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Abstract

In this paper, some common fixed point results for four mappings satisfying generalized contractive
condition in a generalized b-metric spaces are proved. Advantage of our work in comparison with
studies done in the context of b-metric is that, the b-metric functions used in the theorems are
not necessarily continuous. So, our results extend and improve several comparable results obtained
previously. To show the validity of our work, we also prove that the same results hold even if the
space is endowed with two metrics.
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1. Introduction

Due to the wide applications of fixed point theorems in different fields, the study of existence
and uniqueness of fixed points and common fixed points has become a subject of great interest. The
main idea is to extend or generalize the famous Banach contraction principle in different directions.
Many authors generalized the Banach contraction principle by generalizing the concept of a metric
space see [8]. The classical Banach contraction principle was extended for contraction mappings on
spaces endowed with vector-valued metrics by Perov [11] in 1964. The concept of b-metric space was
introduced by Bakhtin in [4] and extensively used by Czerwik in [7], since then several papers have
dealt with fixed point theory in b-metric spaces (see [1], [2], [3], [5], [13]). The aim of this paper
is to present some common fixed point results for four mappings satisfying generalized contractive
condition in a generalized b-metric space, where the b-metric is not necessarily continuous. Many
authors in their work have used the b-metric spaces in which b-metric function is continuous, but the
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techniques used here can be employed in the setup of discontinuous b-metric spaces. From this point
of view the results obtained in this paper generalize and extend several comparable existing results
in the framework of b-metric spaces. In this paper we focused on Hardy-Rogers type contractions [9]
and present some common fixed point results in generalized b-metric spaces for four mappings.

2. Preliminaries

In this section, we present some useful properties and auxiliary results to prove our fixed point
theorems in the following section.

Definition 2.1. [7] Let X be a nonempty set and let s ≥ 1 be a given real number. A function
d : X × X → Rn

+ is said to be a vector-valued b-metric on X if and only if for all x, y, z ∈ X the
following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, z) ≤ s[d(x, y) + d(y, z)].

A pair (X, d) is called a generalized b-metric space.

Remark 2.2. If α, β ∈ Rn with α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) and c ∈ R, then by α ≤ β
(respectively α < β), we mean that αi ≤ βi (respectively αi < βi), for all i = 1, n and by α ≤ c we
mean that αi ≤ c, for all i = 1, n.

It should be noted that the class of generalized b-metric spaces is larger than the class of metric
spaces, since a generalized b-metric space is a generalized metric space when s = 1 in the third
assumption of the above definition. If n = 1 in the previous definition, then we get the concept of
b-metric introduced by Bakhtin. Following is an example which shows that a b-metric need not be a
metric:

Example 2.3. Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is a real num-
ber. We show that ρ is a b-metric with s = 2p−1. Obviously, conditions (1) and (2) of definition
2.1 are satisfied. If 1 < p < ∞, then convexity of the function f(x) = xp(x > 0) implies that(
a+ b

2

)p

≤ 1

2
(ap + bp), that is, (a+ b)p ≤ 2p−1(ap + bp) holds. Thus for each x, y, z ∈ X, we have:

ρ(x, y) ≤ (d(x, z) + d(z, y))p

≤ 2p−1((d(x, z))p + (d(z, y))p)

= 2p−1(ρ(x, z) + ρ(z, y)).

So condition (3) of definition 2.1 holds and ρ is a b-metric. Note that (X, ρ) is not necessarily
a metric space. For example, if X = R be the set of real numbers and d(x, y) = |x − y| a usual
metric, then ρ(x, y) = (x− y)2 is a b-metric on R with s = 2, but not a metric on R, as the triangle
inequality for a metric does not hold.

For examples which show that a b-metric need not to be a metric see [16] and for the notions of
convergence, closedness and completeness in a b-metric space see [6]. In general a b-metric function
d(x, y) for s > 1 is not jointly continuous in all two of its variables for examples, see [10].

Throughout this paper we denote by Mn×n(R+) the set of all n × n matrices with positive
elements, by Θ the zero n× n matrix and by I the identity n× n matrix.
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Definition 2.4. [15] A matrix C ∈ Mn×n(R+) is said to be convergent to zero if and only if

Cn → Θ, as n → ∞.

For other examples and considerations on matrices which converge to zero, see Turinici [14].

Notice that, for the proof of the main results, we need the following theorem, part of which being
a classical result in matrix analysis.

Theorem 2.5. [12] Let C ∈ Mn×n(R+). The following statements are equivalent:

(i) C is convergent towards zero.

(ii) The eigenvalues of C are in the open unit disc, that is, |λ| < 1, for every λ ∈ C with
det(C − λI) = 0.

(iii) The matrix (I − C) is nonsingular and

(I − C)−1 = I + C + C2 + . . .+ Cn + . . . .

(iv) The matrix (I − C) is nonsingular and (I − C)−1 has nonnegative elements.

(v) Cnq → 0 and qCn → 0 as n → ∞, for each q ∈ Rn.

We need also the following simple definitions.

Definition 2.6. Let f and g be self-mapping of a generalized b-metric space (X, d). An element
x ∈ X is said to be a common fixed point of f and g if and only if x = f(x) = g(x).

Definition 2.7. Let f and g be self-mapping of a generalized b-metric space (X, d). f and g are
said to be weakly compatible if they commute at their coincidence points, the equality fu = gu for
some u ∈ X implies that fgu = gfu.

3. Main Results

Theorem 3.1. Let f, g, S and T be self-mappings of a generalized b-metric space (X, d) satisfying
the following conditions:

f(X) ⊂ T (X), g(X) ⊂ S(X). (3.1)

Suppose that one of S(X), T (X), f(X), and g(X) is a complete subspace of X and the pairs (S, f)
and (T, g) are weakly compatible. There exists matrices M,N,P ∈ Mn×n(R+) with:

(i) (I −N − Ps) is nonsingular and (I −N − Ps)−1∈Mn×n(R+);

(ii) sC is convergent towards zero, where C = (I −N − Ps)−1(M +N + Ps);

(iii) (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+);

(iv) d(fx, gy) ≤ Md(Sx, Ty)+N [d(Sx, fx)+d(Ty, gy)]+P [d(Sx, gy)+d(Ty, fx)], for all x, y ∈ X.

Then f, g, S, T have a unique common fixed point z.
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Proof . Let x0 be an arbitrary point in X. By (3.3), we can define inductively a sequence {yn} in
X such that

y2n = Tx2n+1 = fx2n

y2n+1 = Sx2n+2 = gx2n+1

We have:

d(y2n, y2n+1) = d(fx2n, gx2n+1)

≤ Md(Sx2n, Tx2n+1) +N [d(Sx2n, fx2n) + d(Tx2n+1, gx2n+1)]

+P [d(Sx2n, gx2n+1) + d(Tx2n+1, fx2n)]

= Md(y2n−1, y2n) +N [d(y2n−1, y2n) + d(y2n, y2n+1)] + Pd(y2n−1, y2n+1)

≤ Md(y2n−1, y2n) +N [d(y2n−1, y2n) + d(y2n, y2n+1)]

+Ps[d(y2n−1, y2n) + d(y2n, y2n+1)]

this implies that:

d(y2n, y2n+1) ≤ (I −N − Ps)−1(M +N + Ps)d(y2n−1, y2n) = Cd(y2n−1, y2n).

Similarly, we have:

d(y2n+1, y2n+2) = d(fx2n+2, gx2n+1)

≤ Md(Sx2n+2, Tx2n+1) +N [d(Sx2n+2, fx2n+2) + d(Tx2n+1, gx2n+1)]

+P [d(Sx2n+2, gx2n+1) + d(Tx2n+1, fx2n+2)]

= Md(y2n+1, y2n) +N [d(y2n+1, y2n+2) + d(y2n, y2n+1)] + Pd(y2n, y2n+2)

≤ Md(y2n, y2n+1) +N [d(y2n+1, y2n+2) + d(y2n, y2n+1)]

+Ps[d(y2n, y2n+1) + d(y2n+1, y2n+2)].

Thus
d(y2n+1, y2n+2) ≤ (I −N − Ps)−1(M +N + Ps)d(y2n, y2n+1) = Cd(y2n, y2n+1).

We obtain that:
d(yn, yn+1) ≤ Cnd(y0, y1), for each n ∈ N.

To prove that (yn)n∈N is a Cauchy sequence, we estimate d(yn, yn+p) using the triangle inequality:

d(yn, yn+p) ≤ sd(yn, yn+1) + s2d(yn+1, yn+2) + · · ·+ sp−2d(yn+p−3, yn+p−2)

+sp−1d(yn+p−2, yn+p−1) + sp−1d(yn+p−1, yn+p)

≤ sCnd(y0, y1) + s2Cn+1d(y0, y1) + · · ·+ sp−2Cn+p−3d(y0, y1)

+sp−1Cn+p−2d(y0, y1) + sp−1Cn+p−1d(y0, y1)

= sCn[I + sC + · · ·+ sp−2Cp−2 + sp−2Cp−1]d(y0, y1)

≤ sCn[I + sC + · · ·+ sp−2Cp−2 + sp−1Cp−1]d(y0, y1)

≤ sCn(I − sC)−1d(y0, y1)

≤ (sC)n(I − sC)−1d(y0, y1).

Note that (I−sC) is nonsingular since sC is convergent to zero. This implies that the sequence {yn}
is a Cauchy sequence in X, therefore, the subsequence {y2n} = {fx2n} ⊂ f(X) is a Cauchy sequence
in f(X). Since T (X) is complete, it converges to a point z = Tv for some v ∈ X.
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Therefore, the sequence {yn} converges also to z and the subsequences {Sx2n+2}, {gx2n+1} and
{fx2n} converge to z.

If z ̸= gv, using the contraction condition, we obtain

d(fx2n, gv) ≤ Md(Sx2n, T v) +N [d(Sx2n, fx2n) + d(Tv, gv)]

+P [d(Sx2n, gv) + d(Tv, fx2n)]

= Md(y2n−1, z) +N [d(y2n−1, y2n) + d(z, gv)]

+Ps[d(y2n−1, z) + d(z, gv)] + Pd(z, y2n).

Letting n → ∞, we obtain
(I −N − Ps)d(z, gv) ≤ 0

taking into account that (I −N −Ps) is nonsingular and (I −N − Ps)−1 ∈ Mn×n(R+), we get that
z = Tv = gv. Since g(X) ⊂ S(X), there exists an u ∈ X such that z = Su = gv.

If z ̸= fu, using the contraction condition, we have:

d(fu, gv) ≤ Md(Su, Tv) +N [d(Su, fu) + d(Tv, gv)]

+P [d(Su, gv) + d(Tv, fu)]

= Md(z, z) +N [d(z, fu) + d(z, z)]

+P [d(z, z) + d(z, fu)].

We get
(I −N − P )d(fu, z) ≤ 0.

Since (I −N − P ) is nonsingular and (I −N − P )−1 ∈ Mn×n(R+), we get that z = Su = fu. Since
the pairs (S, f) and (T, g) are weakly compatible, we get fz = Sz and gz = Tz.

Now we prove that z = fz = Sz,

d(fz, z) = d(fz, gv)

≤ Md(Sz, Tv) +N [d(Sz, fz) + d(Tv, gv)]

+P [d(Sz, gv) + d(Tv, fz)]

= Md(fz, z) + P [d(fz, z) + d(z, fz)].

Since (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+) this implies that z = fz = Sz.
Similarly, we can prove that z = gz = Tz. Hence z is a common fixed point of f, g, S and T .

If there exists another common fixed point w in X for f, g, S and T , then

d(w, z) = d(fw, gz)

≤ Md(Sw, Tz) +N [d(Sw, fw) + d(Tz, gz)]

+P [d(Sw, gz) + d(Tz, fw)]

= Md(w, z) + P [d(w, z) + d(z, w)].

Since (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+) this implies that z is a unique
common fixed point of f, g, S and T . □

We get the concept of generalized metric space in the previous theorem if s = 1, in this case we
have:
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Corollary 3.2. Let f, g, S and T be self-mappings of a generalized metric space (X, d) satisfying the
following conditions:

f(X) ⊂ T (X), g(X) ⊂ S(X). (3.2)

Suppose that one of S(X), T (X), f(X), and g(X) is a complete subspace of X and the pairs (S, f)
and (T, g) are weakly compatible. There exists matrices M,N,P ∈ Mn×n(R+) with:

(i) (I −N − P ) is nonsingular and (I −N − P )−1∈Mn×n(R+);

(ii) C is convergent towards zero, where C = (I −N − P )−1(M +N + P );

(iii) (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+);

(iv) d(fx, gy) ≤ Md(Sx, Ty)+N [d(Sx, fx)+d(Ty, gy)]+P [d(Sx, gy)+d(Ty, fx)], for all x, y ∈ X.

Then f, g, S, T have a unique common fixed point z.

For the proof of this corollary, we follow the same steps as in theorem (3.1) but the difference
here is that the generalized metric function d is continuous. As we see in theorem (3.1), we have
not supposed supplementary conditions to prove the existence and the uniqueness of the fixed point
despite that we have not the continuity of the function d which prove that the techniques used in
theorem (3.1) can be employed in the setup of discontinuous b-metric spaces.

If n = 1 in theorem (3.1) then we get the concept of b-metric introduced by Bakhtin.
To show the validity of our work, we prove next that the same results hold even if the space is

endowed with two metrics.

Theorem 3.3. Let (X, δ) be a complete generalized b-metric space and d another vector-valued
b-metric on X. Assume that the operators f, g, S and T satisfy the following conditions:

f(X) ⊂ T (X), g(X) ⊂ S(X), (3.3)

Suppose that one of S(X), T (X), f(X), and g(X) is a complete subspace of X and the pairs (S, f)
and (T, g) are weakly compatible.

(a) There exists a matrix U ∈ Mn×n(R+) such that δ(x, y) ≤ U · d(x, y), for all x, y ∈ X;

(b) f is (δ, δ)-continuous;

(c) There exists matrices M,N,P ∈ Mn×n(R+) with:

(i) (I −N − Ps) is nonsingular and (I −N − Ps)−1∈Mn×n(R+);

(ii) sC is convergent towards zero, where C = (I −N − Ps)−1(M +N + Ps);

(iii) (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+);

(iv) d(fx, gy) ≤ Md(Sx, Ty) + N [d(Sx, fx) + d(Ty, gy)] + P [d(Sx, gy) + d(Ty, fx)], for all
x, y ∈ X.

Then f, g, S, T have a unique common fixed point z.
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Proof . As in the proof of theorem 3.1, we obtain that (xn)n∈N is d-Cauchy. It follows from (a)
that (xn)n∈N is δ-Cauchy sequence. Therefore, the subsequence {y2n} = {fx2n} ⊂ f(X) is a Cauchy
sequence in f(X). Since T (X) is complete, it converges to a point z = Tv for some v ∈ X.

Therefore, the sequence {yn} converges also to z and the subsequences {Sx2n+2}, {gx2n+1} and
{fx2n} converge to z.

If z ̸= gv, using the contraction condition, we obtain

d(fx2n, gv) ≤ Md(Sx2n, T v) +N [d(Sx2n, fx2n) + d(Tv, gv)]

+P [d(Sx2n, gv) + d(Tv, fx2n)]

= Md(y2n−1, z) +N [d(y2n−1, y2n) + d(z, gv)]

+Ps[d(y2n−1, z) + d(z, gv)] + Pd(z, y2n).

Letting n → ∞, we obtain
(I −N − Ps)d(z, gv) ≤ 0

taking into account that (I −N − Ps) is nonsingular and (I −N − Ps)−1 ∈ Mn×n(R+), we get that
z = Tv = gv. Since g(X) ⊂ S(X), there exists an u ∈ X such that z = Su = gv.

If z ̸= fu, using the contraction condition, we have:

d(fu, gv) ≤ Md(Su, Tv) +N [d(Su, fu) + d(Tv, gv)]

+P [d(Su, gv) + d(Tv, fu)]

= Md(z, z) +N [d(z, fu) + d(z, z)]

+P [d(z, z) + d(z, fu)].

We get
(I −N − P )d(fu, z) ≤ 0.

Since (I −N − P ) is nonsingular and (I −N − P )−1 ∈ Mn×n(R+), we get that z = Su = fu. Since
the pairs (S, f) and (T, g) are weakly compatible, we get fz = Sz and gz = Tz.

Now we prove that z = fz = Sz,

d(fz, z) = d(fz, gv)

≤ Md(Sz, Tv) +N [d(Sz, fz) + d(Tv, gv)]

+P [d(Sz, gv) + d(Tv, fz)]

= Md(fz, z) + P [d(fz, z) + d(z, fz)].

Since (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+) this implies that z = fz = Sz.
Similarly, we can prove that z = gz = Tz. Hence z is a common fixed point of f, g, S and T .

If there exists another common fixed point w in X for f, g, S and T , then

d(w, z) = d(fw, gz)

≤ Md(Sw, Tz) +N [d(Sw, fw) + d(Tz, gz)]

+P [d(Sw, gz) + d(Tz, fw)]

= Md(w, z) + P [d(w, z) + d(z, w)].

Since (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈ Mn×n(R+) this implies that z is a unique
common fixed point of f, g, S and T .

□
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It is of great interest to give fixed point results on a set endowed with vector-valued metrics or
norms. Therefore, we may conclude that for different types of estimations, the use of the vector-valued
norm and, correspondingly, of the matrices convergent to zero, is more appropriate when treating
systems of equations. Application of the previous results is possible for a system of operatorial
equations.

The author is grateful to the editor and referees for their valuable suggestions and critical remarks
for improving the presentation of this paper.
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