Int. J. Nonlinear Anal. Appl.
Volume 12, Special Issue, Winter and Spring 2021, 1905-1911
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.5942

# Fuzzy Aboodh transform for higher-order derivatives 

Samer Thaaban Abaas Alshibley ${ }^{\text {a, }}$, Ameera Nema Alkiffai ${ }^{\text {b }}$, Athraa Neamah Albukhuttar ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Faculty of Education, University of Kufa, Najaf, Iraq<br>${ }^{b}$ Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq

(Communicated by Madjid Eshaghi Gordji)


#### Abstract

The strongly generalized differentiability notion is used to study the fuzzy Aboodh transform formula on the fuzzy $n^{\text {th }}$-order differential in this paper. It is also employed in an analytic technique for fuzzy fifth-order differential equations, and the related theorems and properties are demonstrated in detail. Solving a few instances demonstrates the process.


Keywords: Fuzzy fifth-order differential equation, Fuzzy $n^{\text {th }}$-order differential equation, Fuzzy number, Fuzzy Aboodh transform, Strongly generalized differentiable

## 1. Introduction

In recent years, the field of fuzzy differential equations (FDEs) has exploded in popularity. Chang and Zadeh [10] were the first for introducing the fuzzy derivative concepts, which was followed by Dubios and Prade [11], who applied this extension principle but in their method. Puri and Ralescu [20], Goetschel and Voxman [13] have addressed several ways. The concept of FDEs was used for the analysis of fuzzy dynamical issues by Kandel [15] with Kandel and Byatt [16]. Kaleva [14], Seikkala [21], Ouyang and Wu [19], Kloeden [17], and Menda [18], as well as other researchers, thoroughly investigated the FDE while the starting of value problem concept (Cauchy problem), see Bede et al. 2006 [8]. Abbasbandy and Allahviranloo [1], 2004 [2]), Allahviranloo [5], and Ghanbari [12] presented numerical methods for solving fuzzy differential equations. Bede and Gal 99 developed the term strongly generalized differentiable. Salahshour [22] investigated the existence and the uniqueness theorem of solutions to $n^{\text {th }}$-order fuzzy differential equations under $n^{\text {th }}$-order generalized differentiability. The H-derivative is defined for a smaller class of fuzzy valued functions than the

[^0]strongly generalized derivative, thus fuzzy differential equations can have solutions with a diminishing length of support. As a result, we apply the concept of differentiability in this study. In Allahviranloo and Barkhordari [4], Laplace transform method on fuzzy $n^{\text {th }}$-order derivative solved fuzzy $2^{\text {th }}$-order differential equations (FTDEs), equivalent fuzzy $n^{\text {th }}$-order, boundary value issues and partial differential equations as well.

## 2. Basic concepts

This section introduces several terminology keys and basic ideas.
Definition 2.1. [24] The mapping $\mathcal{H}: \mathcal{R} \rightarrow[0,1]$ is fuzzy number if satisfies
i. $\mathcal{H}$ is upper semi-continuous.
ii. $\mathcal{H}$ is fuzzy convex, i.e., $\mathcal{H}(\varsigma \mathfrak{t}+(1-\varsigma) \boldsymbol{t}) \geq \min \{\mathcal{H}(\mathfrak{t}), \mathcal{H}(t)\}$, forall $\mathfrak{t}, \ddagger \in \mathcal{R}$ and $\varsigma \in[0,1]$
iii. $\mathcal{H}$ is normal i.e., $\exists x_{0} \in \mathcal{R}$ for which $\mathcal{H}(x)=1$.
iv. Supp $\mathcal{H}=\{x \in \mathcal{R} ; \mathcal{H}(x)>0\}$, and $\operatorname{cl}(\operatorname{Supp}(\mathcal{H}))$ is compact.

Definition 2.2. Let $\eta$ and $\zeta$ are fuzzy numbers so the distance between fuzzy numbers is determined by the Hausdorff, $\Gamma: \mathcal{R}_{f} \times \mathcal{R}_{f} \rightarrow[0,+\infty]$, where $\mathcal{R}_{f}$ be all the fuzzy numbers set on $\mathcal{R}$ :
$\Gamma(\eta, \zeta)=\sup _{\varsigma \in[0,1]} \max \{|\underline{\eta}(\varsigma)-\underline{\zeta}(\varsigma)|,|\bar{\eta}(\varsigma)-\bar{\zeta}(\varsigma)|\}$, where $\eta=(\underline{\eta}(\varsigma)-\bar{\eta}(\varsigma)), \zeta=(\underline{\zeta}(\varsigma), \bar{\zeta}(\varsigma))$ and $\left(\mathcal{R}_{f}, \Gamma\right)$ is a complete metric space and the following characteristics are well known:

- $\Gamma(\eta \oplus \vartheta, \zeta \oplus \vartheta)=\Gamma(\eta, \zeta), \forall \eta, \zeta, \vartheta \in \mathcal{R}_{f}$.
- $\Gamma(\varsigma \odot \eta, \kappa \odot \zeta)=|\varsigma| \Gamma(\eta, \zeta), \forall \eta, \zeta \in \mathcal{R}_{f}, \varsigma \in \mathcal{R}$.
- $\Gamma(\eta \oplus \vartheta, \zeta \oplus \nu) \leq \Gamma(\eta, \zeta)+\Gamma(\vartheta, \nu), \forall \eta, \zeta, \vartheta, \nu \in \mathcal{R}_{f}$.

Definition 2.3. [8] Assume that $\psi, \phi \in \mathcal{R}_{f}$. Where there is $\gamma \in \mathcal{R}_{f}$ such that $\psi=\phi+\gamma$ then $\psi$ is known the $H$-differential of $\psi$ and $\phi$ and it is represented by $\psi \ominus \phi$.

Note that in this work, the sign $\Theta$ always meant the $\mathcal{H}$-difference as well as $\psi \Theta \phi \neq \psi+(-1) \phi$.
Definition 2.4. [22] Let $\mathcal{H}(x)$ be a fuzzy valued function on $[e, r]$. Suppose that $\mathcal{H}(x, \varsigma)$ and $\overline{\mathcal{H}}(x, \varsigma)$ are improper Riemman-integrable on $[e, r]$, then $\mathcal{H}(x)$ is an improper on $[e, r]$, and

$$
\overline{\left(\int_{e}^{r} \mathcal{H}(y, \varsigma) d y\right)}=\left(\int_{e}^{r} \underline{\mathcal{H}(y, \varsigma)} d y\right), \overline{\left(\int_{e}^{r} \mathcal{H}(y, \varsigma) d y\right)}=\left(\int_{e}^{r} \overline{\mathcal{H}(y, \varsigma)} d y\right)
$$

## 3. Generalization of fuzzy aboodh transform

Theorem 3.1. [25] Let $\mathcal{H}(x)$ be a fuzzy valued function on $[e, \infty)$ embodied by $\mathcal{H}(x, \varsigma) \overline{\mathcal{H}}(x, \varsigma)$. For any fixed $\varsigma \in[0,1]$, let $\mathcal{H}(x, \varsigma) \overline{\mathcal{H}}(x, \varsigma)$ are Riemann-integrals on $[e, r]$. For every $r \geq e$, if two positive functions exist $\underline{\theta}(\varsigma)$ and $\bar{\theta}(\varsigma)$ such that $\int_{0}^{r}|\underline{\mathcal{H}}(x, \varsigma)| d x \leq \underline{\theta}(\varsigma)$ and $\int_{0}^{r}|\overline{\mathcal{H}}(x, \varsigma)| d x \leq \bar{\theta}(\varsigma)$, for every $r \geq e$, then $\mathcal{H}(x)$ is said to be improper fuzzy Riemann-Liouville integrals function on $[e, \infty)$, i.e.
$\int_{0}^{\infty} \mathcal{H}(x) d x=\left[\int_{0}^{\infty} \underline{\mathcal{H}}(x, \varsigma), \int_{0}^{\infty} \overline{\mathcal{H}}(x, \varsigma) d x\right]$
Definition 3.2. [23] A function $\mathcal{H}:(e, r) \rightarrow \mathcal{R}_{F}$ and $x_{0} \in(e, r)$. We say that a mapping $\mathcal{H}$ is strongly generalized differentiable of the $n^{\text {th }}$ order at $x_{0}$. If $\mathcal{H}, \mathcal{H}^{\prime}, \mathcal{H}^{(2)}, \ldots, \mathcal{H}^{(s-1)}$ have been strongly generalized differentiable and there exists an element $\mathcal{H}^{(s)}\left(x_{0}\right) \in \mathcal{R}_{F}, \forall s=1,2, \ldots, n$.
i. $\forall \tau>0$ sufficiently small, there exist $\mathcal{H}^{(s-1)}\left(x_{0}+\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right), \mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}-\tau\right)$ where $\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}+\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right)}{\tau}=\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}-\tau\right)}{\tau}=\mathcal{H}^{(s)}\left(x_{0}\right)$ or
ii. $\forall \tau>0$ sufficiently small, there exist $\mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}+\tau\right), \mathcal{H}^{(s-1)}\left(x_{0}-\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right)$ where $\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}+\tau\right)}{-\tau}=\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}-\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right)}{-\tau}=\mathcal{H}^{(s)}\left(x_{0}\right)$ or
iii. $\forall \tau>0$ sufficiently small, there exist $\mathcal{H}^{(s-1)}\left(x_{0}+\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right), \mathcal{H}^{(s-1)}\left(x_{0}-\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right)$ where $\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}+\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right)}{\tau}=\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}-\tau\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}\right)}{-\tau}=\mathcal{H}^{(s)}\left(x_{0}\right)$ or
iv. $\forall \tau>0$ sufficiently small, there exist $\mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}+\tau\right), \mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}-\tau\right)$ where $\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}+\tau\right)}{-\tau}=\lim _{\tau \rightarrow 0} \frac{\mathcal{H}^{(s-1)}\left(x_{0}\right) \ominus \mathcal{H}^{(s-1)}\left(x_{0}-\tau\right)}{\tau}=\mathcal{H}^{(s)}\left(x_{0}\right)$ or

Theorem 3.3. T7] Let $\mathcal{H}(x), \mathcal{H}^{\prime}(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x), \ldots, \mathcal{H}^{(n-1)}(x)$ are differentiable fuzzy-valued functions. Moreover, we denote $\varsigma$-cut representation of fuzzy-valued function $\mathcal{H}(x)$ such that:
$\mathcal{H}(x)=[\underline{\mathcal{H}}(x, \varsigma), \overline{\mathcal{H}}(x, \varsigma)]$ for each $\varsigma \in[0,1]$. Then

$$
\mathcal{H}^{(n)}(x)= \begin{cases}{\left[\underline{\mathcal{H}}^{(n)}(x, \varsigma), \overline{\mathcal{H}}^{(n)}(x, \varsigma)\right]} & \text { if number of }(i i)-\text { differentiable is even }, \\ {\left[\overline{\mathcal{H}}^{(n)}(x, \varsigma), \underline{\mathcal{H}}^{(n)}(x, \varsigma)\right]} & \text { if number of }(i i)-\text { differentiable is odd. }\end{cases}
$$

Theorem 3.4. [6] Let $\mathcal{H}(x)$ is the primitive of $\mathcal{H}^{\prime}(x)$ on $[0, \infty)$ and $\mathcal{H}(x)$ be an integrable fuzzyvalued function. Then:
a. $\mathcal{H}(x)$ is (i)-differentiable and $\widehat{A}\left[\mathcal{H}^{\prime}(x)\right]=s \widehat{A}[\mathcal{H}(x)] \ominus \frac{1}{s} \mathcal{H}(0)$.
b. $\mathcal{H}(x)$ is (ii)-differentiable and $\widehat{A}\left[\mathcal{H}^{\prime}(x)\right]=\left(-\frac{1}{s} \mathcal{H}(0)\right) \ominus(-s \widehat{A}[\mathcal{H}(x))$.

Theorem 3.5. [3] Let $\mathcal{H}(x) e^{-s x}, \mathcal{H}^{\prime}(x) e^{-s x}$ and $\mathcal{H}^{\prime}(2) e^{-s x}$ are continuous and integrable Riemann functions on $[0$, infty $)$ so $\mathcal{H}(x)$ is continuous fuzzy valued function. Thus:
a. If $\mathcal{H}(x)$ and $\mathcal{H}^{\prime}(x)$ are (i)-differentiable, then $\widehat{A}\left[\mathcal{H}^{(2)}(x)\right]=\left\{s^{2} \widehat{A}[\mathcal{H}(x)] \ominus \mathcal{H}(0)\right\} \ominus \frac{1}{s} \mathcal{H}^{\prime}(0)$.
b. If $\mathcal{H}(x)$ is (i)-differentiable and $\mathcal{H}^{\prime}(x)$ is (ii)-differentiable, then

$$
\widehat{A}\left[\mathcal{H}^{(2)}(x)\right]=\left(-\frac{1}{s} \mathcal{H}^{\prime}(0)\right) \ominus\left\{-s^{2} \widehat{A}[\mathcal{H}(x)] \ominus(-\mathcal{H}(0))\right\}
$$

c. If $\mathcal{H}(x)$ is (ii)-differentiable and $\mathcal{H}^{\prime}(x)$ is (i)-differentiable, then

$$
\widehat{A}\left[\mathcal{H}^{(2)}(x)\right]=\left\{-\mathcal{H}(0) \ominus\left(-s^{2} \widehat{A}[\mathcal{H}(x)]\right\} \ominus \frac{1}{s} \mathcal{H}^{\prime}(0) .\right.
$$

d. If $\mathcal{H}(x)$ is (ii)-differentiable and $\mathcal{H}^{\prime}(x)$ is (ii)-differentiable, then

$$
\widehat{A}\left[\mathcal{H}^{(2)}(x)\right]=\left(-\frac{1}{s} \mathcal{H}^{\prime}(0)\right) \ominus\left\{(\mathcal{H}(0)) \ominus s^{2} \widehat{A}[\mathcal{H}(x)]\right\}
$$

Theorem 3.6. Let $\mathcal{H}(x) e^{-s x}, \mathcal{H}^{\prime}(x) e^{-s x}, \mathcal{H}^{(2)}(x) e^{-s x}, \ldots, \mathcal{H}^{(n-1)}(x) e^{-s x}$ are exist, continuous and integrable Riemann functions on $[0, \infty)$ and $\mathcal{H}(x)$ is continuous fuzzy valued function. If $\mathcal{H}^{(s)}(x)$ is strongly generalized differentiable of the $n^{\text {th }}$ order such that, there exists an element $\mathcal{H}^{(s)}\left(x_{0}\right) \in$ $\mathcal{R}_{F}, \forall s=0,1, \ldots, n$. Then fuzzy Aboodh transform of $\mathcal{H}^{(n)}(x)$ is given by,
$\widehat{A}\left[\mathcal{H}^{(n)}(x)\right]=\left\{\left\{\left\{\ldots\left\{\prod_{\mathbb{K}=1}^{n} \mathbb{B}(\mathbb{K}) \widehat{A}[\mathcal{H}(x)] \ominus \prod_{\mathbb{K}=2}^{n} \mathbb{B}(\mathbb{K}) \mathbb{E}(1) \mathcal{H}(0)\right\} \ominus \prod_{\mathbb{K}=3}^{n} \mathbb{B}(\mathbb{K}) \mathbb{E}(2) \mathcal{H}^{\prime}(0)\right\}\right.\right.$
$\left.\left.\left.\left.\left.\ominus \prod_{\mathbb{K}=4}^{n} \mathbb{B}(\mathbb{K}) \mathbb{E}(3) \mathcal{H}^{(2)}(0)\right\} \ominus \prod_{\mathbb{K}=5}^{n} \mathbb{B}(\mathbb{K}) \mathbb{E}(4) \mathcal{H}^{(3)}(0)\right\} \ominus \ldots\right\} \ominus \mathbb{B}(n) \mathbb{E}(n-1) \mathcal{H}^{(n-2)}(0)\right\} \ominus \mathbb{E}(n) \mathcal{H}^{(n-1)}(0)\right\}$, where

$$
\mathbb{B}(\mathbb{K})=\left\{\begin{array}{cl}
s & \text { if } \mathcal{H}^{(k)} \text { bei-differentiable, } \\
\ominus(-s) & \text { if } \mathcal{H}^{(k)} \text { beii-differentiable. }
\end{array} \quad \mathbb{E}(\mathbb{K})=\left\{\begin{array}{cl}
\frac{1}{s} & \text { if } \mathcal{H}^{(k)} \text { bei-differentiable }, \\
\ominus\left(\frac{1}{-s}\right) & \text { if } \mathcal{H}^{(k)} \text { beii-differentiable } .
\end{array}\right.\right.
$$

Proof . Let $n=1, \widehat{A}\left[\mathcal{H}^{\prime}(x)\right]=\mathbb{B}(1) \widehat{A}[\mathcal{H}(x)] \ominus \mathbb{E}(1) \mathcal{H}(0)$, where

$$
\mathbb{B}(\mathbb{K})=\left\{\begin{array}{cl}
s & \text { if } \mathcal{H}^{(k)} \text { bei-differentiable, } \\
\ominus(-s) & \text { if } \mathcal{H}^{(k)} \text { beii-differentiable. }
\end{array} \quad \mathbb{E}(\mathbb{K})=\left\{\begin{array}{cl}
\frac{1}{s} & \text { if } \mathcal{H}^{(k)} \text { bei-differentiable }, \\
\ominus\left(\frac{1}{-s}\right) & \text { if } \mathcal{H}^{(k)} \text { beii-differentiable } .
\end{array}\right.\right.
$$

1. if $\mathcal{H}$ is (i)-differentiable then $\widehat{A}\left[\mathcal{H}^{\prime}(x)\right]=s \widehat{A}[\mathcal{H}(x)] \ominus \frac{1}{s} \mathcal{H}(0)$.
2. if $\mathcal{H}$ is (i)-differentiable then $\widehat{A}\left[\mathcal{H}^{\prime}(x)\right]=-\frac{1}{s} \mathcal{H}(0) \ominus-s \widehat{A}[\mathcal{H}(x)]$.

Suppose that $n=\mathbb{K}$ is true,

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}^{(\mathbb{K})}(x)\right]=\left\{\left\{\left\{\ldots\left\{\prod_{i=1}^{\mathbb{K}} \mathbb{B}(i) \widehat{A}[\mathcal{H}(x)] \ominus \prod_{i=2}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(1) \mathcal{H}(0)\right\} \ominus \prod_{i=3}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(2) \mathcal{H}^{\prime}(0)\right\}\right.\right. \\
& \left.\left.\left.\left.\ominus \prod_{i=4}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(3) \mathcal{H}^{(2)}(0)\right\} \ominus \prod_{i=5}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(4) \mathcal{H}^{(3)}(0)\right\} \ominus \ldots\right\} \ominus \mathbb{B}(\mathbb{K}) \mathbb{E}(\mathbb{K}-1) \mathcal{H}^{(\mathbb{K}-2)}(0)\right\} \ominus \mathbb{E}(\mathbb{K}) \mathcal{H}^{(\mathbb{K}-1)}(0) .
\end{aligned}
$$

Let $n=\mathbb{K}+1$,

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}^{(\mathbb{K})}(x)\right]=\mathbb{B}(\mathbb{K}+1) \widehat{A}\left[\mathcal{H}^{(\mathbb{K})}(x)\right] \ominus \mathbb{E}(\mathbb{K}+1) \mathcal{H}^{(\mathbb{K})}(0) \\
& =\mathbb{B}(\mathbb{K}+1)\left\{\left\{\left\{\ldots\left\{\prod_{i=1}^{\mathbb{K}} \mathbb{B}(i) \widehat{A}[\mathcal{H}(x)] \ominus \prod_{i=2}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(1) \mathcal{H}(0)\right\} \ominus \prod_{i=3}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(2) \mathcal{H}^{\prime}(0)\right\}\right.\right. \\
& \left.\left.\left.\left.\ominus \prod_{i=4}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(3) \mathcal{H}^{(2)}(0)\right\} \ominus \prod_{i=5}^{\mathbb{K}} \mathbb{B}(i) \mathbb{E}(4) \mathcal{H}^{(3)}(0)\right\} \ominus \ldots\right\} \ominus \mathbb{B}(\mathbb{K}) \mathbb{E}(\mathbb{K}-1) \mathcal{H}^{(\mathbb{K}-2)}(0)\right\} \\
& \left.\ominus \mathbb{E}(\mathbb{K}) \mathcal{H}^{(\mathbb{K}-1)}(0)\right\} \ominus \mathbb{E}(\mathbb{K}+1) \mathcal{H}^{(\mathbb{K})}(0)=\left\{\left\{\left\{\ldots\left\{\prod_{i=1}^{\mathbb{K}+1} \mathbb{B}(i) \widehat{A}[\mathcal{H}(x)] \ominus \prod_{i=2}^{\mathbb{K}+1} \mathbb{B}(i) \mathbb{E}(1) \mathcal{H}(0)\right\}\right.\right.\right. \\
& \left.\left.\left.\left.\ominus \prod_{i=3}^{\mathbb{K}+1} \mathbb{B}(i) \mathbb{E}(2) \mathcal{H}^{\prime}(0)\right\} \ominus \prod_{i=4}^{\mathbb{K}+1} \mathbb{B}(i) \mathbb{E}(3) \mathcal{H}^{(2)}(0)\right\} \ominus \prod_{i=5}^{\mathbb{K}+1} \mathbb{B}(i) \mathbb{E}(4) \mathcal{H}^{(3)}(0)\right\} \ominus \ldots\right\} \\
& \left.\ominus \mathbb{B}(\mathbb{K}+1) \mathbb{B}(\mathbb{K}) \mathbb{E}(\mathbb{K}-1) \mathcal{H}^{(\mathbb{K}-2)}(0)\right\} \ominus \mathbb{B}(\mathbb{K}+1) \mathbb{E}(\mathbb{K}) \mathcal{H}^{(\mathbb{K}-1)}(0) \ominus \mathbb{E}(\mathbb{K}+1) \mathcal{H}^{(\mathbb{K})}(0) .
\end{aligned}
$$

## 4. Illustrative example

Example: Consider the following fifth-order FIVP

$$
\begin{aligned}
& \mathcal{H}^{(5)}(x)=\beta, \mathcal{H}(0, \varsigma)=\mathcal{H}^{\prime}(0, \varsigma), \mathcal{H}^{(1)}(0, \varsigma), \mathcal{H}^{(2)}(0, \varsigma), \mathcal{H}^{(3)}(0, \varsigma), \mathcal{H}^{(4)}(0, \varsigma)=(\varsigma-1,1-\varsigma) \\
& \beta=(\varsigma-1,1-\varsigma), 0 \leq \varsigma \leq .1
\end{aligned}
$$

Solution: Apply fuzzy Aboodh transform on both sides, to get $\widehat{A}\left[\mathcal{H}^{(5)}(x)\right]=\widehat{A}[\beta]$.

1. If $\mathcal{H}(x), \mathcal{H}^{\prime}(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x)$ and $\mathcal{H}^{(4)}(x)$ are (i)-differentiable

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}{ }^{(5)}(x)\right]=\left\{\left\{\left\{\left\{s^{5} \widehat{A}[\mathcal{H}(x)] \ominus s^{3} \mathcal{H}(0)\right\} \ominus s^{2} \mathcal{H}^{\prime}(0)\right\} \ominus s \mathcal{H}^{(2)}(0)\right\} \ominus \mathcal{H}^{(3)}(0)\right\} \ominus \underset{s}{\frac{1}{-}} \mathcal{H}^{(4)}(0 \\
& \left\{\left\{\left\{\left\{s^{5} \widehat{A}[\mathcal{H}(x)] \ominus s^{3} \mathcal{H}(0)\right\} \ominus s^{2} \mathcal{H}^{\prime}(0)\right\} \ominus s \mathcal{H}^{(2)}(0)\right\} \ominus \mathcal{H}^{(3)}(0)\right\} \ominus \frac{1}{s} \mathcal{H}^{(4)}(0)=A[\beta] \\
& \left.s^{5} \widehat{A}[\underline{\mathcal{H}}(x, \varsigma)]-s^{3} \underline{\mathcal{H}}(0, \varsigma)-s^{2} \underline{\mathcal{H}}^{\prime}(0, \varsigma)-s \underline{\mathcal{H}}^{(2)}(0, \varsigma)\right\}-\underline{\mathcal{H}}^{(3)}(0, \varsigma)-\frac{1}{s} \underline{\mathcal{H}}^{(4)}(0, \varsigma)=A[\underline{\beta}] \\
& \left.s^{5} \widehat{A}[\overline{\mathcal{H}}(x, \varsigma)]-s^{3} \overline{\mathcal{H}}(0, \varsigma)-s^{2} \overline{\mathcal{H}}^{\prime}(0, \varsigma)-s \overline{\mathcal{H}}^{(2)}(0, \varsigma)\right\}-\overline{\mathcal{H}}^{(3)}(0, \varsigma)-\frac{1}{s} \overline{\mathcal{H}}^{(4)}(0, \varsigma)=A[\bar{\beta}] \\
& \left.s^{5} \widehat{A}[\underline{\mathcal{H}}(x, \varsigma)]-s^{3}(\varsigma-1)-s^{2}(\varsigma-1)-s(\varsigma-1)\right\}-(\varsigma-1)-\frac{1}{s}(\varsigma-1)=\frac{(\varsigma-1)}{s^{2}} \\
& \left.s^{5} \widehat{A}[\overline{\mathcal{H}}(x, \varsigma)]-s^{3}(1-\varsigma)-s^{2}(1-\varsigma)-s(1-\varsigma)\right\}-(1-\varsigma)-\frac{1}{s}(1-\varsigma)=\frac{(1-\varsigma)}{s^{2}} \\
& \underline{\mathcal{H}}(x, k)=(\varsigma-1)\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) . \\
& \overline{\mathcal{H}}(x, k)=(1-\varsigma)\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) .
\end{aligned}
$$

2. If $\mathcal{H}(x)$ is (i)-differentiable but $\mathcal{H}^{\prime}(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x)$ and $\mathcal{H}^{(4)}(x)$ are (ii)-differentiable

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}^{(5)}(x)\right]=-\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus\left\{\mathcal{H}^{(3)}(0) \ominus\left\{-s \mathcal{H}^{(2)}(0) \ominus\left\{s^{2} \mathcal{H} \mathcal{H}^{\prime}(0) \ominus\left\{s^{5} \widehat{A}[\mathcal{H}(x)] \ominus s^{3} \mathcal{H}(0)\right\}\right\}\right\}\right\} \\
& -\frac{1}{s} \overline{\mathcal{H}^{(4)}}(0, \varsigma)-\underline{\mathcal{H}^{(3)}}(0, \varsigma)-s \overline{\mathcal{H}^{(2)}}(0, \varsigma)-s^{2} \underline{\mathcal{H}}^{\prime}(0, \varsigma)+s^{5} \widehat{A}[\underline{\mathcal{H}}(x, \varsigma)]-s^{3} \underline{\mathcal{H}}(0, \varsigma)=A[\underline{\beta}] \\
& -\frac{1}{s} \underline{\mathcal{H}^{(4)}}(0, \varsigma)-\overline{\mathcal{H}^{(3)}}(0, \varsigma)-s \underline{\mathcal{H}^{(2)}}(0, \varsigma)-s^{2} \overline{\mathcal{H}}^{\prime}(0, \varsigma)+s^{5} \widehat{A}[\overline{\mathcal{H}}(x, \varsigma)]-s^{3} \overline{\mathcal{H}}(0, \varsigma)=A[\bar{\beta}] \\
& \underline{\mathcal{H}}(x, k)=(\varsigma-1)\left(\frac{1}{120} x^{5}+\frac{1}{6} x^{3}+x+1\right)+(1-\varsigma)\left(\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) \\
& \overline{\mathcal{H}}(x, k)=(1-\varsigma)\left(\frac{1}{120} x^{5}+\frac{1}{6} x^{3}+x+1\right)+(\varsigma-1)\left(\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) .
\end{aligned}
$$

3. If $\mathcal{H}^{\prime}(x)$ is (i)-differentiable but $\mathcal{H}(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(3)}(x)$ and $\mathcal{H}^{(4)}(x)$ are (ii)-differentiable

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}^{(5)}(x)\right]=-\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus\left\{\mathcal{H}^{(3)}(0) \ominus\left\{-s \mathcal{H}^{(2)}(0) \ominus\left\{\left\{s^{3} \mathcal{H}(0) \ominus s^{5} \widehat{A}[\mathcal{H}(x)] \ominus\right\} \ominus-s^{2} \mathcal{H}^{\prime}(0)\right\}\right\}\right\} \\
& -\frac{1}{s} \overline{\mathcal{H}^{(4)}}(0, \varsigma)-\underline{\mathcal{H}^{(3)}}(0, \varsigma)-s \overline{\mathcal{H}^{(2)}}(0, \varsigma)-s^{3} \underline{\mathcal{H}}(0, \varsigma)+s^{5} \widehat{A}[\underline{\mathcal{H}}(x, \varsigma)]-s^{2} \overline{\mathcal{H}^{\prime}}(0, \varsigma)=A[\underline{\beta}] \\
& -\frac{1}{s} \mathcal{H}^{(4)}(0, \varsigma)-\overline{\mathcal{H}^{(3)}}(0, \varsigma)-s \underline{\mathcal{H}^{(2)}}(0, \varsigma)-s^{3} \overline{\mathcal{H}}(0, \varsigma)+s^{5} \widehat{A}[\overline{\mathcal{H}}(x, \varsigma)]-s^{2} \mathcal{H}^{\prime}(0, \varsigma)=A[\bar{\beta}] \\
& \underline{\mathcal{H}}(x, k)=(\varsigma-1)\left(\frac{1}{120} x^{5}+\frac{1}{6} x^{3}+x+1\right)+(1-\varsigma)\left(\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) \\
& \overline{\mathcal{H}}(x, k)=(1-\varsigma)\left(\frac{1}{120} x^{5}+\frac{1}{6} x^{3}+x+1\right)+(\varsigma-1)\left(\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) .
\end{aligned}
$$

4. If $\mathcal{H}^{(2)}(x)$ is (i)-differentiable but $\mathcal{H}(x), \mathcal{H}^{\prime}(x), \mathcal{H}^{(3)}(x), \mathcal{H}^{(4)}(x)$ are (ii)-differentiable.

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}^{(5)}(x)\right]=-\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus\left\{\mathcal{H}^{(3)}(0) \ominus\left\{\left\{-s^{2} \mathcal{H}^{\prime}(0) \ominus\left\{s^{3} \mathcal{H}(0) \ominus s^{5} \widehat{A}[\mathcal{H}(x)]\right\}\right\} \ominus s \mathcal{H}^{(2)}(0)\right\}\right\} \\
& -\frac{1}{s} \overline{\mathcal{H}^{(4)}}(0, \varsigma)-\underline{\mathcal{H}^{(3)}}(0, \varsigma)-s^{2} \overline{\mathcal{H}^{\prime}}(0, \varsigma)-s^{3} \underline{\mathcal{H}}(0, \varsigma)+s^{5} \widehat{A}[\underline{\mathcal{H}}(x, \varsigma)]-s \mathcal{H}^{2}(0, \varsigma)=A[\underline{\beta}] \\
& -\frac{1}{s} \underline{\mathcal{H}^{(4)}}(0, \varsigma)-\overline{\mathcal{H}^{(3)}}(0, \varsigma)-s^{2} \mathcal{H}^{\prime}(0, \varsigma)-s^{3} \overline{\mathcal{H}}(0, \varsigma)+s^{5} \widehat{A}[\overline{\mathcal{H}}(x, \varsigma)]-s \overline{\mathcal{H}^{2}}(0, \varsigma)=A[\bar{\beta}] \\
& \underline{\mathcal{H}}(x, k)=(\varsigma-1)\left(\frac{1}{120} x^{5}+\frac{1}{2} x^{2}+1+\frac{1}{6} x^{3}\right)+(1-\varsigma)\left(x+\frac{1}{24} x^{4}\right) \\
& \overline{\mathcal{H}}(x, k)=(1-\varsigma)\left(\frac{1}{120} x^{5}+\frac{1}{2} x^{2}+1+\frac{1}{6} x^{3}\right)+(\varsigma-1)\left(x+\frac{1}{24} x^{4}\right) .
\end{aligned}
$$

5. If $\mathcal{H}^{(3)}(x)$ is (i)-differentiable but $\mathcal{H}(x), \mathcal{H}^{\prime}(x), \mathcal{H}^{(2)}(x), \mathcal{H}^{(4)}(x)$ are (ii)-differentiable.

$$
\begin{aligned}
& \widehat{A}\left[\mathcal{H}^{(5)}(x)\right]=-\frac{1}{s} \mathcal{H}^{(4)}(0) \ominus\left\{\left\{s \mathcal{H}^{(2)}(0) \ominus\left\{-s^{2} \mathcal{H}^{\prime}(0) \ominus\left\{s^{3} \mathcal{H}(0) \ominus s^{5} \widehat{A}[\mathcal{H}(x)]\right\}\right\}\right\} \ominus-\mathcal{H}^{(3)}(0)\right\} \\
& -\frac{1}{s} \overline{\mathcal{H}^{(4)}}(0, \varsigma)-s \underline{\mathcal{H}^{(2)}}(0, \varsigma)-s^{2} \overline{\mathcal{H}^{\prime}}(0, \varsigma)-s^{3} \underline{\mathcal{H}}(0, \varsigma)+s^{5} \widehat{A}[\underline{\mathcal{H}}(x, \varsigma)]-\overline{\mathcal{H}^{(3)}}(0, \varsigma)=A[\underline{\beta}] \\
& -\frac{1}{s} \underline{\mathcal{H}^{(4)}}(0, \varsigma)-s \overline{\mathcal{H}^{(2)}}(0, \varsigma)-s^{2} \underline{\mathcal{H}^{\prime}}(0, \varsigma)-s^{3} \overline{\mathcal{H}}(0, \varsigma)+s^{5} \widehat{A}[\overline{\mathcal{H}}(x, \varsigma)]-\underline{\mathcal{H}^{(3)}}(0, \varsigma)=A[\bar{\beta}] \\
& \underline{\mathcal{H}}(x, k)=(\varsigma-1)\left(\frac{1}{120} x^{5}+1+\frac{1}{2} x^{2}\right)+(1-\varsigma)\left(\frac{1}{6} x^{3}+x+\frac{1}{24} x^{4}\right) \\
& \overline{\mathcal{H}}(x, k)=(1-\varsigma)\left(\frac{1}{120} x^{5}+1+\frac{1}{2} x^{2}\right)+(\varsigma-1)\left(\frac{1}{6} x^{3}+x+\frac{1}{24} x^{4}\right) .
\end{aligned}
$$

Other case are solved by the same way.

## 5. Conclusion

This paper presents the general formula for the fuzzy Aboodh transform, which is used to solve fuzzy $n^{\text {th }}$-order differential equations and we explained the using of the concept of strongly generalized differential equations. We used a fifth-order numerical example to demonstrate efficiency and quality of the method.

## References

[1] S. Abbasbandy and T. Allahviranloo, Numerical solution of fuzzy differential equation by Tailor method, J. Comput. Method Appl. Math. 2 (2002) 113-124.
[2] S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso and J. Nieto, Numerical methods for fuzzy differential inclusions, J. Comput. Method Appl. Math. 48(10-11) (2004) 1633-1641.
[3] A. Alkiffai, S. Alshibley and A. Albukhuttar, Fuzzy aboodh transform for 2rd and 3rd -Order fuzzy differential equations, Adv. Differ. Equ. (1) (2021).
[4] T. Allahviranloo and B. Ahmadi, Fuzzy laplace transforms, Soft Comput. (2010) 235-243.
[5] T. Allahviranloo, Difference methods for fuzzy partial differential equations, Comput. Methods Appl. Math. 2(3) (2002) 233-242.
[6] S. Alshibley, A. Alkiffai and A. Albukhuttar, Solving a circuit system using fuzzy aboodh transform, Turk. J. Comput. Math. Educ. 12(12) (2021) 3317-3323.
[7] M. Barkhord, N. Kiani and N. Mikaeilvand, Laplace transform formula on fuzzy nth-order derivative and its application in fuzzy ordinary differential equations, Soft Comput. 18 (2014) 2461-2469.
[8] B. Bede, I. Rudas and A. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inf. Sci. 177 (2006) 1648-1662.
[9] B. Bede and S.G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst. 151 (2005) 581-599.
[10] S.L. Chang and L. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybern.: Syst. SMC-2(1) (1972) 30-34.
[11] D. Dubios and H. Prade, Towards fuzzy differential calculus, Fuzzy Sets Syst. 8(3) (1982) 225-233.
[12] M. Ghanbari, Numerical solution of fuzzy initial value problems under generalized differentiability by HPM, Int. J. Ind. Math. 1(1) (2009) 19-39.
[13] R. Goetschel and W. Voxman, Elementery calculus, Fuzzy Sets Syst. 18 (1986) 31-43.
[14] O. Kaleva, Fuzzy differential equations, Fuzzy Set Syst. 24 (1987) 301-317.
[15] A. Kandel, Fuzzy dynamical systems and the nature of their solutions, Fuzzy Sets Syst. (1980) 93-122.
[16] A. Kandel and W.J. Byatt, Fuzzy differential equations, Proc. Int. Conf. Cybernet. Soc. Tokyo. 1978, pp. 121312160.
[17] P. Kloeden, Remarks on Peano-like theorems for fuzzy differential equations, Fuzzy Sets Syst. 44 (1991) 161-164.
[18] M. Ma, M. Friedman and A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets Syst. 105 (1999) 133-138.
[19] H. Ouyang and Y. Wu, On fuzzy differential equations, Fuzzy Sets Syst. 32 (1989) 321-325.
[20] M.L. Puri and D. Ralescu, Differential for fuzzy function, J. Math. Anal. Appl. 91(2) (1983) 552-558.
[21] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst. 24 (1987) 319-330.
[22] S. Salahshour, Nth-order fuzzy differential equations under generalized differentiability, J. Fuzzy Set Val. Anal. 14 (2011).
[23] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set Syst. 161 (2010) 1564-1584.
[24] H.C. Wu, The fuzzy Riemann integral and its numerical integration, Fuzzy Set Syst. 110 (2000) 1-25.
[25] H.C. Wu, The improper fuzzy Riemann integral and its numerical integration, Inform Sci. 111(109) (1999).


[^0]:    Email addresses: samir.alshebly@uokufa.edu.iq (Samer Thaaban Abaas Alshibley), ameeran.alkiffai@uokufa.edu.iq (Ameera Nema Alkiffai), athraan.kadhim@uokufa.edu.iq (Athraa Neamah Albukhuttar)

