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Abstract

The matrix-variate generalized hyperbolic distribution is heavy-tailed mixed continuous skewed
probability distribution. This distribution has multi applications in the field of economics, risk
management, especially in stock modeling.

This paper includes the estimate of the location matrix θ for the multivariate partial linear
regression model, which is one of the multivariate semiparametric regression models when the random
error follows a matrix-variate generalized hyperbolic distribution in the Bayesian technique depending
on non-informative and informative prior information, estimating the location matrix under balanced
and unbalanced loss function and the shape parameters (λ, ψ, ν), skewness matrix (δ), the scale
matrix (Σ) are known. In addition, estimation the smoothing parameter by a proposed method
depending on the rule of thumb, the proposed kernel function depending on the mixed Gaussian
kernel. the researchers concluded when non-informative and informative prior information is available
that the posterior probability distribution for the location matrix θ is a matrix-variate generalized
hyperbolic distribution, through the experimental side, it was found that the proposed kernel function
is overriding than the Gaussian kernel function in estimate the location matrix and under informative
prior information.
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1. Introduction

Multivariate regression models are one of the statistical models that have great importance in different
areas of life and especially in economic fields. Among these models are multivariate semiparametric
regression model, and as their name suggests, they are a mixture of multivariate parametric model and
multivariate nonparametric model, the parametric part is the regression function that is supposed to
be linear in the observations of its explanatory variables, while the nonparametric part is an unknown
smoothing function and is a nonlinear function, the multivariate semiparametric regression model
provide an intermediate solution between the parametric and nonparametric model.

Therefore, many researchers have been interested in estimating multivariate semiparametric re-
gression models in which the random error term follows a matrix normal distribution, but there are
cases in which the random error follows the heavy tail distribution or extremes (heavier than the
matrix normal distribution), in the case above, it is more appropriate to pay attention to alternative
probability distributions than the matrix normal distribution, meaning that the mixed distributions
are more fits as the matrix-variate generalized hyperbolic distribution . [2] [6] [15]

The first to use the multivariate parametric regression model when the random error follows
a matrix-variate generalized hyperbolic distribution are the two researchers (Thabane & Haq
2004) and they studied the estimation of the model parameters in the Bayesian technique when
the priors distributions belong to the conjugate families as the prior distribution of the location
matrix represented the matrix normal distribution and the prior distribution of the scale matrix is
a matrix generalized inverse Gaussian distribution as well as finding the Bayesian prediction [15].
Followed by the researcher (Deschamps, 2012) as he studied two models of GARCH when the white
noise limit is twisted and heavy tails, the first model is GHT-GARCH that represents the threshold
for GARCH and the second model is ODLV-GARCH and the variables of both models are twisted
variables In addition to the two models overlap with the T-GARCH threshold as a constraint, and by
comparing the two models, the researcher concluded that the GHT-GARCH model is better than the
ODLV-GARCH model through the Bayesian method and the Bayes factor criterion for information
and based on the MCMC algorithm and for five sets of real data [5]. (Choi, et al. 2009) test a
statistical hypothesis in the Bayesian method of the normal multiple partial linear regression model
and assumed that the parametric part of the model is a linear multidimensional function while the
nonparametric part is an infinite series of trigonometric functions and deduced upon increasing the
sample size that the bayes factor criterion is under the null hypothesis H0 of the linear function is
consistent, that is, it approaches infinity while it approaches zero under the alternative hypothesis
H1 of the partial linear function [4].

The second section deals with the description of the multivariate partial regression model when
the random error follows a matrix-variate generalized hyperbolic distribution. In the third section,
proposal of the kernel function and the smoothing parameter. The fourth section included finding
the posterior probability distribution of the location matrix based on non-informative and informa-
tive prior information is available. The fifth section includes Bayesian estimate under unbalanced,
balanced loss function, The sixth section includes an experimental side using the language of Matlab,
while in the last section show the most important conclusions and future works.

2. Description the Model

The multivariate partial regression model is described according to the following equation: [13] [16]

Yim = X ′iβm + gm (Ti) + εim i = 1, 2, . . . , n , m = 1, 2, . . . , k (2.1)
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Since X ′iβm represents the parametric part of the model which βm is estimated by the paramet-
ric methods, such as the method of maximum likelihood , ordinary least squares, , moments, or
Bayes method ..., and gm (Ti) represents the nonparametric part of the model, which is an unknown
smoothing function that is estimated by the nonparametric methods, such as the kernel smoother ,
spline smoother and the k-nearest neighbor smoother ....., it is possible to write the model defined
in equation (2.1) in the form of matrices as follows: [1]

Y = Xβ +Wγ + ε (2.2)

Y =

 y11 . . . y1k
... . . .

...
yn1 · · · ynk


n×k

, X =

 1 x11 · · · x1p
...

... . . .
...

1 xn1 · · · xnp


n×p+1

, β =

 β01 · · · β0k
...

. . .
...

βp1 · · · βpk


p+1×k

W =

 kerh(t1 − T11) · · · kerh(ts − T1s)
...

. . .
...

kerh(t1 − Tn1) · · · kerh(ts − Tns)


n×s

, γ =

 γ11 · · · γ1k
...

. . .
...

γs1 · · · γsk


s×k

ε =

 ε11 . . . ε1k
... . . .

...
εn1 · · · εnk


n×k

As Y is a matrix of response variables with dimension (n × k), n represents the number of obser-
vations, k represents the number of response variables, X is a non-random matrix that represents
observations of parametric explanatory variables with dimension (n × p + 1 ). The p represents
the number of parametric explanatory variables, and the β represents the parameters matrix of the
parametric part with dimension (p + 1 × k). As for W , it is the design matrix which indicates the
kernel weighted with dimension (n × s). The s represents the number of nonparametric explanatory
variables and kerh (.) ∗ represents the kernel function, γ the matrix of parameters of the nonpara-
metric part (Added parameters) with dimension (s × k), and ε is the matrix of random errors with
dimension (n × k). The model can be rewritten in equation (2.2) as follows: [1]

Yn×k = Cn×(p+s+1)θ(p+s+1)×k + εn×k (2.3)

As:
C = [X W ] , θ = [β γ]T

It is assumed that the matrix of errors (ε) follows a matrix-variate generalized hyperbolic distribu-
tion, using the concept of mixed distributions can be found the probability density function of the
matrix( ε) from the matrix normal variance-mean mixture distribution with the generalized inverse
Gaussian distribution as follows: [6][15]

ε|Z ∼MNn,k (δZ , ZΣ , In) , Z ∼ GIG(λ, ψ, ν)

Whereas, the probability density function of the matrix (ε) conditional by random (Z) (ε | Z) takes
the following formula:

* Kernel function and is as follows
(
kerh (.) = 1

h
ker( .

h
)
)
, and that this function is a real, symmetric

and continuous function and that h represents the smoothing parameter and is positive value, they
will be mentioned later.
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f (ε | Z) =
1

(2π Z)
nk
2 |Σ|

n
2

e−
1

2 Z
tr (ε−δZ)T (ε−δZ)Σ−1

(2.4)

The probability density function of the random variable (Z) is as follows: [11]

P (Z) =

(
λ
ψ

)υ
2

2 Kυ

(√
λψ
) Zυ−1 exp

[
−1

2

((
ψ

Z

)
+ λZ

)]
, Z > 0 (2.5)

According to the concept of mixed distributions, the probability distribution of the matrix of uncon-
ditional random errors by (Z) is as follows:

f (ε) =

∫ ∞
0

f (ε | Z) P (Z) dZ

f (ε) =

(
λ
ψ

)nk
4

etr (ε)T δ Σ−1
K 2v−nk

2

(√
λψ
(

1 + tr εT εΣ−1

ψ

)(
1 + tr δT δ Σ−1

λ

))
(2π )

nk
2 |Σ|

n
2 Kυ

(√
λψ
)

∗
(

1 +
tr εT εΣ−1

ψ

) 2v−nk
4
(

1 +
tr δT δ Σ−1

λ

)nk−2v
4

(2.6)

As:
λ, ψ, v: shape parameters.
Kv (.): the modified Bessel function of the third kind of order v which takes the following form: [9]

Kv (x) = 0.5

∫ ∞
0

tv−1exp
(
−0.5 x

(
t+ t−1

))
dt x > 0 (2.7)

δ : skewness matrix of degree (n × k).
Equation (2.6) represents a matrix–variate generalized hyperbolic distribution for the matrix (ε)
which is described as follows:

ε ∼MGHn,k (0, Σ, In, λ, ψ, ν, δ) ↔ vec(ε) ∼MGHnk (vec(0), Σ⊗ In, λ, ψ, ν, vec(δ))

Since the matrix (Y) in Equation (2.3) is a linear combination in terms of the matrix (ε) that follows
a matrix-variate generalized hyperbolic distribution, the probability distribution of (Y) follows a
matrix-variate generalized hyperbolic distribution as follows:
The probability density function of the matrix of response variables(Y) conditional by (Z) (Y | Z) that
follows a matrix normal variance-mean mixture distribution is as follows:

f (Y | Z) =
1

(2π Z)
nk
2 |Σ|

n
2

e−
1

2 Z
tr (Y−Cθ−δZ)T (Y−Cθ−δZ)Σ−1

(2.8)

The probability distribution of (Y) unconditional by (Z), depending on the concept of mixed distri-
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butions is as follows:

f (Y ) =

(
λ
ψ

)nk
4
etr (Y−Cθ)T δ Σ−1

(2π )
nk
2 |Σ|

n
2 Kυ

(√
λψ
) K 2v−nk

2
√√√√λψ

(
1 +

tr (Y − Cθ)T (Y − Cθ) Σ−1

ψ

)(
1 +

tr δT δ Σ−1

λ

)
∗

(
1 +

tr (Y − Cθ)T (Y − Cθ) Σ−1

ψ

) 2v−nk
4 (

1 +
tr δT δ Σ−1

λ

)nk−2v
4

(2.9)

As:
θ: The location matrix with a dimension (p+ s+ 1× k).
Σ: The scale matrix with a dimension (k × k).
This distribution can be expressed descriptively as follows:

Y ∼MGH(n ,k) (Cθ ,Σ , In , λ , ψ , υ, δ ) ↔ vec(Y ) ∼MGHnk (vec(Cθ), Σ⊗ In, λ, ψ, ν, vec(δ))

3. Kernel functions and smoothing parameter

Using the kernel functions can estimation the regression functions, the spectral functions and the
probability density functions, this function is a real, symmetric, continuous and definite function,
and its integral is equal to one. the kernel function has other names, including (weight, shape, and
window function) and the following table shows some types of kernel functions: [10]

Table 1: Some of the kernel functions

Kernel Ker(x)

Epanchnikov (3/4) (1− x2) I(|x| ≤ 1)

Quartic (15/16) (1− x2)
2

I(|x| ≤ 1)

Triweight (35/32) (1− x2)
3

I(|x| ≤ 1)

Gauss (2π)−0.5exp(−x2/2) I(|x| <∞)

Uniform 0.5 I(|x| ≤ 1)

Depending on the mixed Gaussian kernel function, the researchers proposal a new kernel function
as follows:
We assume the mixed Gaussian kernel function is described as follows:

(x | Z) ∼ N (0, Z)

That (Z) is a random variable which follows the generalized inverse Gaussian distribution defined in
equation (2.5) and uses the mixed distributions. The proposed kernel function is as follows:

ker (x) =

∫ ∞
0

ker (x | Z) P (Z) dZ
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ker (x) =

(
λ
ψ

)0.25

√
2π Kv

(√
λψ
)K 2v−1

2

(√
λψ(1 +

x2

ψ
)

)(
1 +

x2

ψ

) 2v−1
4

(3.1)

Equation (3.1) represents the proposed kernel function, and can be called the symmetric generalized
hyperbolic kernel function and is described as follows:

ker (x) ∼ GH (0, 1, λ, ψ, υ, 0)

For example, the kernel function used in the estimation is the Gaussian Kernel function, and based
on the rule of thumb. the smoothing parameter at the second kernel degree is as follows: [7][14]

hthumb = 1.06 σ̂ n−
1
5 (3.2)

As hthumb is a non-random, and positive parameter, the smoothing parameter is usually chosen
according to the researcher’s experience or iteration methods to obtain the best bandwidth parameter.
The smoothing parameter greatly affects the bias and variance. Moreover, the researchers suggested
counting on the rule of normal distribution and a Gaussian kernel function and assuming the normal
probability density function is a mixed function, so the suggested smoothing parameter is as follows:

hsug. = 1.06 ∗ σ̂ ∗ n−
1
5 ∗

Kυ

(√
λψ
) (

λ
ψ

)−5
4

K 2v−5
2

(√
λψ
)


1/5

(3.3)

As σ̂ represents the standard deviation of the sample, it is possible to use any other kernel function
according to the following rule: [14]

h∗ = CK ∗ hsug. (3.4)

As:

CK =

(
2
√
π R (K)

µ2
2 (K)

) 1
5

(3.5)

Whereas hsug. represents the proposed smoothing parameter depending on the Gaussian kernel func-
tion, so any derived rule based on the Gaussian kernel function can be inverted by relying on other
kernel functions by multiplying it by a multiplier. Therefore, the proposed smoothing parameter and
based on the multiplier of the proposed kernel function is as follows:

h∗ =

Kυ

(√
λψ
)
K 2v−1

2

(√
λψ
)

(
λ
ψ

)−5
4 (

Kυ+1

(√
λψ
))2


1
5

∗ 1.06 ∗ σ̂ ∗ n−
1
5 ∗

Kυ

(√
λψ
) (

λ
ψ

)−5
4

K 2v−5
2

(√
λψ
)


1/5

(3.6)

4. Posterior probability distribution of the location matrix

In this topic, the location matrix (θ) is defined in equation (2.3) is estimated based on non-
informative and informative prior information under the assumption that the shape parameters, the
scale matrix (Σ) are known.
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4.1. Non-informative prior information

The prior distribution of location matrix (θ)is found from Fisher’s information by taking the natural
logarithm of the two sides of the probability density function of (Y) conditional by (Z) (Y |Z)
and knowing in equation (2.8) and taking the second partial derivative relative to (θ), the prior
distribution of (θ|Z) is as follows: [12]

IY
(θ) =

[∣∣∣∣−E ∂2 lnf (Y | θ,Σ)

∂ θT∂θ

∣∣∣∣] (4.1)

=
Kv−1

(√
λψ
)

Kv

(√
λψ
) (λ

ψ

) 0.5

(CTC) ⊗ Σ−1 (4.2)

We notice from equation (4.2) that the prior distribution of matrix (θ) is a constant distribution,
meaning that:

P (θ) ∝ Constant Matrix (4.3)

By merge the probability density function of (Y (conditional by (Z (defined in equation (8) with
the prior probability distribution defined in equation (4.3), we obtain the kernel of the posterior
probability distribution for the location matrix (θ) conditional by the random variable (Z (as follows:

P (θ | Y, Σ, Z) ∝ P (θ) f (Y | θ,Σ,Z)

∝ exp

(
− 1

2 Z
tr (Y − Cθ − δZ)T (Y − Cθ − δZ) Σ−1

)
(4.4)

By adding and subtracting the amount Cθ̂ m|Z to the exponential function in the equation (4.4) and

that θ̂ m|Z represents the conditional maximum likelihood estimator, which was found by deriving
normal logarithm of equation (2.8) a partial derivation of θ as follows:

θ̂ m|Z =
(
CTC

)−1
CTY −

(
CTC

)−1
CT δZ (4.5)

And procedure some mathematical simplifications, we get the following:

P (θ | Y, Σ, Z) ∝ exp

(
− 1

2 Z
tr
(
θ − θ̂ m|Z

)T
CTC

(
θ − θ̂ m|Z

)
Σ−1

)
(4.6)

Equation (4.6) represents the kernel of the matrix normal variance-mean mixture distribution. There-
fore, the posterior distribution of the (θ | Y, Σ, Z) is as follows:

P (θ | Y, Σ, Z) =

∣∣CTC
∣∣ k2 e

− 1
2 Z

tr
(
θ−θ̂∗+(CTC)

−1
CT δZ

)T
CTC

(
θ−θ̂∗+(CTC)

−1
CT δZ

)
Σ−1

(2π Z)
(p+s+1)k

2 |Σ|
(p+s+1)

2

(4.7)

Express equation (4.7) descriptively as follows:

(θ | Z) ∼MN (p+s+1), k

((
CTC

)−1
CT Y +

(
CTC

)−1
CT (−δ)Z , ZΣ , (CTC)

−1
)

Accordingly, the posterior probability distribution of location matrix (θ ) unconditional of Z and
according to mixed distributions is as follows:

P (θ | Y, Σ) =

∫ ∞
0

P (θ | Y, Σ, Z) P (Z) dZ
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P (θ | Y, Σ) =

(
λ
ψ

) (p+s+1)k
4 ∣∣CTC

∣∣ k2
(2π )

(p+s+1)k
2 |Σ|

(p+s+1)
2

etr (θ−θ̂∗)
T
CT (−δ)Σ−1

Kυ

(√
λψ
)

∗K 2v−(p+s+1)k
2


√√√√√√λψ

1 +
tr
(
θ − θ̂∗

)T
CTC

(
θ − θ̂∗

)
Σ−1

ψ

(1 +
tr δTC(CTC)−1 CT δ Σ−1

λ

) 

∗

1 +
tr
(
θ − θ̂∗

)T
CTC

(
θ − θ̂∗

)
Σ−1

ψ


2v−(p+s+1)k

4

∗

(
1 +

trδTC(CTC)
−1
CT δΣ−1

λ

)−2v+(p+s+1)k
4

(4.8)

As:
θ̂∗ = (CTC)

−1
CTY

Equation (4.8) represents a matrix-variate generalized hyperbolic distribution and is described as
follows:

θ ∼MGH(p+s+1), k

(
θ̂∗ , Σ , (CTC)

−1
, λ, ψ, v,

(
CTC

)−1
CT (−δ)

)
Or:

vec(θ) ∼MGH(p+s+1) k

(
vec(θ̂∗), Σ ⊗(CTC)

−1
, λ, ψ, v, vec

((
CTC

)−1
CT (−δ)

))
4.2. Informative prior information (Conjugate family)

We know that the prior distribution of (θ|Σ , Z) has the following form:

P (θ | Σ, Z) ∝ exp

(
− 1

2 Z
tr (θ − θ0)T U0

−1 (θ − θ0) Σ−1

)
(4.9)

Express equation (4.9) descriptively as follows:

(θ | Z) ∼MN (p+s+1), k

(
θ0(p+s+1)× k , ZΣk×k ,U0(p+s+1)× (p+s+1)

)
The posterior probability distribution of the matrix (θ | Y,Σ, Z)is the distribution resulting from
merging the equation (2.8) with the equation (4.9), as follows:

P (θ | Y, Σ, Z) ∝P (θ | Σ, Z) f (Y | θ,Σ,Z)

∝ exp

(
− 1

2 Z
tr (θ − θ0)T U0

−1 (θ − θ0) Σ−1

)
∗ exp

(
− 1

2 Z
tr (Y − Cθ − δZ)T (Y − Cθ − δZ) Σ−1

)
(4.10)

By adding and subtracting the amount Cθ̂ m|Z to the second exponential function in the equation

(4.10) and that θ̂ m|Z represents the conditional maximum likelihood estimator, which previously
defined in equation (4.5) And by making some mathematical simplifications, we get the following:

P (θ | Y, Σ, Z) ∝ exp

(
− 1

2 Z
tr (θ − θ0)T U0

−1 (θ − θ0) Σ−1

)
∗ exp

(
− 1

2 Z
tr
(
θ − θ̂ m|Z

)T
CTC

(
θ − θ̂ m|Z

)
Σ−1

)
(4.11)
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We transform the matrices in the equation (4.11) into the vector transformation (vector operator)
formula as follows:

P (θ | Y, Σ, Z) ∝ exp

[
− 1

2 Z

{
(vec θ − vec θ0)T (U0 ⊗ Σ)−1 (vec θ − vec θ0)

+
(
vec θ − vecθ̂ m|Z

)T (
(CTC)

−1 ⊗ Σ
)−1 (

vec θ − vec θ̂ m|Z

)}]
(4.12)

We resemble the quadratic form in the equation (4.12) with the following quadratic form: [3]

(X − a)TA (X − a) + (X − b)TB (X − b) =(X − d)T (A+B) (X − d)

+ (a− b)T A(A+B)−1B (a− b) (4.13)

As (X, a, b, d ) are vectors with dimension (k2×1) and (A,B) are matrices with dimension (k2×k2)
and that:

d = (A+B)−1 (A a+B b)

Returning to equation (4.13), then:

X = vec θ , a = vec θ0 , b = vecθ̂ m|Z , A = (U0 ⊗ Σ)−1, B = (
(
CTC)

−1 ⊗ Σ
)−1

d =

(
(U0 ⊗ Σ)−1 + (

(
CTC)

−1 ⊗ Σ
)−1
)−1 [

(U0 ⊗ Σ)−1vecθ0 + (
(
CTC)

−1 ⊗ Σ
)−1

vecθ̂ m|Z

]
We assume that:

Q11 = (U0 ⊗ Σ)−1 +
(

(CTC)
−1 ⊗ Σ

)−1

d = (Q11)−1

[
(U0 ⊗ Σ)−1vecθ0 + (

(
CTC)

−1 ⊗ Σ
)−1

vecθ̂ m|Z

]
= vec θ∗∗ (4.14)

Therefore, the kernel of the posterior probability distribution of (θ) conditional by the variable (Z)
is as follows:

P (θ | Y, Σ, Z) ∝ e
− 1

2 Z
(vec θ−vec θ∗∗)T

[
(U0

∫
Σ)

−1
+ ((CTC)

−1 ∫
Σ)

−1]
(vec θ−vec θ∗∗)

(4.15)

Return equation (4.15) to the matrix formula depending on the properties of the vector and the
Kronecker product, we get the following:

P (θ | Y, Σ, Z) ∝ exp

[
− 1

2 Z
tr ( θ − θ∗∗)T

[
U0
−1 +

(
CTC

)]
( θ − θ∗∗) Σ−1

]
(4.16)

As:

θ∗∗ =
[
U0
−1 +

(
CTC

)]−1
[
U0
−1θ0 +

(
CTC

)
θ̂ m|Z

]
(4.17)

Equation (4.16) represents the kernel of the matrix normal variance-mean mixture distribution.
Therefore, the posterior distribution of the (θ | Y, Σ, Z) is as follows:

P (θ | Y, Σ, Z) =

∣∣U0
−1 +

(
CTC

)∣∣ k2
(2πZ)

(p+s+1)k
2 |Σ|

(p+s+1)
2

e−
1

2 Z
tr ( θ− θ∗∗)T [U0

−1+(CTC)]( θ− θ∗∗)Σ−1

(4.18)
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Express equation (4.18) descriptively as follows:

(θ | Y, Σ, Z) ∼MN (p+s+1), k

(
θ∗∗(p+s+1)× k , ZΣk×k ,

[
U0
−1 +

(
CTC

)]−1

(p+s+1)× (p+s+1)

)
Depending on mixed distributions, the posterior probability distribution of location matrix (θ )
unconditional of Z is as follows:

P (θ | Y, Σ) =

∫ ∞
0

P (θ | Y, Σ, Z) P (Z) dZ

P (θ | Y, Σ) =

(
λ
ψ

) (p+s+1)k
4

∣∣∣U0
−1 + C

T
C
∣∣∣ k2

(2π )
(p+s+1)k

2 |Σ|
(p+s+1)

2

etr (θ−Q22)T C∗T (−δ)Σ−1

Kυ

(√
λψ
)

∗K 2v−(p+s+1)k
2

√λψ

(
1 +

tr Q22
∗Σ−1

ψ

)(
1 +

tr δTC∗ C∗T δ Σ−1

λ

)
∗
(

1 +
tr Q22

∗Σ−1

ψ

) 2v−(p+s+1)k
4

(
1 +

tr δTC∗ C∗T δ Σ−1

λ

)−2v+(p+s+1)k
4

(4.19)

As:
Q22

∗ = (θ −Q22)T
[
U0
−1 +

(
CTC

)]
(θ −Q22)

Q22 =
[
U0
−1 +

(
CTC

)]−1
[
U0
−1θ0 +

(
CTC

)
θ̂∗
]

C∗T =
[
U0
−1 +

(
CTC

)]−1
CT

Equation (4.19) represents a matrix-variate generalized hyperbolic distribution and is described as
follows:

θ ∼MGH(p+s+1), k

(
Q22 , Σ , (U0

−1 +
(
CTC

)
)
−1
, λ, ψ, v, C∗T (−δ)

)
Or:

vec(θ) ∼MGH(p+s+1)k

(
vec(Q22) , Σ ⊗

(
U0
−1 +

(
CTC

))−1
, λ, ψ, v, vec( C∗T (−δ))

)

5. Loss functions of location matrix (θ)

In this section, the location matrix (θ) is defined in equation (2.3) is estimated based on entropy loss
function and entropy balanced loss function.

5.1. Entropy loss function

The formula for this function is as follows:[8]

lE

(
θ̂ , θ

)
=

(
θ

θ̂

)
− ln

(
θ

θ̂

)
− 1 (5.1)

lE

(
θ̂ , θ

)
=

p+s+1∑
i=1

k∑
j=1

[
θij

θ̂ij
− log

(
θij

θ̂ij

)
− 1

]
(5.2)
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To find the Bayesian estimator, we make the mathematical expectation of the entropy loss function
relative to (θ) as low as possible, which means the risk of the estimator (θ̂ ), meaning that:

∂RE

(
θ̂ , θ

)
∂θ̂ij

=



∂RE(θ̂ ,θ)
∂θ̂11

∂RE(θ̂ ,θ)
∂θ̂21

∂RE(θ̂ ,θ)
∂θ̂12

∂RE(θ̂ ,θ)
∂θ̂22

· · ·
∂RE(θ̂ ,θ)

∂θ̂1k
∂RE(θ̂ ,θ)

∂θ̂2k
...

. . .
...

∂RE(θ̂ ,θ)
∂θ̂(p+s+1)1

∂RE(θ̂ ,θ)
∂θ̂(p+s+1)2

· · · ∂RE(θ̂ ,θ)
∂θ̂(p+s+1)k


In order to find the elements of the matrix, we derive the entropy risk function relative to (θ̂ij) as
follows:

∂RE

(
θ̂ , θ

)
∂θ̂ij

=

∫
θij

∂

∂θ̂ij
lE

(
θ̂ , θ

)
P (θij | Y ) dθij

∂RE

(
θ̂ , θ

)
∂θ̂ij

=

∫
θij

[
−θij
θ̂2
ij

− θ̂ij
θij

(
−θij
θ̂2
ij

) ]
P (θij | Y ) dθij

To find the Bayesian estimator, we set
∂RE(θ̂ ,θ)

∂θ̂ij
= 0 as follows:

∫
θij

[
−θij
θ̂2
ij

+
θ̂ij

θ̂2
ij

]
P (θij | Y ) dθij = 0

1

θ̂2
ij

[
θ̂ij − Eθij (θij | Y )

]
= 0

θ̂E(ij) = Eθij (θij | Y ) (5.3)

Equation (5.3) represents the Bayesian estimator under the entropy loss function of the element
(ij ) from the location matrix (θ) and represents the mean posterior distribution for the element.
Therefore, the Bayesian estimator for the location matrix represents the mean posterior probability
distribution of the matrix.

θ̂E = Eθ (θ | Y ) (5.4)

5.2. Entropy balanced loss function

The formula for the entropy balanced loss function is as follows:[8]

lEb

(
θ̂ , θ

)
= w

p+s+1∑
i=1

k∑
j=1

[
θ̂m(ij)

θ̂ij
− log

(
θ̂m(ij)

θ̂ij

)
− 1

]
+ (1− w)

p+s+1∑
i=1

k∑
j=1

[
θij

θ̂ij
− log

(
θij

θ̂ij

)
− 1

]
(5.5)

As:
θ̂m(ij) : Represents the maximum likelihood estimator of θ.
To find the Bayesian estimator, we make the mathematical expectation of the entropy balanced loss
function relative to (θ) as low as possible, which means the risk of the estimator (θ̂),
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meaning that:

∂REb

(
θ̂ , θ

)
∂θ̂ij

=



∂REb(θ̂ ,θ)
∂θ̂11

∂REb(θ̂ ,θ)
∂θ̂21

∂REb(θ̂ ,θ)
∂θ̂12

∂REb(θ̂ ,θ)
∂θ̂22

· · ·
∂REb(θ̂ ,θ)

∂θ̂1k
∂REb(θ̂ ,θ)

∂θ̂2k
...

. . .
...

∂REb(θ̂ ,θ)
∂θ̂(p+s+1)1

∂REb(θ̂ ,θ)
∂θ̂(p+s+1)2

· · · ∂REb(θ̂ ,θ)
∂θ̂(p+s+1)k


In order to find the elements of the matrix, we derive the entropy balanced risk function relative
to (θ̂ij) as follows:

∂REb

(
θ̂ , θ

)
∂θ̂ij

=

∫
θij

∂

∂θ̂ij
lEb

(
θ̂ , θ

)
P (θij | Y ) dθij

∂REb

(
θ̂ , θ

)
∂θ̂ij

=

[
w

(
−
θ̂m(ij)

θ̂2
ij

− θ̂ij

θ̂m(ij)

(
−
θ̂m(ij)

θ̂2
ij

))]

+ (1− w)

∫
θij

[
−θij
θ̂2
ij

− θ̂ij
θij

(
−θij
θ̂2
ij

) ]
P (θij | Y ) dθij (5.6)

To find the Bayes estimator, we set
∂REb(θ̂ ,θ)

∂θ̂ij
= 0 as follows:

1

θ̂2
ij

[
w
(
θ̂ij − θ̂m(ij)

)
+ (1− w)

(
θ̂ij − Eθij (θij | Y )

)]
= 0

w
(
θ̂ij

)
+ (1− w)

(
θ̂ij

)
= w

(
θ̂m(ij)

)
+ (1− w)Eθij (θij | Y )

θ̂Eb(ij) = w
(
θ̂m(ij)

)
+ (1− w)Eθij (θij | Y ) (5.7)

Equation (5.7) represents the Bayesian estimator under the entropy balanced loss function of the
element (ij ) from the matrix (θ) and represents the mean posterior distribution for the element.
Therefore, the Bayesian estimator for the location matrix represents the mean posterior probability
distribution of the matrix.

θ̂Eb = w
(
θ̂m

)
+ (1− w)Eθ (θ | Y ) , 0 ≤ w ≤ 1 (5.8)

6. Experimental side

This section discusses the simulate of the mechanism reached in the theoretical sections to data
generated from a multivariate partial linear regression model with random error following the matrix-
variate generalized hyperbolic distribution.
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6.1. data generation

It is resorted to generate data through mixed distributions, as the matrix normal variance-mean
mixture distribution and the generalized inverse Gaussian distribution previously mentioned were
used, because it is difficult to generate data from the multivariate partial regression model with the
random error following the matrix-variate generalized hyperbolic distribution.
Whereas, random observations were generated from the multivariate standard normal (Z), and since
Z = (ε|Z− δZ) (ZΣ )−0.5 and ε represents the matrix of random errors of the model from which
the observations are to be generated and through the concept of mixed distributions as follow:

ε|Z=Z ∗ (Z Σ )0.5 + δZ (6.1)

ε =

∫
Z

ε|Z P (Z) dZ

ε = Z ∗ Σ0.5∗
K 2v+1

2

(√
λψ
)

Kv

(√
λψ
) (

λ
ψ

) 1
4

+ δ ∗
Kv+1

(√
λψ
)

Kv

(√
λψ
) (

λ
ψ

) 1
2

(6.2)

Equation (6.2) represents the matrix of random errors, which follows a matrix-variate generalized
hyperbolic distribution.
The below algorithm shows the method for generating data from a matrix-variate generalized hyper-
bolic distribution:
Step1: Assume we the number of observations (n = 100) and the number of response variables (k
= 2).
Step2: Generate random numbers from the multivariate standard normal distribution with (n)
observations, let the multivariate standard normal random number matrix be (Z).
Step3: We put (ε|Z=Z ∗ (Z Σ )0.5 + δZ), (Z) represents Step2.
Step4: Find the generated observations (ε) which represent the random error observations generated
from the matrix-variate generalized hyperbolic distribution taking into account the assumed values
of the shape parameters( λ, ψ, ν) , the scale matrix, and skewness matrix (δ) defined in table 2.
Step5: The purpose of generating data from the multivariate partial linear regression model, we gen-
erate the data of the two explanatory variables (p=2), (s = 2) for the parametric and nonparametric
part (X1, X2) and (t1, t2) respectively, the parametric variables through the following equation:

Xj = 2 Xj uj

Since uj represents the standard uniform distribution, Xj represents the arithmetic mean and they
are usually assumed values ,and the nonparametric part (W) represents the kernel weights one time
we take it to the Gaussian kernel function and another we take it to the proposed kernel function
which was previously defined in equation (3.1) and depending on the rule of normal distribution to
choose the smoothing parameter for both functions, the nonparametric variables (t1, t2) is a standard
normal variables.
Step6: Randomly assumed values are given for the location matrix θ , the scale matrix S,
and for shape parameters they are given random values depending on the state of the studied
distribution λ, ψ, υ > 0 and as in table 2 below.
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Table 2: Approved default values for all parameters

λ ψ η θ(p+s+1)×k Σk×k δ

1 3 0.5 2.5
[

2 1.4 5 3 4.1
1.5 3 2.5 1 3.4

]T [
1.5 2
2 3

] [
0.6498
0.9347

]T
2 5 3.5

3 7

Step7: After substituting Step4 and data of the two explanatory variables for the parametric part,
the kernel weights matrix for the nonparametric part defined in Step5, and the assumed values of
the parameters defined in Step6, we obtain (2.6) models depending on the combination between the
assumed values of the response matrix Y.

6.2. Estimation of the location matrix

The location matrix θ is estimated in a Bayesian technique based on non-informative, informative
prior information and under the entropy, entropy balanced loss function. the comparison between
the estimators was made using the MSE and depending on all the combinations between the default
values shown in table 2 by using a program Matlab-R2016a.

Table 3: MSE for the estimator of location matrix θ under entropy loss function

Models
(λ,ψ,υ)

Gaussian kernel function Proposed kernel function Non-
informative

prior
Non- Non- Non-

informative
prior

Informative
prior

informative
prior

informative
prior

0.0431

(3,0.5,2.5) 0.0751 0.0661 0.0431 0.0431 0.1173

(3,0.5,3.5) 0.1029 0.0910 0.1173 0.1173 0.0173

(5,0.5,2.5) 0.0472 0.0413 0.0173 0.0173 0.0405

(5,0.5,3.5) 0.0633 0.0556 0.0405 0.0405 0.0101

(7,0.5,2.5) 0.0351 0.0306 0.0101 0.0101 0.0206

(7,0.5,3.5) 0.0463 0.0405 0.0206 0.0206
Non-

informative
prior

0.0431

0.1173

0.0173

0.0405

0.0101

0.0206
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We notice from table 3 that the best estimator for θ it was at the proposed kernel function,
informative prior information, and of the model (7,0.5,2.5), this estimate is as follows:

θ̂E =

[
1.8617 1.3913 5.1040 3.1080 4.0650
1.5501 2.8621 2.6503 1.1532 3.2851

]T

Table 4: MSE for the estimator of location matrix θ under entropy balanced loss function

Models
(λ,ψ,υ)

Gaussian kernel function Proposed kernel function Rank

Non- Non-

informative
prior

Informative
prior

informative
prior

Informative
prior

W=0.1 W=0.9 W=0.1 W=0.9 W=0.1 W=0.9 W=0.1 W=0.9

(3,0.5,2.5) 0.0751 0.0668 0.0739 0.0739 0.0399 0.0426 5

(3,0.5,3.5) 0.1029 0.0920 0.1015 0.1015 0.1034 0.1154 6

(5,0.5,2.5) 0.0472 0.0417 0.0464 0.0464 0.0167 0.0171 2

(5,0.5,3.5) 0.0633 0.0562 0.0623 0.0623 0.0372 0.0400 4

(7,0.5,2.5) 0.0351 0.0309 0.0344 0.0344 0.0098 0.0100 1

(7,0.5,3.5) 0.0463 0.0409 0.0455 0.0455 0.0197 0.0204 3

We notice from table 4 that the best estimator for θ it was at the proposed kernel function, informative
prior information, and of the model (7,0.5,2.5), this estimate is as follows:

θ̂Eb =

[
1.8730 1.3867 5.1065 3.1033 4.0595
1.5515 2.8622 2.6498 1.1511 3.2852

]T
The following figure show the matrix of generated and estimated response variables that follows the
matrix-variate generalized hyperbolic distribution based on the best estimator of θ .
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7. Conclusions and future works

In this paper, a multivariate partial linear regression model is used when the error follows a matrix
–variate generalized hyperbolic distribution as an alternative to the model in which the error follows
a matrix normal distribution to find the Bayesian estimate of the location matrix. The posterior
probability distribution of the location matrix (θ) in the case of availability of non-informative and
informative prior information is a matrix-variate generalized hyperbolic distribution. The superiority
of the proposed kernel function over the Gaussian kernel function for all loss functions at estimate
of the location matrix. When non-informative prior information is available, the estimation for
the location matrix under the entropy loss function are equal to the estimation under the entropy
balanced loss function. Steadfastly the parameters (ψ= 0.5, ν= 2.5), as the value of the parameter

(λ) increases, we get the smaller value of the MSE criterion for the θ̂ and for all loss functions,
and in the case of availability of non-informative and informative prior information. The researchers
recommend conducting an application side to implement what was reached in the research, and
estimate the scale matrix when the location matrix is known, depending on the kernel functions and
bandwidth parameter defined in Sections (3) and (4) respectively and under different loss functions.
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