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Abstract

There have been much interest in analysis of stochastic differential equation with long memory, rep-
resented by fractional diffusion process, this property have been proved itself in financial mathematic
as intrinsic character of financial time series, so finding an appropriate method for estimate and
analyze stochastic differential equations with long memory is a very important contemporary topic,
in this paper we suggest a method for a system of stochastic differential equations with long memory,
also we use the Bayesian methodology to incorporate the advanced knowledge , in addition we ap-
ply renormalized integral known in literature as Wick-Ito-Skorohod to solve problem of arbitrage in
stochastic models (which yield inefficient mathematical stochastic models for financial market), some
of conventional methods like quasi maximum likelihood , Separable Integral-Matching for Ordinary
Differential Equations, and multivariate Brownian method are used to be compared with the sug-
gested method. The suggested method has been proved to be very accurate. The estimated model
used to calculate the portfolio of assets quantities allocation.

Keywords: Fractional Brownian motion, stochastic differential equations, maximum likelihood,
prior distribution, Metropolis Hasting method, Hurst index, Langevin method

1. Introduction

Differential equations are equations which relates variables with their rates of change, they have
a wide spread in most of modern sciences, because they describe the physical behavior in simple
local way, fractional calculus is important tool to solve variational problems. An apparent relation
between the calculus of variations and fractional calculus, calculus of variations interpret the dynamic
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of phenomenon, fractional calculus accompanied with fat tails distribution, widely used in financial
risk management.

Financial phenomena as certified by almost all previous studies that it suffers from autocorrelation
with long range dependence or long memory [6], also it proved to suffer from heavy tail distribution
which make normal distribution is inappropriate for them, in addition financial phenomena in many
times be skewed to the left with negative extreme values. The existence of long range dependence
make ARIMA models are not a good choice for data because the estimate of autocorrelation is not
consistence. In addition building the portfolio for risk management strategies requires a strong model
to represent the phenomena under study.

Modeling dynamics of asset prices plays an important role in a lot of microeconomics problems. For
example, by understanding the behavior of stock prices, one can take best decision for a portfolio (one
of investment strategy and hedging of capital). Stochastic models are based primarily on continuous
or discrete time random walks. Continuous-time random walk process is a suitable class of process
for modeling the behavior of high frequency data.

1.1. Long range dependence

A fractional Brownian motion FBM is an irregular diffusion process with covariance as shown below
[13]:

1
E(WIWH) = 5 {#P" + s/ = |t = s} (11)
Where 0 < H < 1 is Hurst index
and the variance

1
BE(WIWH) = B (W) = 5 {#P" + 1P =t = o7} = " (1:2)

The covariance between two different Wiener process is:

1
B (WEWSE) = 5 {P™ + (s — e — 52 | (13)

The difference of FBM is called Fractional Gaussian Noise FGN and have variance covariance as:

E (dW{{;ldwj’ng) =3 [(k:1 )2 (g + k) 4 (e — 1)2Hw] (1.4)

(2

So, the likelihood of FGN becomes [7] [1§] :

1 1
plz, H) = ——Fx—— exp {——2 Qﬁll} (1.5)
(2m) 2 |y ]2 2

Where, 2 can be calculated by [15]:

0= E (awlaw)y,) = G

T [k 4 D = (4 ko)™ 4 (k= 1) (1.6)

Explicit form for the estimate of Hurst index is impossible to be obtained, as a function of the data.
However, the maximum of its object function could be found by numerical methods.
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1.2. Maximum Likelihood Estimator MLE

The maximum likelihood method depends on the Gaussian likelihood function assumption. This
mean it considers only the mean and variance of estimators. The maximum likelihood can be ex-
pressed by the joint normal distribution, which is equivalent to the multivariate normal with mean
vector p and variance-covariance matrix € .

Multivariate diffusion process consists of p variables takes the form :

dILt M1 ($1,t, 75) dWl{?

: = dt + E% (LUi’t, Tjts t)
dr,, by (2p0,1) awh
degI dxy p (214, 1)

= 27% (xiﬂfa xj,h t) _ dt
dWZﬁp dp fp (Tp 1)

and the joint distribution is:

p(z;0,H) =
1 !
1 exp —§vec (dgl — iz, t), ... dz, — /‘p@p’ t))
np 1 -
(2m) 2 |2 (2 2, t) © Qu|? (2 (2 240 t) © ) g (dzy = pu(zy, 1), - dz, = pp(z,, 1))

Where vec denotes vector with all observations of p variables with sample size nstacked vertically,
® is matrix Kronecker product, 2yis variance covariance block matrix of FGN, X (gm, Ty t) is the
diffusion matrix, and @ is a vector contains all the parameters of drift and diffusion functions.

After we determine the drift and diffusion function form we make prior distribution of each parameter,
according to the domain of parameter and the information we have in advance, we could suggest the
priors of each parameter as follow :

1.3.  Prior of Hurst exponent

Since the domain of Hurst exponents are in the interval (0,1) [6], we can use a Matrix variate beta
distribution that has the form [17]

[, (a+B)
[y () Ty (B)

Where H is p X p matrix, p number of system parameters, o, § > (p — 1) /2 and

p(H;a, ) = det(H)*~#+0 det (1, — H)* 7D/ (1.7)

Ty () =@ VAT (a— (i - 1) /2)

i=1

1.4. Prior of Real values parameters

The domain of Real values parameters are in the interval (—oo,00) so we can use a multivariate
normal distribution that has the form

o 3 (1=0) 01 (u=0) (1.8)
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1.5.  Prior of positive values parameters
The domain of positive value parameters are in the interval (0,00) so we can use an Inverse matrix
gamma distribution that has the form [12]

v Y _lyx-
%U X[ (RS9 0 (1.9)
Py (v
Where X and U are p X p matrices.
1.6. The posterior distribution

The posterior is the normalized product of the likelihood with prior distributions of parameters, let
A= (0, H) then

f(@|A) =
ERDIENI ®QH’
X exp —%vec dx, — (24, t)_,l..., dz, — pp(z,,t))
Ly, 1) @ Q) vee (dzy — (2,1, ..., dzy, — pp(z,, 1))
p(Az) = B (1.10)
: ‘ zt> gtv ®QH’
« exp —évec dx, — py(z4, t),l..., dz, — ,up(gp,t)) po(H, 1)
Ly Ly,,t) @ Q) wvee (dzy — (2,1, ..., dz, — pp(z,, 1)) T
pAlz) =——
(27T)2 ‘Z('Izb ]t’ )®QH‘
X exp _%U (dxl /’Ll(zht)_’l'“?dgp - ,up(lpat)) p(ﬂ)p(,u)
(Z< LitsLjts )®QH> vec (dil — pa(zy,1), ..., d Up(x t)) a
p(Alr) =—— (1.11)

(277-)7? ‘Z(wzw jt? ®QH‘

—1vec (dz; — ,ul(xl,t)_,l..., dz, — pp(z,,t))
(E (I”, Lt ) ® QH) vec (dl1 — pa(Zy, 1), .., dip - ,up(lpat))

X exp
[y (@ + 6) det(H)a’(pH)/Q det (I, — H)ﬂ—(l’ﬂ)/? —1 . 6_%@_@)/”71(&_@
Iy (a) Ty (B) (2m)2 |n|?

taking the log of the posterior distribution we have
1
log p(Alz) o — |5 (2, z;,1)® QH’ — guec (dzy — pa(zy,t), .., dz, — pp(z,, b)) *

(E (:Bm T4 ) ® QH) * vec (dg1 — pa(zy, 1), dzy, — up(gp,t))
+a—(p+1)/2(logdet(H))+ 5 — (p+1) /2logdet (I, — H)

1 1 /
) log |n| — 5 (H — Q) nt (g — Q) (1.12)

Where we leave out all the constant that does not change with changing the parameters. The log
posterior have no explicit form and cannot be solved analytically so we use adaptive Metropolis
Hasting algorithm.
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1.7. Adaptive Metropolis Hasting algorithm

Adaptive Metropolis Hasting is the idea of update the proposal distribution by using the knowledge
we have so far acquired about the target distribution. Suppose, therefore, that at time t — 1 we
have sampled the states Xy, X1, ..., X;_1, where X is the initial state. Then a candidate point Y
is sampled from the (asymptotically symmetric) proposal distribution ¢, (. |Xo, ..., X;_1), which now
may rely on the whole history (Xo, X1, ..., X;—1). The candidate point Yis accepted with probability

[9] ) — (1 W(Y))
A N o )

Where 7 (x) is (unscaled) density

in which case we set X; =Y, and otherwise X; = X;_;

The proposal distribution ¢ (. |Xo, ..., X;—1) used in the AM algorithm is a Gaussian distribution
with mean at the current point X; ; and covariance C; = C; (X, ..., X;_1) .

The decisive thing regarding the adaptation is how the covariance of the proposal distribution depends
on the history of the chain. In the AM algorithm this is solved by setting C; = sgcov (Xo, ..., X;—1) +
sqely after an initial period , where sy is a parameter that depends only on dimension d and € > 0
is a constant that we may choose very small , and

C, — Co t S tO
P sacov (Xo, o, Xio1) +sacly t >t

the empirical covariance matrix determined by points z, ...,z € R?

k
1
cov (zg, ..., Tp) = z (Z rixh — (k+1) xkx;)
i=0

k+14

k
N 1
where T;, = g ;
i=0
the covariance C, satisfies the recursion formula

t—1

Ct+1 = +

Co+ S (EXia X)) — (t+ 1) XX+ X, X[ +2L,)

This allows one to calculate C; without too much computational cost since the mean X, also satisfies
an obvious recursion formula, the parameter ¢ is just to avoid that C}; will become singular, a basic

choice for the scaling parameter we have elected the value s; = (2.4) / d.

adaptive Metropolis-within Gibbs algorithm using the proposal distribution N (O,e%) with [ the
logarithm of the standard deviation of the increment. This parameter is chosen so that the acceptance
rate is approximately 0.44 which is proposed to be optimal in the Metropolis-within Gibbs sampler.
It is proposed to add/subtract an adoption amount d (n) = min (0.1,n7"/2) to/from ¢ after every
50th iteration and adapt the proposal variance if the acceptance rate is smaller than 0.3 or larger
than 0.6.

2. Quasi-maximum Likelihood Estimation

Consider a multidimensional diffusion process
dXt = G(Xt,92> dt+b(Xt,91>th, X[) = X9 (21)
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where W, represents an r-dimensional classical Wiener process independent of the initial variable xq.
In addition, 6; € ©; C R?, 6, € Oy C R%, a: R¥ x O, — R and b : RY x ©; — R*® R". The
naming of A and 6, is theoretically natural because of the optimal convergence rates of the estimators
for these parameters as we will see in the following. Given sampled data X, = (X3,),_, with
t; = iA,, A, — 0 as n — oo, quasi-maximum likelihood estimator (QMLE) makes use of the
following approximation of the true log-likelihood for multidimensional diffusions [I1].

0 (X, 0) = —% {log det (551 (601)) + Ainz;g (0) [(Azi — Anar_y (0,))%] } (2.2)

Where 0 = (01,02), AXZ = Xti — Xti—l s Zz (91> = Z(@l,Xti), a; (92) = (I(Xti,eg), E = b®2,
A®% = AAT and A7! the inverse of A, A[B] = tr (AB). Then the QMLE of ¢ is an estimator that

satisfies

0 = arg max(,, (X,,0)
0

exactly or approximately

3. Wick Product

Wick product is a renormalization operator. The Wick renormalization method reduces the problem
to exponential integrability problem. Wick product is not a pointwise operation [5]

([Lrawen) o (faawen) = [rawe). ([aan) i,

:/R/Rf(s)g(t)¢(s,t)dsdt f.9 € S(R) (3.1)

Let S (R) be the Schwartz space of rapidly decreasing smooth functions on R, and if f € S (R),
denote

11 = / / £ () F () 6 (s,1) dsdt < oo (3.2)

S(R) is Schwartz space
s,t)=og(s,t)=HQ2H—-1)]s—t'"? | s;teR

/ / ¢ (u,v) dudv = 3 <t2H—|—82H |'s t]2H> = Ry (t,s)

and
exp (. 1) = e ({u )~ 5 11 33)

Fractional Wick It6 Skorohod integral
/ Y (t) daw ) = / Y () OWD (t) dt (3.4)
R R

Where W#) (t) is fractional white noise
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the integral on an interval can be defined as

T
/ Y (6 dw = / Y () Loz
0 R

Suppose

ZF w) Iy, 1,0 (1) where F; (w) € (S)y

/R Z Ei ( < z+1) o Wt(iH)>

fo t)dOWH is normally distributed with zero mean and variance ||f|? s - Therefore

exp ( fo (t) dOWH ) is log-normally distributed with mean exp (1 £l )

Example 3.1. Using stochastic Wick calculus and obtain the following integral

(Wt <>W§H>)

where

Xoa (u) :{ 1 if we (0,t)

0 otherwise

If f,g € L7 ([0,T]) then fOT fdOWH, fOT gdOWH are well defined Gaussian random variables. More-
over:

LB () faowi) =0
2. E ( [ fdowH [T gd<>WtH> =(f,9),

3. F ((fOT deWtH>2) - Hij) ( Wick-1Ito isometry)

T
| raowtt~w (0.1112)
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Consider the fractional stochastic differential equation
dX (1) = pX O)dt + o X ) dW | X (t)=2>0

where x, i and o are constants, We rewrite this as the following equation in (S)7; :

P _ (1) + 0X () oW (1)
d‘)if” = (n+ oW (1)) OX ()

Using Wick calculus, the solution of this equation becomes

/o d)fls(S) ds = /o (1 + oW#H) (s)) OX (s)ds

/0 d)fls(s) dSOXl(s) = /0 (,u + oW (3)) ds

t
log GX (t) = logx+ut+a/ W (5) ds
0

¢
X (t) =exp (logx + pt + O'/ WU (s) ds>
0
X (t) =xexp$ (,ut + O'Wt(H)>
Setting f = ox[o4 hence (w, f) = odW} and using Wick exponential [1]

X (t)=xzexp$ (ut + OWt(H)>

= zexp O (ut) exp ¢ (UWt(H)>
1 t t
= x exp (ut) exp (aBgH) — 50’2/ / o (s,t) dsdt)
0 Jo
1
= zexp (ut) exp (O'BISH) — §U2t2H)

Note that
E (X (t) = ze

A semimartingale (X;,t > 0) concerning a Brownian motion can often be expressed as

t t
Xt = XO + / fdes + / gst
0 0

If f € L% (R.), then

e ([ paw) —exo ([ gawe L)
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Proof . It follows that

exp & ( /0 ) fdes(H)> - ( / fdw )On (3.6)

Z I (%) (3.7)

o0 H
- (anH%—%nf@ (3.5)
= exp ( /0 LW ; ||f||i1) (3.9)
U
4. The Multivariate FBM
Let X (t) of dimension p be defined as
= /KH (u,t) ApdW (u) (4.1)

AL is a p x p matrix of reals. H is a diagonal matrix of parameters H; € (0,1) , Vj = 1,...,p ,
and Ky (u,t) is a matrix of kernels that reads (¢ — u)iPI/2 — (—u)ffl/? In this notation, (a), =
max (a,0) and ¢ is understood as the exponential of a matrix exp (H log(t)). As seen in the
stochastic integral []].

X (t) represents a multivariate non-stationary Gaussian process that has stationary increments. In
addition, the elements of X (t) are correlated, and the structure of the correlation is brought from
the existence of the mixing matrix A,. And the correlation structure is sufficient to fully define the
process since it is Gaussian and zero mean (as a linear transform of a zero mean Gaussian process).

2 sin(7rH~)
Ay = B

B; —B(H + 0.5, H; + 0.5)
where B (x,y) is the beta function , and
ojokpsksin (m (H; + Hy))
(cos (mH;) + cos (mHy)) Bjy,

200kpjk
(sin (7w H;) + sin (7 Hy)) By,

if H;+Hp#1
Ajk:

if H;+ Hy=1

A p—variate stochastic process X = {X () = (X1 (t),..., X, (t)),t € R} is said operator self-similar
(0s-s) if there exists a p x p matrix H (called the exponent of X) such that for any A > 0 [4]

fidi

X (M) =NTX (1)

where "2 means finite-dimensional distributions equality, and the p x p matrix A\ can represented
by the power series A = effloer =5~ H (log A)' /il joint self-similarity put many constraints on
the structure of correlation of the process
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Thus the covariance function of the it" elements is the usual function
g 12 2H,; 2H; 2H;
B (ai (s) @i (1)) = 2= {7 + |5 = |t = s } (4.2

the general form of the (cross-)covariance function of vector self-similar process X with finite variance
and exponent H = diag (Hy, Hs, ..., H,) , 0 < H; < 1. under some regularity condition, for any
i, =1,2,...,p i #jwith H; + H; # 1, there exists ¢;;, cj; € R such that for any s,t € R

HﬁHf} , (4.3)

005

cov (z () 2, (1)) = 57 {esy () s

o? = var (z; (1))

H;+H;

e (0]

—cji(t—s)|t—s

and

N . Cij, t>0
i (t) N { Cji, t<0

A similar expression (involving additional logarithmic terms) for the covariance cov (z; (s) x; (t)) is

obtained in the case H; + H; = 1
The double sided stochastic integral representation [14]

X (t) = /R { <(t e <—a:)f—0~5) A+ ((t B —0~5) A,} W (dz), (4.4)

where H — 0.5 = diag (H, — 0.5, ..., H, — 0.5),z4 = max (z,0), x_ = max(—=z,0) , A, A_, are
real p x p matrices and W (dx) = (W; (dz), ..., W, (dx)) is a Gaussian white noise with zero mean,
independent components and covariance E (W; (dx) W; (dz)) = d;;dz ,if 0 < H; <1, H;+ H; # 1,
1,7 = 1,2, ..., p then the cross-covariance of X.

Cij = 26ij9ij/0i0;

where the matrix C' = (&;) is given by

C =cos(Hm) AL A% + A_A* cos (H)
—sin (Hm) Ay A* cos (Hm) — cos (Hm) AL A” sin (H)
Here and below, A* denotes the transposed matrix,
sin (Hm) = diag (sin (Hy7) , ...,sin (H,m)) , cos (Hm) = diag (cos (Hy7) , ..., cos (Hpm))

If i # j and H; + H; = 1, then there exists d;;, f;; € R such that for any s,t € R? , we have

0;0;

E(Xi(s) X; (1) = == x Adyy (Is| + [t} = [t = s]) + fij (tlog t] + slog |s| — (¢ — s) log [t — s|)}
(4.5)

The matrix R = (Ry;),;_, , is positive definite, where

1, 1=7
Rij: Cij+cji Z?éj Hl‘i‘Hj#l
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The cross-covariances are given by [3].

rij (s,1) = E (v (s) z; (1)) = % {wij (=) + 2wi; (t) —wi; (t— )} (4.6)

where the function w;; (h) is defined by

(h) (pij — migsign (h)) [R5 i Hy + H; # 1
Wi 4 =
’ pij |h| — mijhlog |h| if H;+H;=1

Parameters n;; are connected with the time-reversibility of the process. They are characterized by
the antisymmetry property. In special 7;; = —7;;, if the process is time-reversible, they are all equal
to zero, if the process permits a causal (or an anticausal) representation, they are function of p;;, H;
and H;. In general otherwise, they are unconstrained

p-multivariate process fulfilling the three following conditions

Gaussianity,

Self-similarity with parameter H € (0,1)" ,

Stationarity of the increments.

The mfBm has stationary increments. It is easy to derive the covariance structure of the increments
process. Let Az (t) =z (t + 1) — z (t) be stationary process (with increments of size 1) that refered
to as the multivariate fractional Gaussian noise (mfGn). Then

vij (h) = E(Ax; (t) Az, (t+ h))

00

The asymptotic behavior as |h| — +o0

HitH;=2 rij (sign (h))

Yij (h) ~ 005 |h

Where
, pi; —nizsign (h)) (H; + H;) (H;+ H; — 1) if Hi+H; #1
/ﬂij(szgn(h)): ( ]» J ())( J)( J ) ‘ ]_
nijsign (h) if Hi+H;=1
corr (X; (1), X; (=1)) — corr (X; (—1), X; (1))
Mg = 9 — oH+H;

n;; quantifies the dissymmetry between X; and X;.

The multivariate fractional Brownian motion is characterized by the Hurst indices of its components,
by its covariance matrix at time 1, and also by an antisymmetric matrix 7;; which controls the time
asymmetry of the multivariate process [§] .

The elements of the increments process could be long-range dependent individually, and could also
present what is called long-range interdependence, this mean that their cross-correlation function
may be not summable.

Modeling dynamics of asset prices plays important role in a lot of microeconomics problems. For
example, by understanding the behavior of stock prices, one can take good decision for a portfolio.
Continuous-time random walk process is a suitable class of process for modeling the behavior of high
frequency data.
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5. Markowitz portfolios

Markowitz (1952) proposed the portfolio selection approach. Markowitz path-breaking insight was
that the risk/return profiles of single assets should not be thought separately but in their portfolio
context. In this view, portfolios are considered to be efficient if they are either risk minimal for a
given return level or have the maximum return for a given level of risk. Even though both thoughts of
efficient portfolios are equivalent, the kind of portfolio optimization does differ for these two status.
The former is a quadratic optimization with linear constraints, whereas in the latter the objective
function is linear and the constraints are quadratic. In the following it is assumed that there are
N assets and that these are infinitely divisible. The returns of these assets are jointly normally
distributed. The portfolio return 7 is defined by the scalar product of the (N * 1) weight and return

vectors wand p. The portfolio risk is measured by the portfolio variance o2, = w'Sw, where refers to

=
the positive semi-definite variance—covariance matrix of the assets’ returns. For the status of minimal
variance portfolios for a given portfolio return, 7, the optimization problem can be stated as [16] :

P = argmino?, = w'Sw (5.1)

Il
— 3

am

w'l

where 1 is the (N 1) vector of ones. In relation to this function, the weight vector for a minimal
variance portfolio and a given target return is given by [19]

w* = Twy + wi (5.2)

with
(5t + bS 1)

*_
wo—

wi = (b2 '+ aX7'1)

The portfolio standard deviation is given by

1
a:\/a(cﬁ—%f—l—a)

with a = /'S, b= p/'S711, c = 1271 and d = ac — b*. Equation (5.2)) results from a Lagrange
optimization with the constraints for a given target return and weights summing to one. It can
Volatility is a measure of risk.

A hyperbola for efficient mean—variance portfolios. The hyperbola is enclosed by the asymptotes
r=>blct \/d_/ca. The locus of the GMV portfolio is the apex of the hyperbola with weights given
by wiyy = 271 /1S

6. Application

The Adaptive Metropolis Hasting algorithm method discussed earlier is used to estimate the posterior
of a system of three fractional stochastic differential equations, with data represents daily three
banking sector stock prices from 1 January 2017 to 11 March 2019 with sample size 509 for each
variable, as shown in Figure [} The first step is to find the form of drift and diffusion functions using
the Langevin method [20], by calculating the conditional moments and determining the drift and
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diffusion forms. The search takes a long time because of the high dimensionality of model parameters.
The first and second conditional moments show a damped square variable amplitude sine function
and a damped second order polynomial respectively as depicted in Figures The method is
programmed in R program. The suggested estimation method will be compared with the existing
conventional methods like quasi-maximum likelihood in Yuima R package [I1], and stochastic integral
matching method in Simode R packages [21] . Although these methods are for standard Brownian
motion we can use them as a benchmark for our suggested method.

The obtained result and estimation are used to build a portfolio for the three stock which is a very
important quantity that required by investors to overcome their stock circulation risk and achieve a
profit in return, and this will encourage the neutral risk investors to participate in speculation action
and in return it will refresh the macroeconomic of country.
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Figure 1: Plot of the stock prices time series and time between observations (fourth panel).
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Figure 2: Plot of the returns of three series with time difference (fourth panel).
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Figure 3: Drift and diffusion by Langevin method for series 1, conditional moments (black), error
bar (bars), drift fitting (red)
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Figure 4: Drift and diffusion by Langevin method for series 2, conditional moments (black) ,error

bar (bars), and drift fitting (red)

To decrease the search time, we use the nonlinear least squares in R program to determine the
initial values for numerical search optimization method. We see from Figures that the drifts and
diffusions are not linear and they follow second order equation with a damping factor.
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bar (bars), and drift fitting (red).
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Figure 6: Cross-diffusion by Langevin method for series 1,2 and series 1,3, cross conditional moments

(colored points), and diffusion fitting (colored surface).
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Figure 7: Cross-diffusion by Langevin method for series 2,3, cross conditional moments (colored
points), and diffusion fitting (colored surface)

6.1. The models of FSDE

From the fitted conditional moments in Figures B}{7} we find the best functional forms of drift and
diffusion for return rate r, = log (x;/x:—1) [22], as follow:
Drift function:

= (91‘07}-2 SiIl (Qilri + 0,2) + Qig exXp (0147“2)) dt + (0411() (T‘i + a111)2 + a1126a113m> thHZ Z = 1, 2, 3
(Teg1—1)= (91'07',521‘ sin (05174 + 02) + O3 exp (91‘47",52')) dt + (04110 (74 + 04111)2 + Q112 eXP(Oé1137’ti)) dw /i
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Lip+1T4,¢— Ly . Li Li
log —’HlQ L) =6y ( log | —2 sin ( 0;1 log L) 40 ) + O exp | Oialog [ 22 ) ) At
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2 113
x x .
+ (CYHQ (log ($117t1> + a111> + Q19 (xliﬂfl) ) thHz

H
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2 0;
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FE (xi,t 1) = e ’ ’ ) s

Tit—1

where

We see that there is a spurious drift has been added to the original drift, this drift comes from
fractional Brownian motion, so we use Wick-Ito-Skorohod calculus as discussed in section 3, To
eliminate its effect from model drift.
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Where lim At = dt
At—0

Diffusion function: )
var (Iz’,tﬂ) :E(xzz,tJrl) - (E(Ii,tJrl))

2 2
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’ Tit—1
4
o fi,t €2<9i07’i2 sin(6;17+60;2)+0:3 exp(0i4ri))At_<(E(Ei,tvzj,ﬁt)@QH)ii)+2<(E(zivt’zjvt’t)@)QH)ii)
l’i,ﬁ—1
_ x’fi,t €2<9i0ri2 Sin(eilri-i-@ig)-i-ei:; exp(0i4r’i))At+<(E(Ei,tvzj,t7t)®QH>ii)
-1

) 2
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7. Numerical calculation

We use the discrete form of the model to fit the data, and it could be used for forecasting or for
portfolio building (investment strategy). Additionally, we can solve the model analytically and then
estimate the parameter. However, this is not an easy task as it is frequently in non-closed form.
The next step is to estimate the parameters of the model that have maximum log likelihood. We
analyzed three stock price time series. The data is of size 509, taken from 1 January 2017 to 11 March
2019. Since the data is positive prices, we take logarithm of difference, r (t) = log (p (z¢41) /p (z4))
to transform it to return rate, which is very important quantity in financial investment, and to make
series approximately normal distribution. The time difference is At = 1, which reflects the difference
in working days in the year. We fit the return with appropriate models for drift and diffusion to
extract a primary models for fractional stochastic differential equation by plotting the scatter of the
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first difference of return with a lagged return and estimating the parameter of the model using the
nonlinear least square. This will give us a glimpse about model function as shown below [22] :
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Figure 8: Return scatter plot with fitted drift and diffusion models by nonlinear least squares for
series 1, return (black), and fitted (red)
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Figure 9: Return scatter plot with fitted drift and diffusion models by nonlinear least squares for
series 2, return (black), and fitted (red)
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Figure 10: Return scatter plot with fitted drift and diffusion models by nonlinear least squares for
series 3, return (black), and fitted (red)

We use Quasi-maximum Likelihood Estimation explained in section 2, to compare the conventional
methods with the suggested method of maximum likelihood discussed in section 1, using yuima R
package, and the estimated coefficients found to be as follow :

Table 1: Parameter estimation of quasi multivariate maximum likelihood

Equations Bo; 01; 0; 0s; O4;
Drift1 8.4506 193.2457 -17.3479 0.0020 -39.5415
Drift2 14.1524 189.1097 -46.5658 -0.0007 43.6340
Drift3 -7.1288 36.8217 28.7963 0.0001 -47.9658
Qo; a5 Qg Qg;
Dif1l 20.7868 0.0065 0.0180 -7.8977
Dif2 0.0622 0.0001 0.0025 0.0004
Dif3 244776 39.5733 0.0654 -0.0042
Qg Q145 Q45 345 Olysj Q545
Dif12 0.0008 -0.0189 -0.0341 0.0017 -0.6674  0.1678
Dif13 0.0501 9.1557 0.0742 0.0150 0.0684  0.0158
Dif23 -4.5272 -1.4994 1.2878 -0.1230 0.0760 -9.6380
H,y Ho Hj Hio His Hos
Hurst index 0.5 0.5 0.5 0.5 0.5 0.5
Seriesl Series2 Series3 mean

MSE 0.0006541535 0.0005719739 0.003065913  0.00143068
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Figure 11: Plot of fitted models quasi multivariate maximum likelihood for three series, data (black
points), fitted drift (red line), and fitted diffusion (green line).
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Figure 12: Plot of fitted models by quasi multivariate maximum likelihood for three returns, data
(black points), fitted drift (red line), and fitted diffusion (green line).

From Figures [§] we perceive that the models represent the data in an accurate manner, and
we can use them in the model. Secondly, we have estimated the parameters with Hurst indices
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simultaneously to obtain the final fitted model as follow:
x2 2
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Figure 13: Plot of fitted models by multivariate maximum likelihood for three returns, data (black
points), fitted drift (red line), and fitted diffusion (green line).

Table [2[ shows the parameter estimation of drift and diffusion function with Hurst indices, and mean
square error (MSE).
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Table 2: Metropolis Hasting mean and incredible interval for parameters

Equations Bo; 01; 0y; 0s; 04;
mean 8.48465 193.245 -17.27933  -0.00172 -39.53321
Drift1 0.025 8.48446 193.2445 -17.27943  -0.00187 -39.53338
0.975 8.48483 193.2455 -17.27924  -0.00152 -39.53304
mean 14.15058 189.1274 -46.63618  -0.00080 43.63983
Drift2 0.025 14.15035 189.1272 -46.63655  -0.00116 43.63980
0.975 14.15077 189.1276 -46.63588  -0.00046 43.63987
mean -7.29845 36.60179 26.96638 0.00097 -47.96723
Drift3 0.025 -7.29853 36.60167 26.96630 0.00088 -47.96726
0.975 -7.29837 36.60193 26.96646 0.00105 -47.96719
Qo; a5 Qg Qsg;
mean 20.77102 -0.00140 0.00031 -7.89594
Dift1 0.025 20.77049 -0.00158 0.00026 -7.89608
0.975 20.77156 -0.00121 0.00038 -7.89580
mean 0.00274 0.00819 0.00858 0
Dift2 0.025 0.00264 0.00806 0.00852 0
0.975 0.00284 0.00831 0.00864 0.00001

mean  24.48003 39.57672 0.00041 0.00013
Dift3 0.025  24.47989 39.57663 0.00024 -0.00005
0975  24.48019 39.5768 0.00059 0.00029

Qoij 145 Qi Q35 Olyij (04971

mean -0.00152 0.0005 -0.03128 -0.00355  -0.27221 0.2051
Dift12 0.025 -0.00183 0.00038 -0.03151 -0.0038  -0.27257 0.20495
0.975 -0.00113 0.00063 -0.03097 -0.00332  -0.27174 0.20527
mean 0.01213 9.30245 0.00027 0.0138 0.06658 -0.00005
Dift13 0.025 0.01205 9.30203 0.00016 0.01369  0.06633 -0.00014
0.975 0.01221 9.30284 0.00037 0.01393  0.06681 0.00005
Mean -4.52828 -1.49926 -0.00092 -0.17436  0.01116 -10.2919
Dift21 0.025 -4.52862 -1.49968 -0.00122 -0.17443  0.01106 -10.292
0.975 -4.52795 -1.49889 -0.00062 -0.17429  0.01124 -10.2918

H, H, Hj Hip Hys Hos
mean 0.55189 0.71851 0.75067 0.53004  0.57861 0.50963
Hurst index 0.025 0.55163 0.7183 0.75047 0.53001  0.57823 0.50948
0.975 0.5521 0.71875 0.75085 0.53008  0.57901 0.50979

Seriesl Series2 Series3 mean
MSE 0.0006972986 0.0002888781 0.00180868 0.000931618

MSE (mean square error)
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Figure 14: Plot of fitted models by multivariate maximum likelihood for three series, data (black
points), fitted drift (red line), and fitted diffusion (green line).

Figure 15: Plot of 1000 generated samples from estimated model by Bayesian multivariate maximum
likelihood for three returns, data (black points)..

7.1.  Adaptive Metropolis Hasting algorithm

In this section we will use the Adaptive Metropolis Hasting algorithm as explained in section 1.7 ,
and result was as following
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Figure 16: Plot of histogram and stationary series of Metropolis Hasting sampling method for model
parameters

7.2. The Multivariate FBM

In this section we will apply the multivariate analysis of fractional Brownian motion as posed in
section 4 , the result is viewed in Table

Table 3: The estimate of Hurst indices by multivariate analysis

H; o Pij Nij
0.4955512 0.0020709730 0.2744565 2.754457
0.4738972 0.0002274438 0.1553428 2.297712
0.5672862 0.0002039744 0.1531577 3.687176

7.3. Portfolio Building

After we find the model drift vector and diffusion matrix we will use them to select the best strategy
to invest in these three stocks , we use the method explained in Section 5 , and the portfolio is
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Figure 17: Portfolio strategy for sell and buy normalized quantities for each stock series for all period

We want to point out that the sum of all weight in the figure [17] add up to 1, this means that this
strategy for all period, and not for one time of variables in the portfolio, for example if we want to
invest in one week period we must distribute the capital on stocks and period but not on stocks only.

8. Conclusion

Bayesian Fractional maximum likelihood suggested method for stochastic differential equations are
a very efficient tool to represent the financial phenomena because it reflect the dynamical behavior
with long memory that is an intrinsic characteristic of financial phenomenon. The suggested method
superimposed other models in capturing the minute details in the data. The drift and diffusion are
very important quantities in many application especially in the financial portfolio building. The
model specified shows many features in the data to be used to predict the future values and so build
the portfolio. That is much benefited for the investor to overcome the risk of stock prices and to
achieve a profit. The parameter of the model is estimated numerically by Metropolis Hasting method
to maximize the logarithm of the posterior distribution using R program. The results in Tabld2] that
Hurst indices are higher than 0.5, and this means there is a strong long memory behavior in the three
series. We see that from Figure , that the diffusion is very high (green line) in series 1, because of
Hurst index is 0.55189, and diffusion in series 3 is low because of high Hurst index. This reflects the
long memory existence that will decrease the uncertainty and the prediction will be more accurate.
The cross Hurst indices reflect the cross long memory correlation between different variables. As
we conclude from Table [2| there is a cross long memory between three series. By comparison with
traditional methods like quasi multivariate maximum likelihood, we see from table 1] and table[2] that
the mean of MSE for maximum multivariate likelihood is smaller.

9. Appendix

To construct the matrix of diffusion with the autocorrelation matrix of Fractional Brownian motion,
the vectorization of variables must include Kronecker product of variance-covariance matrix as in
SURE (Seemingly Unrelated Regression Equations) model as below [2] :
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Sl 6 em o S S| 6 e o [N S| o 1 o |
| ¢2 ¢ pa ] ¢ ¢ P32 ¢ ¢ 1 i

Where ¢ is the autocorrelatlon and p is the correlation between two different variables
S2051? ST, Q)5 B2 (M. Q) 5

Se0=| DML )5y DS D) (T o)sl

] S (Ty3. Q) Bal? $40% (D, Q) B8 IO

But the different variables cannot have the same autocorrelation, so the matrix will become:
21/291121/2 E1/2 (Ty. Qo) 21/2 Z1/2 (5. 913)21/2 T

o0 = 21/2 (T1a. Q1) 21/2 21/2 92221/2 21/2 (Tas. a3) 21/2

] 21/2 (F13 le) 21/2 21/2 (Fgg 932) 21/2 21/2 93321/2

Now, we substitute ¢ with long memory dependence characterized by Hurst index. We get the
following

S 21 2117 (Cize Q) B350 5107 (Dise Q) Tih

S0 = | 51T Q) 507 5507 Q0 507 (Das. Q) 3

L 21/2 (F13 QHlS) Eééz 21/2 <F23 Qst) Zééﬁ 21/2 Q15[321/2

Where I represents a diagonal matrix of correlation coefficients and (I'. 2) represents an element by
element multiplication of two matrices
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