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Abstract

It is known that when the multicollinearity exists in the gamma regression model, the variance of
maximum likelihood estimator is unstable and high. In this article, a new Liu-type estimator based
on (r-(k-d)) class estimator in gamma regression model is proposed. The performance of the proposed
estimator is studied and comparisons are done with others. Depending on the simulation and real
data results in the sense of mean squared error, the proposed estimator is superior to the other
estimators.

Keywords: Liu-type estimator; gamma regression model; (r-(k-d)) class estimator, (r – d) class
estimator; (r – k) class estimator; (k – d) class estimator.

1. Introduction

The gamma regression is widely used for analyzing real data, particularly in medical felids,
automobile insurance claims, and the economics of health-care.( [9], [21], [10], [3], [6]). Where the
response variable is not distributed normally or is positively skewed, the gamma regression model is
used. As a result, gamma regression assumes a gamma distribution for the response variable. ([2];
[3], [27], [4]).

The gamma regression model, like the linear regression model, assumes that the regressors have
no correlation. There is a natural correlation between the explanatory variables in many regression
model applications. When correlations are strong, estimation of the regression parameters becomes
unstable, making it difficult to interpret regression coefficient estimates ([3], [20]).
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When using the maximum likelihood (ML) method to estimate the regression coefficients for
a gamma regression model, the estimated coefficients are unstable with high variance, and this
lead to reduce statistical significance as a result of previous studies by ([21], [10]). It’s difficult to
estimate the individual effects of and explanatory variable in a regression model when there’s an
issue with multicollinearity. Furthermore, the regression coeficients’ sampling variance can influence
both inference and prediction ([4]).

Several methods have been suggested as a remedial methods to solve the problem of multicollinear-
ity. Hoerl and Kennard (1970)[11] suggested the ridge estimator, which has been shown to be a viable
replacement to the ”ML estimator”. Segerstedt used the ridge estimator in his generalized linear
models (GLM) (1992)[24]. Furthermore, the ridge estimator was considered in logistic regression by
Segerstedt (1992)[24] and Schaefer, Roi, and Wolfe (1984)[25]. The ridge estimator was also used by
Månsson and Shukur (2011)[20] and Månsson (2012)[18] in (Poisson regression and negative bino-
mial regression) samples, respectively. Kurto glu and Ozkale(2016) [16] recently demonstrated the
application of the well-known Liu estimator Liu (1993) to GLM and the use of gamma distributed
response variables (2016). We also relate to Wu and Asar (2017)[28], Mnsson, Kibria, and Shukur
(2012)[19], Urgan and Tez (2008)[26], and Asar et al. for Liu regression (2017). Liu (2003) suggested
a new approach to the collinearity problem known as the Liu-type estimator. This estimator has also
been well studied in the literature and generalized to some GLM models; we refer to the following
reviews for more details: ”Inan and Erdogan (2013) [12] , Asar and Genc. (2016)[7], Asar (2018)[6],
and Akdeniz and Duran (2010)[1]”. Liu (1993) [14] suggested the Liu estimator, which combines the
Stein r is estimator and the ridge estimator. ”Compared to the ridge estimator, the Liu estimate
a linear model of the shrinkage parameter, making shrinkage parameter selection easier than ridge
parameter selection.” (Ozkale and Kaciranlar (2007)[23]; Yang and Chang (2007))[29] suggested the
two-parameter estimator, which is a combination of the ridge and Liu estimators (2010). Alheety
and Kibria (2013)[5] proposed a new estimator that combines the Liu estimator with the (r – k) class
estimator.

2. Statistical methodology

2.1. Gamma regression model

Let yi be the response parameter, which is based on the gamma distribution with non-negative
shape variable k and non-negative scale parameter τ , ie, yi∼Gamma (k, τ); the After that, the
probability density problem is described as yi∼Gamma (k, τ).

f (yi;k,τ) =
yi
k−1 e−yi/τ

Γ(k)(τ)k
, yi≥0 and k,τ> 0 (2.1)

where k is the non-negative shape parameter and τ is the scale parameter such that E (Yi) =µi= kτ=θi
which is also known as the canonical parameter and var (Yi) = kτ 2= 1/(kθi

2), θi= exp(xi
Tβ) where

xi=(xi1, xi2, . . . , xip)
T , i = 1, 2, . . . , n and j = 1,2, . . . , p where n is the sample size n and p is the

number of explanatory variables (n>p). The parameters are usually obtained using maximum like-
lihood estimation.

Maximize the following log-likelihood function with respect to β in order to do so. β

l (β) =
n∑
i=1

[(k − 1) logy −y/τ−k logτ− log(Γ (k) )] (2.2)
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We can use some iterative methods to obtain the solutions because the obtained equations are non-
linear in b. As a result, the following iterations can be described using the Fisher Scoring process.

β̂t+1=β̂t−
{
E[H1 (β)]β=βt

} [∂l (β)

β

]
β=βt

(2.3)

where H1 (β) = − 1
φ
XTWX is the Hessian matrix such that φ= 1/k is the dispersion parameter and

∂l (β)

β
= φ

n∑
i=1

[
yi−

1

xiTβ

]
xi. (2.4)

Therefore, Eq. (2.3) can be as following:

β̂t+1=β̂t−
{

(XT ŴX)
−1

XT Ŵ ẑ
}
β=βt

(2.5)

where Ŵ= diag(θi
2)and ẑ=θ̂i+

yi−θ̂i
θ̂2i

is the ith part of the “vector z”. This duplicated method contin-

ues till the sequential appreciation assembles to, say, β̂MLE, at which point we get

β̂MLE=(XT ŴX)
−1

XT V̂ ẑ, whereŴ and ẑ are computed at the final iteration.

The covariance matrix of β̂MLE; cov
(
β̂MLE

)
=φ (XT ŴX)

−1
is well-known for being ill-conditioned,

causing the variance of the regression coefficients to be inflated ([17]; [24]). The maximum likelihood
estimator’s (MLE) mean squared error (MSE) is given by:

MSE
(
β̂MLE

)
= E

(
β̂MLE−β

)T (
β̂MLE−β

)
= tr

[
φ (XT ŴX)

−1]
=φ

p∑
j=1

1

λj
(2.6)

tr (.) is the trace of a matrix, and λj is the jth eigenvalue of the matrix D =XT ŴX.
The eigenvalue decomposition of the matrix M is also taken into account as follows: D =QTΛQ,
where Q is the orthogonal matrix consisting of the eigenvectors identical, to the eigenvalues of (D),
and Λ= diag(λ1, λ2, . . . , λp)is the rectangular matrix consisting of the eigenvectors identical to the
eigenvalues of (D).
It’s easy that if one value or more of the eigenvalues are relative to zero, the MSE of the MLE inflates,
so the “regression coefficients” suffer as a result.
If there is an orthogonal matrix T = (t1, . . . , tp) such that T ′DT = Λ , the gamma ridge estimator
(GRE) is used to resolve the problem of multicollinearity:

β̂GRE = (D + kI)−1 X ′Ŵ ẑ (2.7)

The covariance matrix and bias (b) vector of GRE respectively, may be results from by

cov
(
β̂GRE

)
= φD−1k D D−1k (2.8)

bGRE = bias
(
β̂k

)
= −kD−1k β (2.9)

The gamma Liu estimator (GLE) is known as

β̂GLE = Td β̂MLE (2.10)
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T d=(D + I)−1(D + dI) and 0<d<1 covariance matrix and bias vector calculated using the following
formulas.

cov
(
β̂d

)
= φ T dD

−1T d
T (2.11)

bGLE = bias
(
β̂d

)
= −(1− d)(D + I)−1 β (2.12)

2.2. The proposed estimator

Baye and Parker (1984)[8] suggested a ridge estimation and principal components regression (PCR)
estimator.

β̂r(k) = Tr(T
′
r

`XWXTr + kIr)
−1

T ′rX̀y (2.13)

The (r – k) estimator is also known as the (r – k) class estimator. Kaciranlar and Sakallioglu
(2001)[13] proposed a new estimator dependent on Liu estimation and principal components regres-
sion (PCR). This explained as:

β̂r (d) = Tr

(
T ′rX̀WXTr + Ir

)−1 (
T ′rX̀y + dT ′rβ̂r

)
0 < d < 1, (2.14)

where β̂r = Tr

(
T ′r

`XWXTr

)−1
T ′rX̀y is PCR. β̂r (d) is define as the (r-d) class estimator. Al-

heety and Kibria (2013)[5] proposed a new estimator that combines the Liu estimator with the (r –
k) class estimator.

This type of estimator was applied to a gamma regression model in this paper. The latest estimate
is as follows:

β̂r (k, d) = Tr

(
T ′rX̀WXTr + Ir

)−1 (
T ′rX̀y + dT ′rβ̂r(k)

)
(2.15)

k > 0, −∞ < d <∞ , and is define as the (r - (k-d)) class estimator.

3. Comparison of the Estimators by MSE Criterion

The mean squares error matrix of this estimator’s β̂ is introduced as follows:

MSE
(
β̂
)

= E
(
β̂−β

)T (
β̂−β

)
= V ar

(
β̂
)

+
(
Bias

(
β̂
))(

Bias
(
β̂
))′

(3.1)

Where

Bias
(
β̂
)

= E
(
β̂
)
− β is the bias of β̂ and V ar

(
β̂
)

= E[
(
β̂ − E

(
β̂
))(

β̂ − E
(
β̂
))′

]

is a variance of β. is chosen over an alternative for a given value of β, β̂1When MSE
(
β̂2

)
−MSE(β̂1)

is a non-negative definite matrix definite matrix, then mse
(
β̂2

)
− mse

(
β̂1

)
≥ 0

3.1. Comparison between the (r – (k – d) Class Estimator and (r – d) Class Estimator

The matrix (MSE) and scalar (mse) for the β̂r (k, d) and β̂r (d) are known as:

MMSE
(
β̂r (k, d)

)
=φ TrD

−1
r (1)

(
Ir + dD−1r (k)

)
T ′rD

−1
r Tr

(
Ir + dD−1r (k)

)
D−1r (1)T ′r

+ (T rD
−1
r (1)

(
Ir + dD−1r (k)T ′rDrTr

)
T ′r + T ′p−rTp−r)ββ

′

× (T rD
−1
r (1)

(
Ir + dT ′rDrTrD

−1
r (k)

)
T ′r + T ′p−rTp−r). (3.2)
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mse
(
β̂r (k, d)

)
=

r∑
i=1

φλi (λi + k + d)2 + (λi + k − dλi)2α2
i

(λi + k)2 (λi + 1)2
+

p∑
i=p−r

α2
i (3.3)

where D−1r (1) = (Λr − Ir) .

By minimize mse β̂r (k, d) with respect to d we get

dopt =

∑r
i=1 λi(α

2
i − φ)/(λi + k) (λi + 1)2∑r

i=1 λi(λiα2
i − φ)/(λi + k)2 (λi + 1)2

(3.4)

Now it’s time to fix k. So

mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
=d2

r∑
i=1

(λiα
2
i + φ) +

(
λ2i − (λi + k)2

)
λi (λi + k)2 (λi + 1)2

+ 2dk
r∑
i=1

(α2
i − φ)

(λi + k) (λi + 1)2
(3.5)

Since k , λi , α
2
i and σ

2 are positive numbers, so:

r∑
i=1

(λiα
2
i + φ) +

(
λ2i − (λi + k)2

)
λi (λi + k)2 (λi + 1)2

< 0→
r∑
i=1

(λiα
2
i + φ) +

(
(λi + k)2 − λ2i

)
λi (λi + k)2 (λi + 1)2

> 0 (3.6)

Let M1 =
∑r

i=1

(λiα2
i+φ)+(λ2i− (λi+k)

2)
λi(λi+k)

2 (λi+1)2
and M2 = k

∑r
i=1

(α2
i−φ)

(λi+k) (λi+1)2
then,

mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
= d2M1 + 2dM2 (3.7)

Now, when M2 > 0, we need to know the conditions that to create mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
> 0

.
mse

(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
= d2M1 + 2dM2 = d(dM1 + 2M2)

so, mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
will be positive when d < 0 and dM1 + 2M2 < 0. In this case,

dM1 + 2M2 < 0⇔ dM1 < −2M2 ⇔ d (−M1) > 2M2 ⇔ d >
2M2

(−M1)
= d∗ > 0 .

Also, mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
will be positive when d > 0 and dM1 + 2M2 > 0. In this case,

dM1 + 2M2 > 0⇔ dM1 > −2M2 ⇔ d (−M1) < 2M2 ⇔ d < d∗ > 0 .

So, mse
(
β̂r − (k, d)

)
−mse

(
β̂r (d)

)
> 0 for 0 < d < d∗.

Now, we are looking for the state that makes
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
< 0. This inequity, will be

held when d < 0 and, dM1 + 2M2 > 0 ⇔ d < d∗ > 0. So , mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
< 0

for < 0 or d < d∗ .
at the same method, when M2 < 0, , mse

(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
> 0 for d∗ < d < 0.

Also, mse
(
β̂r (k, d)

)
−mse

(
β̂r (d)

)
< 0 for d > 0 and d > d∗. so, we may state the Theory 3.1.
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Theorem 3.1

(a) When
∑r

i=1

(α2
i−φ)

(λi+k) (λi+1)2
> 0 then:

(1) mse
(
β̂r (k, d)

)
> mse

(
β̂r (d)

)
for 0 < d < d∗ .

(2) mse
(
β̂r (k, d)

)
< mse

(
β̂r (d)

)
for < 0 or d < d∗ .

(b) When
∑r

i=1

(α2
i−φ)

(λi+k) (λi+1)2
< 0 then:

(1) mse
(
β̂r (k, d)

)
> mse

(
β̂r (d)

)
for d∗ < d < 0 .

(2) mse
(
β̂r (k, d)

)
< mse

(
β̂r (d)

)
for > 0 and d > d∗ .

Where

d∗ =
2k
∑r

i=1

(α̂2
i−φ)

(λi+k) (λi+1)2∑r
i=1

( (λi+k)
2−λ2i )(λiα2

i+φ)
λi (λi+1)2(λi+k)

2

3.2. Comparison between (r –(k – d)) and (r – k) Class Estimator

The MSE and mse of (r – k) type estimator respectively, are:-

MSE
(
β̂r (k)

)
= φ TrD

−1
r (k) ΛrD

−1
r (k)T ′r + [T rD

−1
r (k) ΛrT

′
r − Ip]ββ

′[T rD
−1
r (k) ΛrT

′
r − Ip] (3.8)

mse
(
β̂r (k)

)
= mse

(
β̂r (k, 1− k)

)
=

r∑
i=1

φλi + k2α2
i

(λi + k)2
+

p∑
i=p−r

α2
i (3.9)

When d = 1 − k in (3.3), we obtain mse of the (r – k) class estimator. Anyway, mse
(
β̂r (k, d)

)
is

minimized at dopt, so, we may state the following theorem.

Theorem 3.2. When

d =

∑r
i=1 λi(α

2
i − φ)/(λi + k) (λi + 1)2∑r

i=1 λi(λiα2
i − φ)/(λi + k)2 (λi + 1)2

mse
(
β̂r (k, d)

)
≤ mse

(
β̂r (k)

)
.

This theory show that the comparison results are influenced by the unknown parameters α. As
a result, we cannot rule out the possibility that our theorem results may not hold, and that the
results can change. As a result, we replace it (α) with their unbiased estimators. so (d) is based
on (k) and the unknown parameters (α) , we replace k by its estimator ”(in this analysis, k is
calculated using the estimator proposed by Hoerl and Kennard (1970a)”[11] and we denote d by its

estimator. k̂HK = φ̂∑r
i=1 α̂

2
i

We’d like to point out that there are a variety of estimators that researchers have suggested for
estimating the ridge parameter k; for more details, see Kibria (2003)[15] and Muniz and Kibria
(2009)[22]. As a result, the approximate d̂optwould be as follows:

d̂opt =

∑r
i=1 λi(α̂

2
i − φ̂)/(λi + k̂HK) (λi + 1)2∑r

i=1 λi(λiα̂2
i − φ̂)/(λi + k̂HK)

2
(λi + 1)2

(3.10)
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4. Simulation study

Monte Carlo simulation experiment was using in this paper, to test the suggested estimator’s effi-
ciency under different stats of multicollinearity.

4.1. Simulation design

The response variable of n obtained from gamma regression type known as, yi∼ Gamma(k, τ);,
where τ= (0.50, 1.5) and θi= exp(xi

Tβ) , β= (β1, . . . ,βp) with
∑p

j=1 β
2
j = 1 and (β1=β2 = · · · =βp).

The explanatory variables xTi = (xi1, xi2, . . . , xin) created from the formula below:

xij=(1−ρ2)
1/2
wij + ρwip i = 1,2, . . . ,n, j = 1,2, . . . ,p

where ρ is the correlation between the explanatory variables and wij’s are independent standard nor-
mal pseudo-random numbers. Because the sample size has direct impact on the prediction accuracy,
three representative values of the sample size are considered: 50, 100, and 150 are considered. Fur-
thermore, p=3 and p=7 are used to determine the number of explanatory variables. Since a larger
number of explanatory variables will leading to a bigger MSE. Furthermore, since we are attentive
in the impact of multicollinearity, where the degrees of correlation are more significant, three values
of the pairwise correlation are considered with ρ = (0.90 , 0.95 , 0.99).
The produced data is repeated 1000 times for incorporation of these values of n, p, , and the average
MSE calculated as:

MSE
(
β̂
)

=
1

1000

1000∑
i=1

(
β̂ − β

)T (
β̂ − β

)
(4.1)

4.2. Results of the simulation

Tables 1 and 2 summarize the averaged MSE for all combinations of n, τ, p, and ρ,. The best averaged
MSE’s value is highlighted in bold. We can deduce the following conclusions from the tables:

1. The new estimator, r-(k-d), has the best performance in all of the situations considered. More-
over, performance of r-(k-d) is better for larger values of the correlation coefficient.

2. It is noted from Tables 1 and 2 that r-(k-d) ranks first with respect to MSE. In the second rank,
r-d estimator performs better than both GR and r-k estimators. Additionally, GR estimator
has the worst performance among r-k, r-d, and r-(k-d) which is significantly impacted by the
multicollinearity.

3. Regarding the number of explanatory variables, it is easily seen that there is a negative impact
on MSE, where there are increasing in their values when the p increasing from three variables
to seven variables. In Addition, in terms of the sample size n, the MSE values decrease when
n increases, regardless the value of ρ, τ and p.

Clearly, in terms of the dispersion parameter τ , both bias and MSE values are decreasing when τ
increasing .
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Table 1: MAveraged MSE values for the four estimators when φ = 0.5

n p ρ GR r-k r-d r-(k-d)

50

3

0.90 4.733 4.492 4.153 4.039

0.95 4.777 4.542 4.203 4.089

0.99 5.043 4.808 4.469 4.355

7

0.90 4.847 4.612 4.273 4.159

0.95 4.897 4.662 4.323 4.209

0.99 5.163 4.928 4.589 4.475

100

3

0.90 4.485 4.25 3.911 3.797

0.95 4.535 4.3 3.961 3.847

0.99 4.801 4.566 4.227 4.113

7

0.90 4.611 4.37 4.031 3.917

0.95 4.655 4.42 4.081 3.967

0.99 4.921 4.686 4.347 4.233

150

3

0.90 4.434 4.199 3.86 3.746

0.95 4.484 4.249 3.91 3.797

0.99 4.75 4.515 4.176 4.062

7

0.90 4.554 4.319 3.98 3.867

0.95 4.604 4.369 4.03 3.916

0.99 4.87 4.635 4.296 4.182

Table 2: Averaged MSE values for the four estimators when φ = 1.5

n p ρ GR r-k r-d r-(k-d)

50

3

0.90 4.624 4.389 4.05 3.936

0.95 4.673 4.438 4.099 3.985

0.99 4.94 4.705 4.366 4.252

7

0.90 4.744 4.509 4.17 4.056

0.95 4.793 4.558 4.219 4.104

0.99 5.06 4.825 4.486 4.372

100

3

0.90 4.382 4.147 3.808 3.694

0.95 4.432 4.196 3.857 3.743

0.99 4.698 4.463 4.124 4.01

7

0.90 4.502 4.267 3.928 3.814

0.95 4.552 4.317 3.978 3.864

0.99 4.818 4.583 4.244 4.13

150

3

0.90 4.331 4.096 3.757 3.643

0.95 4.38 4.145 3.807 3.692

0.99 4.647 4.412 4.073 3.959

7

0.90 4.451 4.216 3.877 3.763

0.95 4.5 4.265 3.927 3.812

0.99 4.767 4.532 4.193 4.079
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5. The Application Real Data

To explain the capacity of the r-(k-d) estimator in true application, we found here a chemical data
with (n, p) = (212, 10), where n is the number of antifungal agents. The antimicrobial effectiveness
was metric as pMIC (the logarithm of reciprocal of MIC, the MIC is lower inhibitory condensation
against C. albicans in mM/L). While p it indicates the number of molecular descriptors, which are
concerned as explanatory variables ([3]).
In chemometrics, the analysis of quantitative structure-activity relationships (QSAR) has gained a
lot of traction. The aim of QSAR is to model many biological activities using structural properties
of a series of chemical materials. One of mainly methods for building a QSAR model is the use
of regression models. Table 3 gives a rundown of the explanatory variables that were used. The
variables are all numerical in nature.
First, The Chi-square test is used to determine if the response variable belongs to the gamma
distribution. The test yielded a result of 10.0286 with a p-value of 0.9117. The gamma distribution
suits this response variable very well, as shown by this result. 0.0153 is the approximate dispersion
parameter. Second, after adequate the gamma regression model with the function of log link and
an approximate dispersion variable of 0.0153, the eigenvalues of the matrix XT ŴX which were
used to evaluate for multicollinearity, and obtained as 1.97× 109,3.74× 106, 1.21× 104, 1.34× 103,
1.22× 103,1.07× 103, 4.63× 102, 2.08× 101, 10.68, and 1.57.
The evaluated condition number CN =

√
λmax/λmin when is the data ( 35422.83) indicating that the

acute multi-collinearity matter is exist.
Table 4 displays the approximate gamma regression coefficients and MSE values for the GR, r-k, k-d,
and r-(k-d) estimators. The r-(k-d) effectively shrinks the number of the estimated coefficients, as
shown in Table 4.
Also, there is a significant reduce in the MSE in favour of the r- (k-d). The MSE of the r-(k-d)
estimator was approximately 39.486%, 24.080%, and 21.337% lower than that of the GR, r-k, and
k-d estimators, respectively.

Table 3: Description of the used explanatory variables

Variable name’s description

IC3 Information Content index (neighborhood symmetry of 3-order)

ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by
van der Waals volume

MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume

MATS2s Moran autocorrelation of lag 2 weighted by I-state

GATS4p Geary autocorrelation of lag 4 weighted by polarizability

SpMax8 Bh(p) largest eigenvalue n. 8 of Burden matrix weighted by polarizability

SpMax3 Bh(s) largest eigenvalue n. 3 of Burden matrix weighted by I-state

P VSA e 3 P VSA-like on Sanderson electronegativity, bin 3

TDB08m 3D Topological distance based descriptors - lag 8 weighted by mass

Mor21e signal 21 / weighted by Sanderson electronegativity
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Table 4: The estimated coefficients and MSE values for the four used estimators.

Estimators

GR r-k k-d r-(k-d)

β̂IC3 1.1278 1.1064 1.0875 1.0818

β̂ATS8v 2.1326 2.1112 2.0923 2.0866

β̂MATS7v 0.9087 0.8873 0.8684 0.8627

β̂MATS2s -1.1533 -1.1747 -1.1936 -1.1993

β̂GATS4p -1.7531 -1.7745 -1.7934 -1.7991

β̂
SpMax8 Bh (p)

0.1387 0.1173 0.0984 0.0927

β̂
SpMax3 Bh (s)

-1.1851 -1.2065 -1.2254 -1.2311

β̂
P VSA e 3

-.2108 -0.2322 -0.2511 -0.2568

β̂
TDB08m

-1.1532 -1.1746 -1.1935 -1.1992

β̂
Mor21e

3.1056 3.0842 3.0653 3.0596

MSE 4.1087 3.2749 3.1607 2.4863

6. Conclusion

In this paper we studied the theoretical properties of our propose estimator, (r-(k-d)) class esti-
mator, in gamma regression model. Comparison of our proposed estimator to other estimator has
been studied using the MSE. Depending on the simulation and real data results in the concept of
mean squared error, the proposed estimator reveals a superior performance to the other estimators.
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[20] K. Månsson and G. Shukur, A Poisson ridge regression estimator , Econ. Model., 28(4)(2011) 1475–1481.
[21] A. S. Malehi, F. Pourmotahari and K. A. Angali, Statistical models for the analysis of skewed healthcare cost

data: a simulation study , Health Econ. Rev., 5(1)(2015) 1–16.
[22] G. Muniz and B. M. G. Kibria, On some ridge regression estimators: An empirical comparisons , Commun. Stat.

Comput., 38(3)(2009) 621-630 .
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