^{(s-1)}$ have been strongly generalized differentiable and there exists an element $\mathcal{H}^{(s)}(x_0) \in \mathcal{R}_F, \forall s = 1, 2, \ldots, n$.

$$i. \ \forall \tau > 0 \ sufficiently \ small, \ there \ exist \ \mathcal{H}^{(s-1)}(x_0 + \tau) \ominus \mathcal{H}^{(s-1)}(x_0), \ \mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 - \tau) \\ where \ \lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0 + \tau) \ominus \mathcal{H}^{(s-1)}(x_0)}{\tau} = \lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 - \tau)}{\tau} = \mathcal{H}^{(s)}(x_0) \ or$$

- ii. $\forall \tau > 0$ sufficiently small, there exist $\mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 + \tau), \mathcal{H}^{(s-1)}(x_0 \tau) \ominus \mathcal{H}^{(s-1)}(x_0)$ where $\lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 + \tau)}{-\tau} = \lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0 - \tau) \ominus \mathcal{H}^{(s-1)}(x_0)}{-\tau} = \mathcal{H}^{(s)}(x_0) \text{ or }$
- *iii.* $\forall \tau > 0$ sufficiently small, there exist $\mathcal{H}^{(s-1)}(x_0 + \tau) \ominus \mathcal{H}^{(s-1)}(x_0), \mathcal{H}^{(s-1)}(x_0 \tau) \ominus \mathcal{H}^{(s-1)}(x_0)$ where $\lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0 + \tau) \ominus \mathcal{H}^{(s-1)}(x_0)}{\tau} = \lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0 - \tau) \ominus \mathcal{H}^{(s-1)}(x_0)}{-\tau} = \mathcal{H}^{(s)}(x_0) \text{ or }$
- $iv. \ \forall \tau > 0 \ sufficiently \ small, \ there \ exist \ \mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 + \tau), \\ \mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 + \tau) \\ where \ \lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 + \tau)}{-\tau} = \lim_{\tau \to 0} \frac{\mathcal{H}^{(s-1)}(x_0) \ominus \mathcal{H}^{(s-1)}(x_0 \tau)}{\tau} = \mathcal{H}^{(s)}(x_0) \ or$

Theorem 3.3. [7] Let $\mathcal{H}(x), \mathcal{H}'(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x), \ldots, \mathcal{H}^{(n-1)}(x)$ are differentiable fuzzy-valued functions. Moreover, we denote ς -cut representation of fuzzy-valued function $\mathcal{H}(x)$ such that: $\mathcal{H}(x) = [\underline{\mathcal{H}}(x,\varsigma), \overline{\mathcal{H}}(x,\varsigma)]$ for each $\varsigma \in [0,1]$. Then

$$\mathcal{H}^{(n)}(x) = \begin{cases} \left[\underline{\mathcal{H}}^{(n)}(x,\varsigma), \overline{\mathcal{H}}^{(n)}(x,\varsigma)\right] & if number of (ii) - differentiable is even, \\ \left[\overline{\mathcal{H}}^{(n)}(x,\varsigma), \underline{\mathcal{H}}^{(n)}(x,\varsigma)\right] & if number of (ii) - differentiable is odd. \end{cases}$$

Theorem 3.4. [6] Let $\mathcal{H}(x)$ is the primitive of $\mathcal{H}'(x)$ on $[0,\infty)$ and $\mathcal{H}(x)$ be an integrable fuzzyvalued function. Then:

- a. $\mathcal{H}(x)$ is (i)-differentiable and $\widehat{A}[\mathcal{H}'(x)] = s\widehat{A}[\mathcal{H}(x)] \ominus \frac{1}{s}\mathcal{H}(0).$
- b. $\mathcal{H}(x)$ is (ii)-differentiable and $\widehat{A}[\mathcal{H}'(x)] = (-\frac{1}{s}\mathcal{H}(0)) \ominus (-s\widehat{A}[\mathcal{H}(x)).$

Theorem 3.5. [3] Let $\mathcal{H}(x)e^{-sx}$, $\mathcal{H}'(x)e^{-sx}$ and $\mathcal{H}'(2)e^{-sx}$ are continuous and integrable Riemann functions on [0, infty) so $\mathcal{H}(x)$ is continuous fuzzy valued function. Thus:

- a. If $\mathcal{H}(x)$ and $\mathcal{H}'(x)$ are (i)-differentiable, then $\widehat{A}[\mathcal{H}^{(2)}(x)] = \{s^2 \widehat{A}[\mathcal{H}(x)] \ominus \mathcal{H}(0)\} \ominus \frac{1}{s} \mathcal{H}'(0).$
- b. If $\mathcal{H}(x)$ is (i)-differentiable and $\mathcal{H}'(x)$ is (ii)-differentiable, then $\widehat{A}[\mathcal{H}^{(2)}(x)] = (-\frac{1}{s}\mathcal{H}'(0)) \ominus \{-s^2\widehat{A}[\mathcal{H}(x)] \ominus (-\mathcal{H}(0))\}.$
- c. If $\mathcal{H}(x)$ is (ii)-differentiable and $\mathcal{H}'(x)$ is (i)-differentiable, then $\widehat{A}[\mathcal{H}^{(2)}(x)] = \{-\mathcal{H}(0) \ominus (-s^2 \widehat{A}[\mathcal{H}(x)]\} \ominus \frac{1}{s} \mathcal{H}'(0).$
- d. If $\mathcal{H}(x)$ is (ii)-differentiable and $\mathcal{H}'(x)$ is (ii)-differentiable, then $\widehat{A}[\mathcal{H}^{(2)}(x)] = (-\frac{1}{s}\mathcal{H}'(0)) \ominus \{(\mathcal{H}(0)) \ominus s^2 \widehat{A}[\mathcal{H}(x)]\}.$

Theorem 3.6. Let $\mathcal{H}(x)e^{-sx}$, $\mathcal{H}'(x)e^{-sx}$, $\mathcal{H}^{(2)}(x)e^{-sx}$, \ldots , $\mathcal{H}^{(n-1)}(x)e^{-sx}$ are exist, continuous and integrable Riemann functions on $[0,\infty)$ and $\mathcal{H}(x)$ is continuous fuzzy valued function. If $\mathcal{H}^{(s)}(x)$ is strongly generalized differentiable of the nth order such that, there exists an element $\mathcal{H}^{(s)}(x_0) \in$ $\mathcal{R}_F, \forall s = 0, 1, \dots, n$. Then fuzzy Aboodh transform of $\mathcal{H}^{(n)}(x)$ is given by,

$$\widehat{A}[\mathcal{H}^{(n)}(x)] = \{\{\ldots, \{\prod_{\mathbb{K}=1}^{n} \mathbb{B}(\mathbb{K})\widehat{A}[\mathcal{H}(x)] \ominus \prod_{\mathbb{K}=2}^{n} \mathbb{B}(\mathbb{K})\mathbb{E}(1)\mathcal{H}(0)\} \ominus \prod_{\mathbb{K}=3}^{n} \mathbb{B}(\mathbb{K})\mathbb{E}(2)\mathcal{H}^{'}(0)\} \\ \ominus \prod_{\mathbb{K}=4}^{n} \mathbb{B}(\mathbb{K})\mathbb{E}(3)\mathcal{H}^{(2)}(0)\} \ominus \prod_{\mathbb{K}=5}^{n} \mathbb{B}(\mathbb{K})\mathbb{E}(4)\mathcal{H}^{(3)}(0)\} \ominus \dots\} \ominus \mathbb{B}(n)\mathbb{E}(n-1)\mathcal{H}^{(n-2)}(0)\} \ominus \mathbb{E}(n)\mathcal{H}^{(n-1)}(0)\},$$

where

$$\mathbb{B}(\mathbb{K}) = \begin{cases} s & if \mathcal{H}^{(k)}bei - differentiable, \\ \ominus(-s) & if \mathcal{H}^{(k)}beii - differentiable. \end{cases} \quad \mathbb{E}(\mathbb{K}) = \begin{cases} \frac{1}{s} & if \mathcal{H}^{(k)}bei - differentiable, \\ \ominus(\frac{1}{-s}) & if \mathcal{H}^{(k)}beii - differentiable. \end{cases}$$

1

1

Proof. Let $n = 1, \widehat{A}[\mathcal{H}'(x)] = \mathbb{B}(1)\widehat{A}[\mathcal{H}(x)] \ominus \mathbb{E}(1)\mathcal{H}(0)$, where

$$\mathbb{B}(\mathbb{K}) = \begin{cases} s & if \mathcal{H}^{(k)}bei - differentiable, \\ \ominus(-s) & if \mathcal{H}^{(k)}beii - differentiable. \end{cases} \\ \mathbb{E}(\mathbb{K}) = \begin{cases} \frac{1}{s} & if \mathcal{H}^{(k)}bei - differentiable, \\ \ominus(\frac{1}{-s}) & if \mathcal{H}^{(k)}beii - differentiable. \end{cases}$$

1. if \mathcal{H} is (i)-differentiable then $\widehat{A}[\mathcal{H}'(x)] = s\widehat{A}[\mathcal{H}(x)] \ominus \frac{1}{s}\mathcal{H}(0).$

2. if
$$\mathcal{H}$$
 is (i)-differentiable then $\widehat{A}[\mathcal{H}'(x)] = -\frac{1}{s}\mathcal{H}(0) \ominus -s\widehat{A}[\mathcal{H}(x)].$

Suppose that $n = \mathbb{K}$ is true,

$$\begin{split} \widehat{A}[\mathcal{H}^{(\mathbb{K})}(x)] &= \{\{\{\dots,\{\prod_{i=1}^{\mathbb{K}} \mathbb{B}(i)\widehat{A}[\mathcal{H}(x)] \ominus \prod_{i=2}^{\mathbb{K}} \mathbb{B}(i)\mathbb{E}(1)\mathcal{H}(0)\} \ominus \prod_{i=3}^{\mathbb{K}} \mathbb{B}(i)\mathbb{E}(2)\mathcal{H}'(0)\} \\ &\ominus \prod_{i=4}^{\mathbb{K}} \mathbb{B}(i)\mathbb{E}(3)\mathcal{H}^{(2)}(0)\} \ominus \prod_{i=5}^{\mathbb{K}} \mathbb{B}(i)\mathbb{E}(4)\mathcal{H}^{(3)}(0)\} \ominus \dots\} \ominus \mathbb{B}(\mathbb{K})\mathbb{E}(\mathbb{K}-1)\mathcal{H}^{(\mathbb{K}-2)}(0)\} \ominus \mathbb{E}(\mathbb{K})\mathcal{H}^{(\mathbb{K}-1)}(0). \\ &\text{Let } n = \mathbb{K}+1, \end{split}$$

$$\begin{split} \widehat{A}[\mathcal{H}^{(\mathbb{K})}(x)] &= \mathbb{B}(\mathbb{K}+1)\widehat{A}[\mathcal{H}^{(\mathbb{K})}(x)] \ominus \mathbb{E}(\mathbb{K}+1)\mathcal{H}^{(\mathbb{K})}(0) \\ &= \mathbb{B}(\mathbb{K}+1)\{\{\{\dots,\{\prod_{i=1}^{\mathbb{K}}\mathbb{B}(i)\widehat{A}[\mathcal{H}(x)]\ominus\prod_{i=2}^{\mathbb{K}}\mathbb{B}(i)\mathbb{E}(1)\mathcal{H}(0)\}\ominus\prod_{i=3}^{\mathbb{K}}\mathbb{B}(i)\mathbb{E}(2)\mathcal{H}^{'}(0)\} \\ &\ominus\prod_{i=4}^{\mathbb{K}}\mathbb{B}(i)\mathbb{E}(3)\mathcal{H}^{(2)}(0)\}\ominus\prod_{i=5}^{\mathbb{K}}\mathbb{B}(i)\mathbb{E}(4)\mathcal{H}^{(3)}(0)\}\ominus\dots\}\ominus\mathbb{B}(\mathbb{K})\mathbb{E}(\mathbb{K}-1)\mathcal{H}^{(\mathbb{K}-2)}(0)\} \\ &\ominus\mathbb{E}(\mathbb{K})\mathcal{H}^{(\mathbb{K}-1)}(0)\}\ominus\mathbb{E}(\mathbb{K}+1)\mathcal{H}^{(\mathbb{K})}(0)=\{\{\{\dots,\{\prod_{i=1}^{\mathbb{K}+1}\mathbb{B}(i)\widehat{A}[\mathcal{H}(x)]\ominus\prod_{i=2}^{\mathbb{K}+1}\mathbb{B}(i)\mathbb{E}(1)\mathcal{H}(0)\}\\ &\ominus\prod_{i=3}^{\mathbb{K}+1}\mathbb{B}(i)\mathbb{E}(2)\mathcal{H}^{'}(0)\}\ominus\prod_{i=4}^{\mathbb{K}+1}\mathbb{B}(i)\mathbb{E}(3)\mathcal{H}^{(2)}(0)\}\ominus\prod_{i=5}^{\mathbb{K}+1}\mathbb{B}(i)\mathbb{E}(4)\mathcal{H}^{(3)}(0)\}\ominus\dots\}\\ &\ominus\mathbb{B}(\mathbb{K}+1)\mathbb{B}(\mathbb{K})\mathbb{E}(\mathbb{K}-1)\mathcal{H}^{(\mathbb{K}-2)}(0)\}\ominus\mathbb{B}(\mathbb{K}+1)\mathbb{E}(\mathbb{K})\mathcal{H}^{(\mathbb{K}-1)}(0)\ominus\mathbb{E}(\mathbb{K}+1)\mathcal{H}^{(\mathbb{K})}(0). \end{split}$$

4. Illustrative example

Example: Consider the following fifth-order FIVP

$$\mathcal{H}^{(5)}(x) = \beta, \mathcal{H}(0,\varsigma) = \mathcal{H}'(0,\varsigma), \mathcal{H}^{(1)}(0,\varsigma), \mathcal{H}^{(2)}(0,\varsigma), \mathcal{H}^{(3)}(0,\varsigma), \mathcal{H}^{(4)}(0,\varsigma) = (\varsigma - 1, 1 - \varsigma)$$

$$\beta = (\varsigma - 1, 1 - \varsigma), 0 \le \varsigma \le .1$$

Solution: Apply fuzzy Aboodh transform on both sides, to get $\widehat{A}[\mathcal{H}^{(5)}(x)] = \widehat{A}[\beta]$.

1. If $\mathcal{H}(x), \mathcal{H}'(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x)$ and $\mathcal{H}^{(4)}(x)$ are (i)-differentiable

$$\begin{split} \widehat{A}[\mathcal{H}^{(5)}(x)] &= \{\{\{s^{5}\widehat{A}[\mathcal{H}(x)] \ominus s^{3}\mathcal{H}(0)\} \ominus s^{2}\mathcal{H}'(0)\} \ominus s\mathcal{H}^{(2)}(0)\} \ominus \mathcal{H}^{(3)}(0)\} \ominus \frac{1}{s}\mathcal{H}^{(4)}(0) \\ \{\{\{s^{5}\widehat{A}[\mathcal{H}(x)] \ominus s^{3}\mathcal{H}(0)\} \ominus s^{2}\mathcal{H}'(0)\} \ominus s\mathcal{H}^{(2)}(0)\} \ominus \mathcal{H}^{(3)}(0)\} \ominus \frac{1}{s}\mathcal{H}^{(4)}(0) = A[\beta] \\ s^{5}\widehat{A}[\underline{\mathcal{H}}(x,\varsigma)] - s^{3}\underline{\mathcal{H}}(0,\varsigma) - s^{2}\underline{\mathcal{H}}'(0,\varsigma) - s\underline{\mathcal{H}}^{(2)}(0,\varsigma)\} - \underline{\mathcal{H}}^{(3)}(0,\varsigma) - \frac{1}{s}\underline{\mathcal{H}}^{(4)}(0,\varsigma) = A[\beta] \\ s^{5}\widehat{A}[\overline{\mathcal{H}}(x,\varsigma)] - s^{3}\overline{\mathcal{H}}(0,\varsigma) - s^{2}\overline{\mathcal{H}}'(0,\varsigma) - s\overline{\mathcal{H}}^{(2)}(0,\varsigma)\} - \overline{\mathcal{H}}^{(3)}(0,\varsigma) - \frac{1}{s}\overline{\mathcal{H}}^{(4)}(0,\varsigma) = A[\beta] \\ s^{5}\widehat{A}[\underline{\mathcal{H}}(x,\varsigma)] - s^{3}(\varsigma-1) - s^{2}(\varsigma-1) - s(\varsigma-1)\} - (\varsigma-1) - \frac{1}{s}(\varsigma-1) = \frac{(\varsigma-1)}{s^{2}} \\ s^{5}\widehat{A}[\overline{\mathcal{H}}(x,\varsigma)] - s^{3}(1-\varsigma) - s^{2}(1-\varsigma) - s(1-\varsigma)\} - (1-\varsigma) - \frac{1}{s}(1-\varsigma) = \frac{(1-\varsigma)}{s^{2}} \\ \underline{\mathcal{H}}(x,k) = (\varsigma-1)(1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+\frac{1}{24}x^{4}+\frac{1}{120}x^{5}). \\ \overline{\mathcal{H}}(x,k) = (1-\varsigma)(1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+\frac{1}{24}x^{4}+\frac{1}{120}x^{5}). \end{split}$$

2. If $\mathcal{H}(x)$ is (i)-differentiable but $\mathcal{H}'(x)$, $\mathcal{H}^{(2)}(x)$, $\mathcal{H}^{(3)}(x)$ and $\mathcal{H}^{(4)}(x)$ are (ii)-differentiable

$$\begin{split} A[\mathcal{H}^{(5)}(x)] &= -\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus \left\{ \mathcal{H}^{(3)}(0) \ominus \left\{ -s \mathcal{H}^{(2)}(0) \ominus \left\{ s^2 \mathcal{H}^{'}(0) \ominus \left\{ s^5 A[\mathcal{H}(x)] \ominus s^3 \mathcal{H}(0) \right\} \right\} \right\} \right\} \\ &- \frac{1}{s} \overline{\mathcal{H}^{(4)}}(0,\varsigma) - \underline{\mathcal{H}^{(3)}}(0,\varsigma) - s \overline{\mathcal{H}^{(2)}}(0,\varsigma) - s^2 \underline{\mathcal{H}}^{'}(0,\varsigma) + s^5 \widehat{A}[\underline{\mathcal{H}}(x,\varsigma)] - s^3 \underline{\mathcal{H}}(0,\varsigma) = A[\underline{\beta}] \\ &- \frac{1}{s} \underline{\mathcal{H}^{(4)}}(0,\varsigma) - \overline{\mathcal{H}^{(3)}}(0,\varsigma) - s \underline{\mathcal{H}^{(2)}}(0,\varsigma) - s^2 \overline{\mathcal{H}}^{'}(0,\varsigma) + s^5 \widehat{A}[\overline{\mathcal{H}}(x,\varsigma)] - s^3 \overline{\mathcal{H}}(0,\varsigma) = A[\underline{\beta}] \\ &\underline{\mathcal{H}}(x,k) = (\varsigma-1)(\frac{1}{120}x^5 + \frac{1}{6}x^3 + x + 1) + (1-\varsigma)(\frac{1}{2}x^2 + \frac{1}{24}x^4) \\ &\overline{\mathcal{H}}(x,k) = (1-\varsigma)(\frac{1}{120}x^5 + \frac{1}{6}x^3 + x + 1) + (\varsigma-1)(\frac{1}{2}x^2 + \frac{1}{24}x^4). \end{split}$$

3. If $\mathcal{H}'(x)$ is (i)-differentiable but $\mathcal{H}(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x)$ and $\mathcal{H}^{(4)}(x)$ are (ii)-differentiable

$$\begin{split} \widehat{A}[\mathcal{H}^{(5)}(x)] &= -\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus \left\{ \mathcal{H}^{(3)}(0) \ominus \left\{ -s \mathcal{H}^{(2)}(0) \ominus \left\{ \left\{ s^{3} \mathcal{H}(0) \ominus s^{5} \widehat{A}[\mathcal{H}(x)] \ominus \right\} \ominus -s^{2} \mathcal{H}^{'}(0) \right\} \right\} \right\} \\ &- \frac{1}{s} \overline{\mathcal{H}^{(4)}}(0,\varsigma) - \underline{\mathcal{H}^{(3)}}(0,\varsigma) - s \overline{\mathcal{H}^{(2)}}(0,\varsigma) - s^{3} \underline{\mathcal{H}}(0,\varsigma) + s^{5} \widehat{A}[\underline{\mathcal{H}}(x,\varsigma)] - s^{2} \overline{\mathcal{H}^{'}}(0,\varsigma) = A[\underline{\beta}] \\ &- \frac{1}{s} \underline{\mathcal{H}^{(4)}}(0,\varsigma) - \overline{\mathcal{H}^{(3)}}(0,\varsigma) - s \underline{\mathcal{H}^{(2)}}(0,\varsigma) - s^{3} \overline{\mathcal{H}}(0,\varsigma) + s^{5} \widehat{A}[\overline{\mathcal{H}}(x,\varsigma)] - s^{2} \underline{\mathcal{H}^{'}}(0,\varsigma) = A[\underline{\beta}] \\ &\underline{\mathcal{H}}(x,k) = (\varsigma-1)(\frac{1}{120}x^{5} + \frac{1}{6}x^{3} + x + 1) + (1-\varsigma)(\frac{1}{2}x^{2} + \frac{1}{24}x^{4}) \\ &\overline{\mathcal{H}}(x,k) = (1-\varsigma)(\frac{1}{120}x^{5} + \frac{1}{6}x^{3} + x + 1) + (\varsigma-1)(\frac{1}{2}x^{2} + \frac{1}{24}x^{4}). \end{split}$$

4. If $\mathcal{H}^{(2)}(x)$ is (i)-differentiable but $\mathcal{H}(x), \mathcal{H}'(x), \mathcal{H}^{(3)}(x), \mathcal{H}^{(4)}(x)$ are (ii)-differentiable.

$$\begin{split} \widehat{A}[\mathcal{H}^{(5)}(x)] &= -\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus \left\{ \mathcal{H}^{(3)}(0) \ominus \left\{ \left\{ -s^2 \mathcal{H}'(0) \ominus \left\{ s^3 \mathcal{H}(0) \ominus s^5 \widehat{A}[\mathcal{H}(x)] \right\} \right\} \ominus s \mathcal{H}^{(2)}(0) \right\} \right\} \\ &- \frac{1}{s} \overline{\mathcal{H}^{(4)}}(0,\varsigma) - \underline{\mathcal{H}^{(3)}}(0,\varsigma) - s^2 \overline{\mathcal{H}'}(0,\varsigma) - s^3 \underline{\mathcal{H}}(0,\varsigma) + s^5 \widehat{A}[\underline{\mathcal{H}}(x,\varsigma)] - s \underline{\mathcal{H}^2}(0,\varsigma) = A[\underline{\beta}] \\ &- \frac{1}{s} \underline{\mathcal{H}^{(4)}}(0,\varsigma) - \overline{\mathcal{H}^{(3)}}(0,\varsigma) - s^2 \underline{\mathcal{H}'}(0,\varsigma) - s^3 \overline{\mathcal{H}}(0,\varsigma) + s^5 \widehat{A}[\overline{\mathcal{H}}(x,\varsigma)] - s \overline{\mathcal{H}^2}(0,\varsigma) = A[\underline{\beta}] \\ &\underline{\mathcal{H}}(x,k) = (\varsigma-1)(\frac{1}{120}x^5 + \frac{1}{2}x^2 + 1 + \frac{1}{6}x^3) + (1-\varsigma)(x + \frac{1}{24}x^4) \\ &\overline{\mathcal{H}}(x,k) = (1-\varsigma)(\frac{1}{120}x^5 + \frac{1}{2}x^2 + 1 + \frac{1}{6}x^3) + (\varsigma-1)(x + \frac{1}{24}x^4). \end{split}$$

5. If $\mathcal{H}^{(3)}(x)$ is (i)-differentiable but $\mathcal{H}(x), \mathcal{H}'(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(4)}(x)$ are (ii)-differentiable.

$$\begin{split} \widehat{A}[\mathcal{H}^{(5)}(x)] &= -\frac{1}{s}\mathcal{H}^{(4)}(0) \ominus \left\{ \left\{ s\mathcal{H}^{(2)}(0) \ominus \left\{ -s^{2}\mathcal{H}'(0) \ominus \left\{ s^{3}\mathcal{H}(0) \ominus s^{5}\widehat{A}[\mathcal{H}(x)] \right\} \right\} \right\} \ominus -\mathcal{H}^{(3)}(0) \right\} \\ &- \frac{1}{s}\overline{\mathcal{H}^{(4)}}(0,\varsigma) - s\underline{\mathcal{H}^{(2)}}(0,\varsigma) - s^{2}\overline{\mathcal{H}'}(0,\varsigma) - s^{3}\underline{\mathcal{H}}(0,\varsigma) + s^{5}\widehat{A}[\underline{\mathcal{H}}(x,\varsigma)] - \overline{\mathcal{H}^{(3)}}(0,\varsigma) = A[\underline{\beta}] \\ &- \frac{1}{s}\underline{\mathcal{H}^{(4)}}(0,\varsigma) - s\overline{\mathcal{H}^{(2)}}(0,\varsigma) - s^{2}\underline{\mathcal{H}'}(0,\varsigma) - s^{3}\overline{\mathcal{H}}(0,\varsigma) + s^{5}\widehat{A}[\overline{\mathcal{H}}(x,\varsigma)] - \underline{\mathcal{H}^{(3)}}(0,\varsigma) = A[\underline{\beta}] \\ &\underline{\mathcal{H}}(x,k) = (\varsigma-1)(\frac{1}{120}x^{5} + 1 + \frac{1}{2}x^{2}) + (1-\varsigma)(\frac{1}{6}x^{3} + x + \frac{1}{24}x^{4}) \\ &\overline{\mathcal{H}}(x,k) = (1-\varsigma)(\frac{1}{120}x^{5} + 1 + \frac{1}{2}x^{2}) + (\varsigma-1)(\frac{1}{6}x^{3} + x + \frac{1}{24}x^{4}). \end{split}$$

Other case are solved by the same way.

5. Conclusion

This paper presents the general formula for the fuzzy Aboodh transform, which is used to solve fuzzy n^{th} -order differential equations and we explained the using of the concept of strongly generalized differential equations. We used a fifth-order numerical example to demonstrate efficiency and quality of the method.

References

- S. Abbasbandy and T. Allahviranloo, Numerical solution of fuzzy differential equation by Tailor method, J. Comput. Method Appl. Math. 2 (2002) 113–124.
- S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso and J. Nieto, Numerical methods for fuzzy differential inclusions, J. Comput. Method Appl. Math. 48(10–11) (2004) 1633–1641.
- [3] A. Alkiffai, S. Alshibley and A. Albukhuttar, Fuzzy aboodh transform for 2rd and 3rd -Order fuzzy differential equations, Adv. Differ. Equ. (1) (2021).
- [4] T. Allahviranloo and B. Ahmadi, Fuzzy laplace transforms, Soft Comput. (2010) 235–243.
- [5] T. Allahviranloo, Difference methods for fuzzy partial differential equations, Comput. Methods Appl. Math. 2(3) (2002) 233-242.
- S. Alshibley, A. Alkiffai and A. Albukhuttar, Solving a circuit system using fuzzy abooth transform, Turk. J. Comput. Math. Educ. 12(12) (2021) 3317–3323.
- [7] M. Barkhord, N. Kiani and N. Mikaeilvand, Laplace transform formula on fuzzy nth-order derivative and its application in fuzzy ordinary differential equations, Soft Comput. 18 (2014) 2461–2469.
- [8] B. Bede, I. Rudas and A. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inf. Sci. 177 (2006) 1648–1662.

- [9] B. Bede and S.G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst. 151 (2005) 581–599.
- [10] S.L. Chang and L. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybern.: Syst. SMC-2(1) (1972) 30–34.
- [11] D. Dubios and H. Prade, Towards fuzzy differential calculus, Fuzzy Sets Syst. 8(3) (1982) 225–233.
- M. Ghanbari, Numerical solution of fuzzy initial value problems under generalized differentiability by HPM, Int. J. Ind. Math. 1(1) (2009) 19–39.
- [13] R. Goetschel and W. Voxman, *Elementery calculus*, Fuzzy Sets Syst. 18 (1986) 31–43.
- [14] O. Kaleva, Fuzzy differential equations, Fuzzy Set Syst. 24 (1987) 301–317.
- [15] A. Kandel, Fuzzy dynamical systems and the nature of their solutions, Fuzzy Sets Syst. (1980) 93–122.
- [16] A. Kandel and W.J. Byatt, Fuzzy differential equations, Proc. Int. Conf. Cybernet. Soc. Tokyo. 1978, pp. 1213– 12160.
- [17] P. Kloeden, Remarks on Peano-like theorems for fuzzy differential equations, Fuzzy Sets Syst. 44 (1991) 161–164.
- [18] M. Ma, M. Friedman and A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets Syst. 105 (1999) 133–138.
- [19] H. Ouyang and Y. Wu, On fuzzy differential equations, Fuzzy Sets Syst. 32 (1989) 321–325.
- [20] M.L. Puri and D. Ralescu, Differential for fuzzy function, J. Math. Anal. Appl. 91(2) (1983) 552–558.
- [21] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst. 24 (1987) 319–330.
- [22] S. Salahshour, Nth-order fuzzy differential equations under generalized differentiability, J. Fuzzy Set Val. Anal. 14 (2011).
- [23] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set Syst. 161 (2010) 1564–1584.
- [24] H.C. Wu, The fuzzy Riemann integral and its numerical integration, Fuzzy Set Syst. 110 (2000) 1–25.
- [25] H.C. Wu, The improper fuzzy Riemann integral and its numerical integration, Inform Sci. 111(109) (1999).