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Abstract

There have been much interest in analysis of stochastic differential equation with long memory, rep-
resented by fractional diffusion process, this property have been proved itself in financial mathematic
as intrinsic character of financial time series, so finding an appropriate method for estimate and
analyze stochastic differential equations with long memory is a very important contemporary topic,
in this paper we suggest a method for a system of stochastic differential equations with long memory,
also we use the Bayesian methodology to incorporate the advanced knowledge , in addition we ap-
ply renormalized integral known in literature as Wick-Itô-Skorohod to solve problem of arbitrage in
stochastic models (which yield inefficient mathematical stochastic models for financial market), some
of conventional methods like quasi maximum likelihood , Separable Integral-Matching for Ordinary
Differential Equations, and multivariate Brownian method are used to be compared with the sug-
gested method. The suggested method has been proved to be very accurate. The estimated model
used to calculate the portfolio of assets quantities allocation.

Keywords: Fractional Brownian motion, stochastic differential equations, maximum likelihood,
prior distribution, Metropolis Hasting method, Hurst index, Langevin method

1. Introduction

Differential equations are equations which relates variables with their rates of change, they have
a wide spread in most of modern sciences, because they describe the physical behavior in simple
local way, fractional calculus is important tool to solve variational problems. An apparent relation
between the calculus of variations and fractional calculus, calculus of variations interpret the dynamic
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of phenomenon, fractional calculus accompanied with fat tails distribution, widely used in financial
risk management.
Financial phenomena as certified by almost all previous studies that it suffers from autocorrelation
with long range dependence or long memory [6], also it proved to suffer from heavy tail distribution
which make normal distribution is inappropriate for them, in addition financial phenomena in many
times be skewed to the left with negative extreme values. The existence of long range dependence
make ARIMA models are not a good choice for data because the estimate of autocorrelation is not
consistence. In addition building the portfolio for risk management strategies requires a strong model
to represent the phenomena under study.
Modeling dynamics of asset prices plays an important role in a lot of microeconomics problems. For
example, by understanding the behavior of stock prices, one can take best decision for a portfolio (one
of investment strategy and hedging of capital). Stochastic models are based primarily on continuous
or discrete time random walks. Continuous-time random walk process is a suitable class of process
for modeling the behavior of high frequency data.

1.1. Long range dependence

A fractional Brownian motion FBM is an irregular diffusion process with covariance as shown below
[13]:
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Where 0 < H < 1 is Hurst index
and the variance
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The covariance between two different Wiener process is:
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The difference of FBM is called Fractional Gaussian Noise FGN and have variance covariance as:
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So, the likelihood of FGN becomes [7] [18] :
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Where, Ω can be calculated by [15]:

Ω = E
(
dWHi

i,k1
dW

Hj
j,k2

)
=
σ2

2

[
(k1 + 1)2Hij − (k1 + k2)2Hij + (k2 − 1)2Hij

]
(1.6)

Explicit form for the estimate of Hurst index is impossible to be obtained, as a function of the data.
However, the maximum of its object function could be found by numerical methods.
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1.2. Maximum Likelihood Estimator MLE

The maximum likelihood method depends on the Gaussian likelihood function assumption. This
mean it considers only the mean and variance of estimators. The maximum likelihood can be ex-
pressed by the joint normal distribution, which is equivalent to the multivariate normal with mean
vector µ and variance-covariance matrix Ω .
Multivariate diffusion process consists of p variables takes the form : dx1,t

...
dxp,t

 =
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Where vec denotes vector with all observations of p variables with sample size nstacked vertically,
⊗ is matrix Kronecker product, ΩH is variance covariance block matrix of FGN, Σ

(
xi,t, xj,t, t

)
is the

diffusion matrix, and θ is a vector contains all the parameters of drift and diffusion functions.
After we determine the drift and diffusion function form we make prior distribution of each parameter,
according to the domain of parameter and the information we have in advance, we could suggest the
priors of each parameter as follow :

1.3. Prior of Hurst exponent

Since the domain of Hurst exponents are in the interval (0, 1) [6], we can use a Matrix variate beta
distribution that has the form [17]

p (H;α, β) =
Γp (α + β)

Γp (α) Γp (β)
det(H)α−(p+1)/2 det (Ip −H)β−(p+1)/2 (1.7)

Where H is p× p matrix, p number of system parameters, α, β > (p− 1) /2 and

Γp (α) = πp(p−1)/4

p∏
i=1

Γ (α− (i− 1) /2)

1.4. Prior of Real values parameters

The domain of Real values parameters are in the interval (−∞,∞) so we can use a multivariate
normal distribution that has the form
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1.5. Prior of positive values parameters

The domain of positive value parameters are in the interval (0,∞) so we can use an Inverse matrix
gamma distribution that has the form [12]

|Ψ|−ν

ϕpνΓp (ν)
|X|−ν−(p+1)/2 etr(−

1
ϕ

ΨX−1) , ν > 2, ϕ > 0 (1.9)

Where X and Ψ are p× p matrices.

1.6. The posterior distribution

The posterior is the normalized product of the likelihood with prior distributions of parameters, let
λ = (θ,H) then
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taking the log of the posterior distribution we have
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Where we leave out all the constant that does not change with changing the parameters. The log
posterior have no explicit form and cannot be solved analytically so we use adaptive Metropolis
Hasting algorithm.
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1.7. Adaptive Metropolis Hasting algorithm

Adaptive Metropolis Hasting is the idea of update the proposal distribution by using the knowledge
we have so far acquired about the target distribution. Suppose, therefore, that at time t − 1 we
have sampled the states X0, X1, ..., Xt−1, where X0 is the initial state. Then a candidate point Y
is sampled from the (asymptotically symmetric) proposal distribution qt (. |X0, ..., Xt−1 ), which now
may rely on the whole history (X0, X1, ..., Xt−1). The candidate point Y is accepted with probability
[9]

α (Xt−1, Y ) = min

(
1,

π (Y )

π (Xt−1)

)
Where π (x) is (unscaled) density
in which case we set Xt = Y , and otherwise Xt = Xt−1

The proposal distribution qt (. |X0, ..., Xt−1 ) used in the AM algorithm is a Gaussian distribution
with mean at the current point Xt−1 and covariance Ct = Ct (X0, ..., Xt−1) .
The decisive thing regarding the adaptation is how the covariance of the proposal distribution depends
on the history of the chain. In the AM algorithm this is solved by setting Ct = sdcov (X0, ..., Xt−1) +
sdεId after an initial period , where sd is a parameter that depends only on dimension d and ε > 0
is a constant that we may choose very small , and

Ct =

{
C0 t ≤ t0
sdcov (X0, ..., Xt−1) + sdεId t > t0

the empirical covariance matrix determined by points x0, ..., xk ∈ Rd

cov (x0, ..., xk) =
1

k

(
k∑
i=0

xix
′
i − (k + 1) x̄kx̄

′
k

)

where x̄k =
1

k + 1

k∑
i=0

xi

the covariance Ct satisfies the recursion formula

Ct+1 =
t− 1

t
Ct +

sd
t

(
tX̄t−1X̄

′
t−1 − (t+ 1) X̄tX̄

′
t +XtX

′
t + εId

)
This allows one to calculate Ct without too much computational cost since the mean X̄t also satisfies
an obvious recursion formula, the parameter ε is just to avoid that Ct will become singular, a basic

choice for the scaling parameter we have elected the value sd = (2.4)d
/
d.

adaptive Metropolis-within Gibbs algorithm using the proposal distribution N
(
0, e2l

)
with l the

logarithm of the standard deviation of the increment. This parameter is chosen so that the acceptance
rate is approximately 0.44 which is proposed to be optimal in the Metropolis-within Gibbs sampler.
It is proposed to add/subtract an adoption amount δ (n) = min

(
0.1, n−1/2

)
to/from t after every

50th iteration and adapt the proposal variance if the acceptance rate is smaller than 0.3 or larger
than 0.6.

2. Quasi-maximum Likelihood Estimation

Consider a multidimensional diffusion process
dXt = a (Xt, θ2) dt+ b (Xt, θ1) dWt, X0 = x0 (2.1)
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where Wt represents an r-dimensional classical Wiener process independent of the initial variable x0.
In addition, θ1 ∈ Θ1 ⊂ Rp, θ2 ∈ Θ2 ⊂ Rq, a : Rd × Θ2 → Rd and b : Rd × Θ1 → Rd ⊗ Rr. The
naming of θ2 and θ1 is theoretically natural because of the optimal convergence rates of the estimators
for these parameters as we will see in the following. Given sampled data Xn = (Xti)i=0,...,n, with
ti = i∆n, ∆n → 0 as n → ∞, quasi-maximum likelihood estimator (QMLE) makes use of the
following approximation of the true log-likelihood for multidimensional diffusions [11].

`n (Xn, θ) = −1

2

{
log det (Σi−1 (θ1)) +

1

∆n

Σ−1
i−1 (θ1)

[
(∆xi −∆nai−1 (θ2))⊗2]} (2.2)

Where θ = (θ1, θ2), ∆Xi = Xti − Xti−1
, Σi (θ1) = Σ (θ1, Xti), ai (θ2) = a (Xti , θ2), Σ = b⊗2,

A⊗2 = AAT and A−1 the inverse of A, A [B] = tr (AB). Then the QMLE of θ is an estimator that
satisfies

θ̂ = arg max
θ

`n (Xn, θ)

exactly or approximately

3. Wick Product

Wick product is a renormalization operator. The Wick renormalization method reduces the problem
to exponential integrability problem. Wick product is not a pointwise operation [5](∫

R

fdW (H)

)
♦
(∫

R

gdW (H)

)
=

(∫
R

fdW (H)

)
.

(∫
R

gdW (H)

)
− 〈f, g〉H

〈f, g〉H =

∫
R

∫
R

f(s)g(t)φ (s, t) dsdt f, g ∈ S(R) (3.1)

Let S (R) be the Schwartz space of rapidly decreasing smooth functions on R, and if f ∈ S (R),
denote

‖f‖2
H =

∫
R

∫
R

f (t) f (s)φ (s, t) dsdt <∞ (3.2)

S(R) is Schwartz space

φ (s, t) = φH (s, t) = H (2H − 1) |s− t|2H−2 , s, t ∈ R∫ t

0

∫ s

0

φ (u, v) dudv =
1

2

(
t2H + s2H − |s− t|2H

)
= RH (t, s)

and

exp♦ (〈w, f〉) = exp

(
〈w, f〉 − 1

2
‖f‖2

H

)
(3.3)

Fractional Wick Itô Skorohod integral∫
R

Y (t) dW
(H)
t =

∫
R

Y (t)♦W (H) (t) dt (3.4)

Where W (H) (t) is fractional white noise
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the integral on an interval can be defined as∫ T

0

Y (t) dW
(H)
t =

∫
R

Y (t) I[0,T ]dW
(H)
t

Suppose

Y (t) =
n∑
i=1

Fi (w) I[ti,ti+1] (t) where Fi (w) ∈ (S)∗H∫
R

Y (t) dW
(H)
t =

n∑
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Fi (w)♦
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W

(H)
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−W (H)
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)
∫ T

0
f (t) d♦WH

t is normally distributed with zero mean and variance ‖f‖2
φ . Therefore

exp
(∫ T

0
f (t) d♦WH

t

)
is log-normally distributed with mean exp

(
1
2
‖f‖2

φ

)
.

Example 3.1. Using stochastic Wick calculus and obtain the following integral

∫ t

0

W (H)
s dW (H)

s =

∫ t

0

W (H)
s ♦W (H) (s) ds

=
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0

W (H)
s ♦

d

ds
W (H)
s ds =

1

2

(
W

(H)
t

)♦2

=
1

2

(
W

(H)
t ♦W

(H)
t

)
=

1

2
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0

χ[0,t] (u) dW (H)
u ♦

∫ t

0

χ[0,t] (u) dW (H)
u

)
=

1

2

(∫ t

0

χ[0,t] (u) dW (H)
u

∫ t

0

χ[0,t] (u) dW (H)
u −

∫ t

0

∫ t

0

φ (t, s) dsdt

)
=

1

2

(
W (H)
s
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2
t2H

where

χ[0,t] (u) =

{
1 if u ∈ (0, t)
0 otherwise

If f, g ∈ L2
φ ([0, T ]) then

∫ T
0
fd♦WH

t ,
∫ T

0
gd♦WH

t are well defined Gaussian random variables. More-
over:
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0
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)
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0
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t
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0
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t

)2
)

= ‖f‖2
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∫ T

0
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(
0, ‖f‖2

φ
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Consider the fractional stochastic differential equation

dX (t) = µX (t) dt+ σX (t) dW
(H)
t , X (t) = x > 0

where x, µ and σ are constants, We rewrite this as the following equation in (S)∗H :

dX (t)

dt
= µX (t) + σX (t)♦W(H) (t)

or
dX (t)

dt
=
(
µ+ σW(H) (t)

)
♦X (t)

Using Wick calculus, the solution of this equation becomes∫ t

0

dX (s)

ds
ds =

∫ t

0

(
µ+ σW(H) (s)

)
♦X (s) ds∫ t

0

dX (s)

ds
ds♦ 1

X (s)
=

∫ t

0

(
µ+ σW(H) (s)

)
ds

log♦X (t) = log x+ µt+ σ

∫ t

0

W(H) (s) ds

X (t) = exp♦
(

log x+ µt+ σ

∫ t

0

W(H) (s) ds

)
X (t) = x exp♦

(
µt+ σW

(H)
t

)
Setting f = σχ[0,t] hence 〈w, f〉 = σdWH

t and using Wick exponential [1]

X (t) = x exp♦
(
µt+ σW

(H)
t

)
= x exp♦ (µt) exp♦

(
σW

(H)
t

)
= x exp (µt) exp

(
σB

(H)
t − 1

2
σ2

∫ t

0

∫ t

0

φ (s, t) dsdt

)
= x exp (µt) exp

(
σB

(H)
t − 1

2
σ2t2H

)
Note that

E (X (t)) = xeµt

A semimartingale (Xt, t ≥ 0) concerning a Brownian motion can often be expressed as

Xt = X0 +

∫ t

0

fsdWs +

∫ t

0

gsds

If f ∈ L2
H (R+), then

exp♦
(∫ ∞

0

fsdW
(H)
s

)
= exp

(∫ ∞
0

fsdW
(H)
s − 1

2
‖f‖2

H

)
(3.5)
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Proof . It follows that

exp♦
(∫ ∞

0

fsdW
(H)
s

)
=
∞∑
i=1

1

n!

(∫ ∞
0

fsdW
(H)
s

)♦n
(3.6)

=
∞∑
i=1

1

n!
‖f‖nH hn

(∫∞
0
fsdW

(H)
s

‖f‖H

)
(3.7)

= exp

(
‖f‖H

∫∞
0
fsdW

(H)
s

‖f‖H
− 1

2
‖f‖2

H

)
(3.8)

= exp

(∫ ∞
0

fsdW
(H)
s − 1

2
‖f‖2

H

)
(3.9)

�

4. The Multivariate FBM

Let X (t) of dimension p be defined as

X (t) =

∫
KH (u, t)A+dW (u) (4.1)

A+ is a p × p matrix of reals. H is a diagonal matrix of parameters Hj ∈ (0, 1) , ∀j = 1, ..., p ,

and KH (u, t) is a matrix of kernels that reads (t− u)H−1/2
+ − (−u)H−1/2

+ . In this notation, (a)+ =
max (a, 0) and tH is understood as the exponential of a matrix exp (H log (t)). As seen in the
stochastic integral [8].
X (t) represents a multivariate non-stationary Gaussian process that has stationary increments. In
addition, the elements of X (t) are correlated, and the structure of the correlation is brought from
the existence of the mixing matrix A+. And the correlation structure is sufficient to fully define the
process since it is Gaussian and zero mean (as a linear transform of a zero mean Gaussian process).

Ajj =
σ2
j sin(πHj)

Bjj

Bkj = B (Hj + 0.5, Hk + 0.5)

where B (x, y) is the beta function , and

Ajk =


σjσkρjk sin (π (Hj +Hk))

(cos (πHj) + cos (πHk))Bjk

if Hj +Hk 6= 1

2σjσkρjk
(sin (πHj) + sin (πHk))Bjk

if Hj +Hk = 1

A p−variate stochastic process X = {X (t) = (X1 (t) , ..., Xp (t)) , t ∈ R} is said operator self-similar
(os-s) if there exists a p× p matrix H (called the exponent of X) such that for any λ > 0 [4]

X (λt)
fidi
= λHX (t)

where
fidi
= means finite-dimensional distributions equality, and the p× p matrix λH can represented

by the power series λH = eH log λ =
∑∞

i=1H
i (log λ)i

/
i! joint self-similarity put many constraints on

the structure of correlation of the process
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Thus the covariance function of the ith elements is the usual function

E (xi (s)xi (t)) =
σ2
i

2

{
|t|2Hi + |s|2Hi − |t− s|2Hi

}
(4.2)

the general form of the (cross-)covariance function of vector self-similar process X with finite variance
and exponent H = diag (H1, H2, ..., Hp) , 0 < Hi < 1. under some regularity condition, for any
i, j = 1, 2, ..., p i 6= j with Hi +Hj 6= 1 , there exists cij, cji ∈ R such that for any s, t ∈ R

cov (xi (s)xj (t)) =
σiσj

2

{
cij (s) |s|Hi+Hj + cji (t) |t|Hi+Hj − cji (t− s) |t− s|Hi+Hj

}
, (4.3)

σ2
i = var (xi (1))

and

cij (t) =

{
cij, t > 0
cji, t < 0

A similar expression (involving additional logarithmic terms) for the covariance cov (xi (s)xi (t)) is
obtained in the case Hi +Hj = 1
The double sided stochastic integral representation [14]

X (t) =

∫
R

{(
(t− x)H−0.5

+ − (−x)H−0.5
+

)
A+ +

(
(t− x)H−0.5

− − (−x)H−0.5
−

)
A−

}
W (dx) , (4.4)

where H − 0.5 = diag (H1 − 0.5, ..., Hp − 0.5),x+ = max (x, 0), x− = max (−x, 0) , A+, A−, are
real p × p matrices and W (dx) = (W1 (dx) , ...,Wp (dx)) is a Gaussian white noise with zero mean,
independent components and covariance E (Wi (dx)Wj (dx)) = δijdx , if 0 < Hi < 1, Hi + Hj 6= 1 ,
i, j = 1, 2, ..., p then the cross-covariance of X.

cij = 2c̃ijφij/σiσj

φij = B (Hi + 0.5, Hj + 0.5) / sin ((Hi +Hj) π)

where the matrix C̃ = (c̃ij) is given by

C̃ = cos (Hπ)A+A
∗
+ + A−A

∗
− cos (Hπ)

− sin (Hπ)A+A
∗
− cos (Hπ)− cos (Hπ)A+A

∗
− sin (Hπ)

Here and below, A∗ denotes the transposed matrix,

sin (Hπ) = diag (sin (H1π) , ..., sin (Hpπ)) , cos (Hπ) = diag (cos (H1π) , ..., cos (Hpπ))

If i 6= j and Hi +Hj = 1, then there exists dij, fij ∈ R such that for any s, t ∈ R2 , we have

E (Xi (s)Xj (t)) =
σiσj

2
× {dij (|s|+ |t| − |t− s|) + fij (t log |t|+ s log |s| − (t− s) log |t− s|)}

(4.5)
The matrix R = (Rij)i,j=1,...,p is positive definite, where

Rij =


1, i = j

cij + cji i 6= j Hi +Hj 6= 1

dij i = j Hi +Hj = 1
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The cross-covariances are given by [3].

rij (s, t) = E (xi (s)xj (t)) =
σiσj

2
{wij (−s) + 2wij (t)− wij (t− s)} (4.6)

where the function wij (h) is defined by

wij (h) =

{
(ρij − ηijsign (h)) |h|Hi+Hj if Hi +Hj 6= 1

ρij |h| − ηijh log |h| if Hi +Hj = 1

Parameters ηij are connected with the time-reversibility of the process. They are characterized by
the antisymmetry property. In special ηij = −ηji, if the process is time-reversible, they are all equal
to zero, if the process permits a causal (or an anticausal) representation, they are function of ρij, Hi,
and Hj. In general otherwise, they are unconstrained
p-multivariate process fulfilling the three following conditions
Gaussianity,
Self-similarity with parameter H ∈ (0, 1)p ,
Stationarity of the increments.

The mfBm has stationary increments. It is easy to derive the covariance structure of the increments
process. Let ∆x (t) = x (t+ 1)− x (t) be stationary process (with increments of size 1) that refered
to as the multivariate fractional Gaussian noise (mfGn). Then

γij (h) = E (∆xi (t) ∆xj (t+ h))

=
σiσj

2
(wij (h− 1)− 2wij (h) + wij (h+ 1)) (4.7)

The asymptotic behavior as |h| → +∞

γij (h) ∼ σiσj |h|Hi+Hj−2 κij (sign (h))

Where

κij (sign (h)) =

{
(ρij − ηijsign (h)) (Hi +Hj) (Hi +Hj − 1) if Hi +Hj 6= 1

ηijsign (h) if Hi +Hj = 1

ηij =
corr (Xi (1) , Xj (−1))− corr (Xi (−1) , Xj (1))

2− 2Hi+Hj

ηij quantifies the dissymmetry between Xi and Xj.
The multivariate fractional Brownian motion is characterized by the Hurst indices of its components,
by its covariance matrix at time 1, and also by an antisymmetric matrix ηij which controls the time
asymmetry of the multivariate process [8] .
The elements of the increments process could be long-range dependent individually, and could also
present what is called long-range interdependence, this mean that their cross-correlation function
may be not summable.
Modeling dynamics of asset prices plays important role in a lot of microeconomics problems. For
example, by understanding the behavior of stock prices, one can take good decision for a portfolio.
Continuous-time random walk process is a suitable class of process for modeling the behavior of high
frequency data.
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5. Markowitz portfolios

Markowitz (1952) proposed the portfolio selection approach. Markowitz path-breaking insight was
that the risk/return profiles of single assets should not be thought separately but in their portfolio
context. In this view, portfolios are considered to be efficient if they are either risk minimal for a
given return level or have the maximum return for a given level of risk. Even though both thoughts of
efficient portfolios are equivalent, the kind of portfolio optimization does differ for these two status.
The former is a quadratic optimization with linear constraints, whereas in the latter the objective
function is linear and the constraints are quadratic. In the following it is assumed that there are
N assets and that these are infinitely divisible. The returns of these assets are jointly normally
distributed. The portfolio return r̄ is defined by the scalar product of the (N ∗ 1) weight and return
vectors wand µ. The portfolio risk is measured by the portfolio variance σ2

w = w′Σw, where refers to
the positive semi-definite variance–covariance matrix of the assets’ returns. For the status of minimal
variance portfolios for a given portfolio return, r̄, the optimization problem can be stated as [16] :

P = arg min
w
σ2
w = w′Σw (5.1)

w′µ = r̄

w′1 = 1

where 1 is the (N ∗ 1) vector of ones. In relation to this function, the weight vector for a minimal
variance portfolio and a given target return is given by [19]

w∗ = r̄w∗0 + w∗1 (5.2)

with

w∗0 =
1

d

(
cΣ−1µ+ bΣ−11

)
w∗1 =

1

d

(
bΣ−1µ+ aΣ−11

)
The portfolio standard deviation is given by

σ =

√
1

d
(cr̄2 − 2br̄ + a)

with a = µ′Σ−1µ , b = µ′Σ−11, c = 1′Σ−11 and d = ac− b2. Equation (5.2) results from a Lagrange
optimization with the constraints for a given target return and weights summing to one. It can
Volatility is a measure of risk.
A hyperbola for efficient mean–variance portfolios. The hyperbola is enclosed by the asymptotes
r̄ = b/c±

√
d/cσ. The locus of the GMV portfolio is the apex of the hyperbola with weights given

by w∗GMV = Σ−11/1′Σ−11 .

6. Application

The Adaptive Metropolis Hasting algorithm method discussed earlier is used to estimate the posterior
of a system of three fractional stochastic differential equations, with data represents daily three
banking sector stock prices from 1 January 2017 to 11 March 2019 with sample size 509 for each
variable, as shown in Figure 1. The first step is to find the form of drift and diffusion functions using
the Langevin method [20], by calculating the conditional moments and determining the drift and
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diffusion forms. The search takes a long time because of the high dimensionality of model parameters.
The first and second conditional moments show a damped square variable amplitude sine function
and a damped second order polynomial respectively as depicted in Figures 3-7. The method is
programmed in R program. The suggested estimation method will be compared with the existing
conventional methods like quasi-maximum likelihood in Yuima R package [11], and stochastic integral
matching method in Simode R packages [21] . Although these methods are for standard Brownian
motion we can use them as a benchmark for our suggested method.
The obtained result and estimation are used to build a portfolio for the three stock which is a very
important quantity that required by investors to overcome their stock circulation risk and achieve a
profit in return, and this will encourage the neutral risk investors to participate in speculation action
and in return it will refresh the macroeconomic of country.

Figure 1: Plot of the stock prices time series and time between observations (fourth panel).

Figure 2: Plot of the returns of three series with time difference (fourth panel).
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Figure 3: Drift and diffusion by Langevin method for series 1, conditional moments (black), error
bar (bars), drift fitting (red)

Figure 4: Drift and diffusion by Langevin method for series 2, conditional moments (black) ,error
bar (bars), and drift fitting (red)

To decrease the search time, we use the nonlinear least squares in R program to determine the
initial values for numerical search optimization method. We see from Figures 3-7, that the drifts and
diffusions are not linear and they follow second order equation with a damping factor.
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Figure 5: Drift and diffusion by Langevin method for series 3, conditional moments (black) ,error
bar (bars), and drift fitting (red).

Figure 6: Cross-diffusion by Langevin method for series 1,2 and series 1,3, cross conditional moments
(colored points), and diffusion fitting (colored surface).



2440 Q. N. N. Al-Qazaz, A. H. Ali

Figure 7: Cross-diffusion by Langevin method for series 2,3, cross conditional moments (colored
points), and diffusion fitting (colored surface)

6.1. The models of FSDE

From the fitted conditional moments in Figures 3-7, we find the best functional forms of drift and
diffusion for return rate rt = log (xt/xt−1) [22], as follow:
Drift function:

dri =fi (r, θ) dt+ gii (r, θ) dW
Hi
t

=
(
θi0r

2
i sin (θi1ri + θi2) + θi3 exp (θi4ri)

)
dt+

(
α110 (ri + α111)2 + α112e

α113ri
)
dWHi

t i = 1, 2, 3

(rt+1−rt)=
(
θi0r

2
ti sin (θi1rti + θi2) + θi3 exp (θi4rti)

)
dt+

(
α110 (rti + α111)2 + α112 exp(α113rti)

)
dWHi

t

(
log

(
xi,t+1

xi,t

)
− log

(
xi,t
xi,t−1

))
=θi0

(
log

(
xi,t
xi,t−1

))2

sin

(
θi1 log

(
xi,t
xi,t−1

)
+ θi2

)
+θi3 exp

(
θi4 log

(
xi,t
xi,t−1

))
∆t+

(
α110

(
log

(
x1,t

x1,t−1

)
+ α111

)2

+ α112

(
x1,t

x1,t−1

)α113
)
dWHi

t

(
log

(
xi,t+1

xi,t

)
− log

(
xi,t
xi,t−1

))
=θi0

(
log

(
xi,t
xi,t−1

))2

sin

(
θi1 log

(
xi,t
xi,t−1

)
+ θi2

)
+θi3 exp

(
θi4 log

(
xi,t
xi,t−1

))
∆t+

(
α110

(
log

(
x1,t

x1,t−1

)
+ α111

)2

+ α112

(
x1,t

x1,t−1

)α113
)
dWHi

t

log

(
xi,t+1

xi,t

/
xi,t
xi,t−1

)
=θi0

(
log

(
xi,t
xi,t−1

))2

sin

(
θi1 log

(
xi,t
xi,t−1

)
+ θi2

)
+θi3 exp

(
θi4 log

(
xi,t
xi,t−1

))
∆t+

(
α110

(
log

(
x1,t

x1,t−1

)
+ α111

)2

+ α112

(
x1,t

x1,t−1

)α113
)
dWHi

t
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log

(
xi,t+1xi,t−1

x2
i,t

)
=θi0

(
log

(
xi,t
xi,t−1

))2

sin

(
θi1 log

(
xi,t
xi,t−1

)
+ θi2

)
+ θi3 exp

(
θi4 log

(
xi,t
xi,t−1

))
∆t

+

(
α110

(
log

(
x1,t

x1,t−1

)
+ α111

)2

+ α112

(
x1,t

x1,t−1

)α113
)
dWHi

t

where
E
(
edW

Hi
t

)
= e

1
2(Σ(xi,t,xj,t,t)⊗ΩH)

E (xi,t+1) =
x2
i,t

xi,t−1

e
θi0

(
log

(
xi,t
xi,t−1

))2

sin

(
θi1 log

(
xi,t
xi,t−1

)
+θi2

)
+θi3

(
xi,t
xi,t−1

)θi4
∆t+ 1

2(Σ(xi,t,xj,t,t)⊗ΩH)
ii,t

We see that there is a spurious drift has been added to the original drift, this drift comes from
fractional Brownian motion, so we use Wick-Itô-Skorohod calculus as discussed in section 3, To
eliminate its effect from model drift.

... xi,t+1=
x2
i,t

xi,t−1

e(
θi0r

2
i,t sin(θi1ri,t+θi2)+θi3 exp(θi4ri,t))∆t− 1

2

(
(Σ(xi,t,xj,t,t)⊗ΩH)

ii,t

)
+Σ

1
2 (xi,t,xi,t,t)dW

Hi
t

Where lim
∆t→0

∆t = dt

Diffusion function:
var
(
xi,t+1

)
=E(x2

i,t+1)−
(
E(xi,t+1)

)2

E(x2
i,t+1)=E

((
x2
i,t

xi,t−1

e(θi0r
2
i sin(θi1ri+θi2)+θi3 exp(θi4ri))∆t− 1

2((Σ(xi,t,xj,t,t)⊗ΩH)
ii
)+Σ

1
2 (xi,t,xj,t,t)dW

Hi
t

)2
)

=
x4
i,t

x2
i,t−1

e2(θi0r2i sin(θi1ri+θi2)+θi3 exp(θi4ri))∆t−((Σ(xi,t,xj,t,t)⊗ΩH)
ii
)+2((Σ(xi,t,xj,t,t)⊗ΩH)

ii
)

=
x4
i,t

x2
i,t−1

e2(θi0r2i sin(θi1ri+θi2)+θi3 exp(θi4ri))∆t+((Σ(xi,t,xj,t,t)⊗ΩH)
ii
)

(
E(xi,t+1)

)2
=

(
E

(
x2i,t
xi,t−1

e(
θi0r

2
i,t sin(θi1ri+θi2)+θi3 exp(θi4ri,t))∆t− 1

2

(
(Σ(xi,t,xj,t,t)⊗ΩH)

ii,t

)
+Σ

1
2 (xi,t,xi,t,t)dW

Hi
t

))2

=
x4
i,t

x2
i,t−1

e
2(θi0r2i,t sin(θi1ri+θi2)+θi3 exp(θi4ri,t))∆t−

(
(Σ(xi,t,xj,t,t)⊗ΩH)

ii,t

)
+
(
(Σ(xi,t,xi,t,t)⊗ΩH)

ii,t

)

=
x4
i,t

x2
i,t−1

e2(θi0r2i,t sin(θi1ri,t+θi2)+θi3 exp(θi4ri,t))∆t

... var
(
xi,t+1

)
=

x4i,t
x2i,t−1

e2(θi0r2i,t sin(θi1ri,t+θi2)+θi3 exp(θi4ri,t))∆t+((Σ(xi,t,xj,t,t)⊗ΩH)
ii
) − x4i,t

x2i,t−1
e2(θi0r2i,t sin(θi1ri,t+θi2)+θi3 exp(θi4ri,t))∆t

=
x4
i,t

x2
i,t−1

e2(θi0r2i,t sin(θi1ri,t+θi2)+θi3 exp(θi4ri,t))∆t

(
e

(
(Σ(xi,t,xj,t,t)⊗ΩH)

ii,t

)
− 1

)

7. Numerical calculation

We use the discrete form of the model to fit the data, and it could be used for forecasting or for
portfolio building (investment strategy). Additionally, we can solve the model analytically and then
estimate the parameter. However, this is not an easy task as it is frequently in non-closed form.
The next step is to estimate the parameters of the model that have maximum log likelihood. We
analyzed three stock price time series. The data is of size 509, taken from 1 January 2017 to 11 March
2019. Since the data is positive prices, we take logarithm of difference, r (t) = log (p (xt+1) /p (xt))
to transform it to return rate, which is very important quantity in financial investment, and to make
series approximately normal distribution. The time difference is ∆t = 1, which reflects the difference
in working days in the year. We fit the return with appropriate models for drift and diffusion to
extract a primary models for fractional stochastic differential equation by plotting the scatter of the



2442 Q. N. N. Al-Qazaz, A. H. Ali

first difference of return with a lagged return and estimating the parameter of the model using the
nonlinear least square. This will give us a glimpse about model function as shown below [22] :

Figure 8: Return scatter plot with fitted drift and diffusion models by nonlinear least squares for
series 1, return (black), and fitted (red)

Figure 9: Return scatter plot with fitted drift and diffusion models by nonlinear least squares for
series 2, return (black), and fitted (red)
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Figure 10: Return scatter plot with fitted drift and diffusion models by nonlinear least squares for
series 3, return (black), and fitted (red)

We use Quasi-maximum Likelihood Estimation explained in section 2, to compare the conventional
methods with the suggested method of maximum likelihood discussed in section 1, using yuima R
package, and the estimated coefficients found to be as follow :

Table 1: Parameter estimation of quasi multivariate maximum likelihood

Equations θ0i θ1i θ2i θ3i θ4i

Drift1 8.4506 193.2457 -17.3479 0.0020 -39.5415

Drift2 14.1524 189.1097 -46.5658 -0.0007 43.6340

Drift3 -7.1288 36.8217 28.7963 0.0001 -47.9658

α0i α1i α2i α3i

Dif1 20.7868 0.0065 0.0180 -7.8977

Dif2 0.0622 0.0001 0.0025 0.0004

Dif3 24.4776 39.5733 0.0654 -0.0042

α0ij α1ij α2ij α3ij α4ij α5ij

Dif12 0.0008 -0.0189 -0.0341 0.0017 -0.6674 0.1678

Dif13 0.0501 9.1557 0.0742 0.0150 0.0684 0.0158

Dif23 -4.5272 -1.4994 1.2878 -0.1230 0.0760 -9.6380

H1 H2 H3 H12 H13 H23

Hurst index 0.5 0.5 0.5 0.5 0.5 0.5

Series1 Series2 Series3 mean

MSE 0.0006541535 0.0005719739 0.003065913 0.00143068
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Figure 11: Plot of fitted models quasi multivariate maximum likelihood for three series, data (black
points), fitted drift (red line), and fitted diffusion (green line).

Figure 12: Plot of fitted models by quasi multivariate maximum likelihood for three returns, data
(black points), fitted drift (red line), and fitted diffusion (green line).

From Figures 8-12, we perceive that the models represent the data in an accurate manner, and
we can use them in the model. Secondly, we have estimated the parameters with Hurst indices
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simultaneously to obtain the final fitted model as follow:

 X1,t+1

X2,t+1

X3,t+1

 =



x2
1,t

x1,t−1

exp

(
θ10

(
log
(

x1,t
x1,t−1

))2

sin
(
θ11 log

(
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)
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)
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(
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∆t

−1
2
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Σ
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x1,t, x1,t, t

)
⊗ ΩH

)
11,t
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+
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(
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(
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)
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(
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t

))

x2
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(
θ20

(
log
(
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))2

sin
(
θ21 log

(
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)
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)
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(
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)θ24
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−1
2
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Σ
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)
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)
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α220
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log
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)
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) (
WH2
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θ30
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log
(
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sin
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θ31 log
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)
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(
x3,t
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2
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Σ
(
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33,t
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)α333
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
Where

(
WHi
t+1 −W

Hi
t

)
∼ N (0,ΩHi) .

Figure 13: Plot of fitted models by multivariate maximum likelihood for three returns, data (black
points), fitted drift (red line), and fitted diffusion (green line).

Table 2 shows the parameter estimation of drift and diffusion function with Hurst indices, and mean
square error (MSE).
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Table 2: Metropolis Hasting mean and incredible interval for parameters

Equations θ0i θ1i θ2i θ3i θ4i

Drift1

mean 8.48465 193.245 -17.27933 -0.00172 -39.53321

0.025 8.48446 193.2445 -17.27943 -0.00187 -39.53338

0.975 8.48483 193.2455 -17.27924 -0.00152 -39.53304

Drift2

mean 14.15058 189.1274 -46.63618 -0.00080 43.63983

0.025 14.15035 189.1272 -46.63655 -0.00116 43.63980

0.975 14.15077 189.1276 -46.63588 -0.00046 43.63987

Drift3

mean -7.29845 36.60179 26.96638 0.00097 -47.96723

0.025 -7.29853 36.60167 26.96630 0.00088 -47.96726

0.975 -7.29837 36.60193 26.96646 0.00105 -47.96719

α0i α1i α2i α3i

Dift1

mean 20.77102 -0.00140 0.00031 -7.89594

0.025 20.77049 -0.00158 0.00026 -7.89608

0.975 20.77156 -0.00121 0.00038 -7.89580

Dift2

mean 0.00274 0.00819 0.00858 0

0.025 0.00264 0.00806 0.00852 0

0.975 0.00284 0.00831 0.00864 0.00001

Dift3

mean 24.48003 39.57672 0.00041 0.00013

0.025 24.47989 39.57663 0.00024 -0.00005

0.975 24.48019 39.5768 0.00059 0.00029

α0ij α1ij α2ij α3ij α4ij α5ij

Dift12

mean -0.00152 0.0005 -0.03128 -0.00355 -0.27221 0.2051

0.025 -0.00183 0.00038 -0.03151 -0.0038 -0.27257 0.20495

0.975 -0.00113 0.00063 -0.03097 -0.00332 -0.27174 0.20527

Dift13

mean 0.01213 9.30245 0.00027 0.0138 0.06658 -0.00005

0.025 0.01205 9.30203 0.00016 0.01369 0.06633 -0.00014

0.975 0.01221 9.30284 0.00037 0.01393 0.06681 0.00005

Dift21

Mean -4.52828 -1.49926 -0.00092 -0.17436 0.01116 -10.2919

0.025 -4.52862 -1.49968 -0.00122 -0.17443 0.01106 -10.292

0.975 -4.52795 -1.49889 -0.00062 -0.17429 0.01124 -10.2918

H1 H2 H3 H12 H13 H23

Hurst index

mean 0.55189 0.71851 0.75067 0.53004 0.57861 0.50963

0.025 0.55163 0.7183 0.75047 0.53001 0.57823 0.50948

0.975 0.5521 0.71875 0.75085 0.53008 0.57901 0.50979

Series1 Series2 Series3 mean

MSE 0.0006972986 0.0002888781 0.00180868 0.000931618

MSE (mean square error)
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Figure 14: Plot of fitted models by multivariate maximum likelihood for three series, data (black
points), fitted drift (red line), and fitted diffusion (green line).

Figure 15: Plot of 1000 generated samples from estimated model by Bayesian multivariate maximum
likelihood for three returns, data (black points)..

7.1. Adaptive Metropolis Hasting algorithm

In this section we will use the Adaptive Metropolis Hasting algorithm as explained in section 1.7 ,
and result was as following
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Figure 16: Plot of histogram and stationary series of Metropolis Hasting sampling method for model
parameters

7.2. The Multivariate FBM

In this section we will apply the multivariate analysis of fractional Brownian motion as posed in
section 4 , the result is viewed in Table 3

Table 3: The estimate of Hurst indices by multivariate analysis

Hi σi ρij ηij

0.4955512 0.0020709730 0.2744565 2.754457

0.4738972 0.0002274438 0.1553428 2.297712

0.5672862 0.0002039744 0.1531577 3.687176

7.3. Portfolio Building

After we find the model drift vector and diffusion matrix we will use them to select the best strategy
to invest in these three stocks , we use the method explained in Section 5 , and the portfolio is
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Figure 17: Portfolio strategy for sell and buy normalized quantities for each stock series for all period

We want to point out that the sum of all weight in the figure 17 add up to 1, this means that this
strategy for all period, and not for one time of variables in the portfolio, for example if we want to
invest in one week period we must distribute the capital on stocks and period but not on stocks only.

8. Conclusion

Bayesian Fractional maximum likelihood suggested method for stochastic differential equations are
a very efficient tool to represent the financial phenomena because it reflect the dynamical behavior
with long memory that is an intrinsic characteristic of financial phenomenon. The suggested method
superimposed other models in capturing the minute details in the data. The drift and diffusion are
very important quantities in many application especially in the financial portfolio building. The
model specified shows many features in the data to be used to predict the future values and so build
the portfolio. That is much benefited for the investor to overcome the risk of stock prices and to
achieve a profit. The parameter of the model is estimated numerically by Metropolis Hasting method
to maximize the logarithm of the posterior distribution using R program. The results in Table2 that
Hurst indices are higher than 0.5 , and this means there is a strong long memory behavior in the three
series. We see that from Figure 13, that the diffusion is very high (green line) in series 1, because of
Hurst index is 0.55189, and diffusion in series 3 is low because of high Hurst index. This reflects the
long memory existence that will decrease the uncertainty and the prediction will be more accurate.
The cross Hurst indices reflect the cross long memory correlation between different variables. As
we conclude from Table 2, there is a cross long memory between three series. By comparison with
traditional methods like quasi multivariate maximum likelihood, we see from table 1 and table 2 that
the mean of MSE for maximum multivariate likelihood is smaller.

9. Appendix

To construct the matrix of diffusion with the autocorrelation matrix of Fractional Brownian motion,
the vectorization of variables must include Kronecker product of variance-covariance matrix as in
SURE (Seemingly Unrelated Regression Equations) model as below [2] :
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Σ⊗ In

if

Σ =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3



vec(Σ ∗N(0, 1)) = N(0,Σ⊗ I3)

Σ⊗ I3 =



σ2
1

 1 0 0
0 1 0
0 0 1

 σ12

 1 0 0
0 1 0
0 0 1

 σ13

 1 0 0
0 1 0
0 0 1


σ21

 1 0 0
0 1 0
0 0 1

 σ2
2

 1 0 0
0 1 0
0 0 1

 σ23

 1 0 0
0 1 0
0 0 1


σ31

 1 0 0
0 1 0
0 0 1

 σ32

 1 0 0
0 1 0
0 0 1

 σ2
3

 1 0 0
0 1 0
0 0 1





=



 σ2
1 0 0

0 σ2
1 0

0 0 σ2
1

  σ12 0 0
0 σ12 0
0 0 σ12

  σ13 0 0
0 σ13 0
0 0 σ13


 σ21 0 0

0 σ21 0
0 0 σ21

  σ2
2 0 0

0 σ2
2 0

0 0 σ2
2

  σ23 0 0
0 σ23 0
0 0 σ23


 σ31 0 0

0 σ31 0
0 0 σ31

  σ32 0 0
0 σ32 0
0 0 σ32

  σ2
3 0 0

0 σ2
3 0

0 0 σ2
3





=



σ2
1 0 0

0 σ2
1 0

0 0 σ2
1

 σ1ρ12σ2 0 0
0 σ1ρ12σ2 0
0 0 σ1ρ12σ2

 σ1ρ13σ3 0 0
0 σ1ρ13σ3 0
0 0 σ1ρ13σ3


σ1ρ12σ2 0 0

0 σ1ρ12σ2 0
0 0 σ1ρ12σ2

 σ2
2 0 0

0 σ2
2 0

0 0 σ2
2

 σ2ρ23σ3 0 0
0 σ2ρ23σ3 0
0 0 σ2ρ23σ3


σ1ρ13σ3 0 0

0 σ1ρ13σ3 0
0 0 σ1ρ13σ3

 σ2ρ23σ3 0 0
0 σ2ρ23σ3 0
0 0 σ2ρ23σ3

 σ2
3 0 0

0 σ2
3 0

0 0 σ2
3




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=



σ1 0 0
0 σ1 0
0 0 σ1

1 0 0
0 1 0
0 0 1

σ1 0 0
0 σ1 0
0 0 σ1

 σ1 0 0
0 σ1 0
0 0 σ1

ρ12 0 0
0 ρ12 0
0 0 ρ12

σ2 0 0
0 σ2 0
0 0 σ2

σ1 0 0
0 σ1 0
0 0 σ1

ρ13 0 0
0 ρ13 0
0 0 ρ13

σ3 0 0
0 σ3 0
0 0 σ3


σ1 0 0

0 σ1 0
0 0 σ1

ρ12 0 0
0 ρ12 0
0 0 ρ12

σ2 0 0
0 σ2 0
0 0 σ2

 σ2 0 0
0 σ2 0
0 0 σ2

1 0 0
0 1 0
0 0 1

σ2 0 0
0 σ2 0
0 0 σ2

 σ2 0 0
0 σ2 0
0 0 σ2

ρ23 0 0
0 ρ23 0
0 0 ρ23

σ3 0 0
0 σ3 0
0 0 σ3


σ1 0 0

0 σ1 0
0 0 σ1

ρ13 0 0
0 ρ13 0
0 0 ρ13

σ3 0 0
0 σ3 0
0 0 σ3

σ2 0 0
0 σ2 0
0 0 σ2

ρ23 0 0
0 ρ23 0
0 0 ρ23

σ3 0 0
0 σ3 0
0 0 σ3

 σ3 0 0
0 σ3 0
0 0 σ3

1 0 0
0 1 0
0 0 1

σ3 0 0
0 σ3 0
0 0 σ3





=


Σ

1/2
11 Σ

1/2
11 Σ

1/2
11 Γ12Σ

1/2
22 Σ

1/2
11 Γ13Σ

1/2
33

Σ
1/2
11 Γ12Σ

1/2
22 Σ

1/2
22 Σ

1/2
22 Σ

1/2
22 Γ23Σ

1/2
33

Σ
1/2
11 Γ13Σ

1/2
33 Σ

1/2
22 Γ23Σ

1/2
33 Σ

1/2
33 Σ

1/2
33


where Γij =

 ρij 0 0
0 ρij 0
0 0 ρij


Here, In matrix represents the autocorrelation matrix with φ = 0. So, if φ 6= 0, we will have:

Ω =

 1 φ φ2

φ 1 φ
φ2 φ 1


vec(Σ ∗N(0,Ω)) = N(0,Σ⊗ Ω)

Σ⊗ Ω =



σ2
1

 1 φ φ2

φ 1 φ
φ2 φ 1

 σ12

 1 φ φ2

φ 1 φ
φ2 φ 1

 σ13

 1 φ φ2

φ 1 φ
φ2 φ 1


σ21

 1 φ φ2

φ 1 φ
φ2 φ 1

 σ2
2

 1 φ φ2

φ 1 φ
φ2 φ 1

 σ23

 1 φ φ2

φ 1 φ
φ2 φ 1


σ31

 1 φ φ2

φ 1 φ
φ2 φ 1

 σ32

 1 φ φ2

φ 1 φ
φ2 φ 1

 σ2
3

 1 φ φ2

φ 1 φ
φ2 φ 1




Now, if we suppose that every observation generated from different mean and variance, we have

Σ =

 Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 where Σ is positive definite

=


Σ11 Σ

1/2
11 Γ12Σ

1/2
22 Σ

1/2
11 Γ13Σ

1/2
33

Σ
1/2
11 Γ12Σ

1/2
22 Σ22 Σ

1/2
22 Γ23Σ

1/2
33

Σ
1/2
11 Γ13Σ

1/2
33 Σ

1/2
22 Γ23Σ

1/2
33 Σ33


vec(Σ ∗N(0,Ω)) = N(0,Σ⊗ Ω)
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Σ⊗ Ω =



Σ
1/2
11

 1 φ φ2

φ 1 φ
φ2 φ 1

Σ
1/2
11 Σ

1/2
11

 ρ12 φ φ2

φ ρ12 φ
φ2 φ ρ12

Σ
1/2
22 Σ

1/2
11

 ρ13 φ φ2

φ ρ13 φ
φ2 φ ρ13

Σ
1/2
33

Σ
1/2
22

 ρ21 φ φ2

φ ρ21 φ
φ2 φ ρ21

Σ
1/2
11 Σ

1/2
22

 1 φ φ2

φ 1 φ
φ2 φ 1

Σ
1/2
22 Σ

1/2
22

 ρ23 φ φ2

φ ρ23 φ
φ2 φ ρ23

Σ
1/2
33

Σ
1/2
33

 ρ31 φ φ2

φ ρ31 φ
φ2 φ ρ31

Σ
1/2
11 Σ

1/2
33

 ρ32 φ φ2

φ ρ32 φ
φ2 φ ρ32

Σ
1/2
22 Σ

1/2
33

 1 φ φ2

φ 1 φ
φ2 φ 1

Σ
1/2
33


Where φ is the autocorrelation and ρ is the correlation between two different variables

Σ⊗ Ω =


Σ

1/2
11 ΩΣ

1/2
11 Σ

1/2
11 (Γ12. Ω) Σ

1/2
22 Σ

1/2
11 (Γ13. Ω) Σ

1/2
33

Σ
1/2
11 (Γ12. Ω) Σ

1/2
22 Σ

1/2
22 ΩΣ

1/2
22 Σ

1/2
22 (Γ23. Ω) Σ

1/2
33

Σ
1/2
11 (Γ13. Ω) Σ

1/2
33 Σ

1/2
22 (Γ23. Ω) Σ

1/2
33 Σ

1/2
33 ΩΣ

1/2
33


But the different variables cannot have the same autocorrelation, so the matrix will become:

Σ⊗ Ω =


Σ

1/2
11 Ω11Σ

1/2
11 Σ

1/2
11 (Γ12. Ω12) Σ

1/2
22 Σ

1/2
11 (Γ13. Ω13) Σ

1/2
33

Σ
1/2
11 (Γ12. Ω21) Σ

1/2
22 Σ

1/2
22 Ω22Σ

1/2
22 Σ

1/2
22 (Γ23. Ω23) Σ

1/2
33

Σ
1/2
11 (Γ13. Ω31) Σ

1/2
33 Σ

1/2
22 (Γ23. Ω32) Σ

1/2
33 Σ

1/2
33 Ω33Σ

1/2
33

 .

Now, we substitute φ with long memory dependence characterized by Hurst index. We get the
following

Σ⊗ ΩH =


Σ

1/2
11 ΩH1Σ

1/2
11 Σ

1/2
11 (Γ12. ΩH12) Σ

1/2
22 Σ

1/2
11 (Γ13. ΩH13) Σ

1/2
33

Σ
1/2
11 (Γ12. ΩH12) Σ

1/2
22 Σ

1/2
22 ΩH2Σ

1/2
22 Σ

1/2
22 (Γ23. ΩH23) Σ

1/2
33

Σ
1/2
11 (Γ13. ΩH13) Σ

1/2
33 Σ

1/2
22 (Γ23. ΩH23) Σ

1/2
33 Σ

1/2
33 ΩH3Σ

1/2
33


Where Γ represents a diagonal matrix of correlation coefficients and (Γ. Ω) represents an element by
element multiplication of two matrices
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